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Abstract: Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is dis-
rupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and
resulting in pain and joint disability. Yet, the development of new treatment strategies to restore
the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed
that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-
resorption, and anabolic potential and have received much attention toward the development of
new therapeutic strategies for OA treatment. In the present review, we provide an overview of
current and emerging natural-product-based research treatments for OA management by drawing
attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging
natural-product-based research treatments for OA management.

Keywords: osteoarthritis; natural products; cartilage; bone

1. Introduction

Osteoarthritis (OA) is the most common degenerative musculoskeletal disease and
is a leading cause of disability in the adult population [1]. OA is a whole-joint disease
that is characterized by irreversible cartilage degradation; disruption of the tidemark,
accompanied by angiogenesis and cartilage calcification; subchondral bone remodeling;
osteophyte formation; mild-to-moderate inflammation of the synovial lining [2–4]. The
most common risk factors for OA include age, prior joint injury, obesity, muscle atrophy,
metabolic disorders, and mechanical stress [5,6]. The disease evolution is typically slow and
can take years to develop, with resultant joint pain and stiffness, mobility limitations, and
compromised quality of life. Despite the tremendous personal and societal burden of OA,
there are no curative treatments available and most conventional therapies (medications,
physiotherapy, mechanical devices) provide relatively short-term, unsustained relief of the
symptoms [7–11].

Promise exists for emerging disease-modifying drugs in the management of OA
patients that regulate cartilage metabolism, subchondral bone remodeling, synovial in-
flammation, and angiogenesis. Recently, the use of plant-derived natural products has
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increased because of their therapeutic value in bone health, which is attributable to their
chondroprotective and osteoprotective properties [12,13]. Many of these natural products
have been reported to have anti-inflammatory and antioxidant properties, anti-catabolic
effects on chondrocytes, and inhibitory effects on osteoclast differentiation [14–16]. Accord-
ingly, this review of natural-derived compounds that have shown promise in the treatment
of OA highlights our current thinking for this novel approach.

2. Natural-Compound-Based Treatments for OA Therapy

Conventional pharmaceutical agents (steroids or non-steroids anti-inflammatory
(NSAIDs) drugs) have small-to-moderate effects in patients with OA [7,9,11,17–19]. Ac-
cordingly, there is an increasing interest in identifying novel approaches, including the
use of natural bioactive components that could promote joint health, and mitigate and/or
reverse OA [20].

2.1. Alkaloids
Berberine

Berberine is an alkaloid (benzylisoquinoline) that is found in medicinal plants of the
genera Berberis, such as Berberis vulgaris, and is usually found in the roots, rhizomes, and
stems (Table 1) [21]. It has been reported that berberine has anti-osteoarthritic effects [21].
In vivo studies in two different OA animal models (collagenase- and surgically induced
OA) have demonstrated that berberine has chondroprotective effects, which ameliorates
cartilage degradation while inducing chondrocyte proliferation [22,23]. It has been shown
that berberine inhibits chondrocyte apoptosis and cartilage degradation via activating
AMPK signaling and suppressing p38 MAPK activity [24,25]. Berberine also decreases
inflammation and cartilage degradation by modulating the host immune response through
the inhibition of TLR4/NF-κB signaling [26]. Moreover, berberine has been associated with
bone formation by promoting osteogenic differentiation via activation of Runx-2 and p38
MAPK and reducing osteoclast differentiation [27,28].

Table 1. Natural-alkaloid-based pharmacology therapy for osteoarthritis (OA).

Compound
(Source) Category Structure Therapeutic Target Treatment Ref.

Berberine
(Berberis vulgaris)

Benzyl
isoquinolin

alkaloid
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Induction of bone
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2.2. Flavonoids
2.2.1. Apigenin

Apigenin is a flavonoid (4′,5,7-trihydroxyflavone) that is found in herbs (chamomile,
thyme), fruits (orange), vegetable oils (extra virgin olive oil), and in plant-based beverages
(tea, beer, and wine) (Table 2) [29]. This bioactive agent has already been used as thera-
peutic therapy against diabetes, cancer, Alzheimer’s disease, and OA [30,31]. Apigenin
has anti-inflammatory properties through inhibiting IL-1β/NF-κB and TGFβ/Smad2/3
pathways in chondrocytes [32]. Park et al. have demonstrated that apigenin blocks car-
tilage degradation in in vitro and in vivo OA mouse models through Hif-2α inhibition
and the consequent downregulation of MMP-3, MMP-13, ADAMTS-5, and ADAMTS-4
in articular chondrocytes [33]. Furthermore, apigenin has shown bone protective effects
via modulating the gene expression of TGF-β1 and its receptors, BMP-2, BMP-7, ALP, and
collagen type I in MG63 osteoblasts [34]. Apigenin also promotes osteogenic differentiation
of human mesenchymal stem cells through the JNK and p38 MAPK pathways [35].
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2.2.2. Astragalin

Astragalin is a natural flavonoid (kaempferol 3-glucoside) found in various tradi-
tional medicinal plants, such as Cuscuta chinensis. Its antioxidant and anti-inflammatory
therapeutic properties have led some to consider its potential as a therapeutic agent for
OA patients [36,37]. According to Ma et al. [38], astragalin inhibits the IL-1β-stimulated
activation of NF-κB and MAPK in the chondrocytes of patients with OA while suppressing
inflammation and bone destruction in a mouse model of OA [38,39].

2.2.3. Baicalein

Baicalein is a flavonoid (5,6,7-trihydroxyflavone) that is isolated from the roots of
Scutellaria baicalensis and Scutellaria lateriflora and has medicinal properties, including
neuroprotective, anti-oxidant, anti-fibrosis, and anti-cancer properties [40,41]. Recently, it
has been demonstrated that baicalein has anti-catabolic and anti-apoptotic effects through
inhibiting IL-1β induction in chondrocytes [42,43]. Another study showed that the intra-
articular injection of medium and high doses of baicalein alleviated OA progression in
a rabbit OA model, diminishing cartilage degradation, and showing a lower Mankin
score [44]. Similarly, positive results were obtained on bone through the induction of
osteoblast differentiation and inhibiting osteoclast differentiation [45,46].

2.2.4. Chrysin

Chrysin is a flavonoid (5,7-dihydroxyflavone) that is found in various medicinal plants,
such as Scutellaria baicalensis and Passiflora caerulea, but also in honey and propolis [47].
In human osteoarthritic chondrocytes, chrysin showed a suppressive effect on the IL-
1β-induced inflammatory response, including the expression of inducible nitrous oxide
synthase (iNOS), COX-2, MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5 via the
inhibition of NF-κB signaling and decreases in the concentrations of nitrous oxide (NO) and
PGE2. Chrysin also inhibits the degradation of aggrecan and collagen-II [48]. In addition,
chrysin attenuates the apoptosis and inflammation of stimulated human OA chondrocytes
via the suppression of high-mobility group box chromosomal protein (HMGB-1) [49].
An osteoprotective effect was also observed under chrysin treatment via ERK/MAPK
activation and the upregulating of Runx-2 and Osx expression [50,51].

2.2.5. Genistein

Genistein is a flavonoid (isoflavone) and a phytoestrogen that is extracted from
Genista tinctoria. It has been reported to have promising benefits in the treatment of several
pathologies [52–54]. The anti-osteoarthritic activity of genistein is suggested to be due to
the relationship between OA and altered estrogen metabolism [55]. Phytoestrogens have
some estrogen activity and ameliorate menopausal symptoms, bone loss, and symptoms of
OA [56,57]. In vitro, genistein suppresses catabolic effects of IL-1β-induced in human OA
chondrocytes by targeting the Nrf2/HO-1 pathway, decreasing the expression of MMPs,
nitric oxide synthase 2 (NOS2), and COX-2 [58]. In vivo, genistein attenuated cartilage
degradation in two different OA animal models [58,59]. Furthermore, a positive effect on
bone was obtained through enhanced osteoblastic differentiation and maturation via the
activation of ER (estrogen receptor), p38 MAPK–Runx2, and NO/cGMP pathways [60–62].
It also inhibited osteoclast formation and bone resorption by inducing the osteoclastogenic
inhibitor osteoprotegerin (OPG) and by blocking NF-κB signaling [60,63].

2.2.6. Icariin

Icariin is a flavonoid (flavonoid glycoside) obtained from the genus Epimedium. The
therapeutic potential of this natural compound in cartilage regeneration has been shown in
both in vitro and in vivo studies [64,65]. In vitro, Icariin increases the secretion of extracel-
lular matrix proteins, such as collagen type II and the expression of SOX-9, while decreasing
the expression of MMPs via the activation of HIF-1α. In vivo, icariin enhances articular car-
tilage repair in mouse osteochondral-defective models [65]. It has been reported that icariin
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protects chondrocytes from lipopolysaccharide (LPS)-, IL-1β-, or TNF-α-induced inflam-
mation. Apoptosis and extracellular matrix degradation was also observed via diminishing
the expression of MMP-1, 3, 9, 13, COX-2, and iNOS, suppressing NF-κB signaling and
activating the Nrf2/ARE pathway [66–68]. Icariin also demonstrates protective effects
in bone metabolism. This compound can induce osteoblast proliferation, differentiation,
and mineralization through estrogen-receptor-mediated ERK and JNK signal activation in
the MC3T3-E1 osteoblastic cell line, resulting in an increased expression of differentiation
markers, alkaline phosphatase (ALP), and collagen type I [69]. It has been demonstrated
that icariin induces the miR-153/Runx2 pathway, which is involved in osteoblast differ-
entiation [70]. Icariin also attenuates hypoxia-induced oxidative stress and apoptosis in
osteoblasts [71]. In an in vivo OA mouse model, it was shown that icariin enhanced bone
remodeling with a positive effect on subchondral bone and hyaline cartilage [72].

2.2.7. Kaempferol

Kaempferol is a flavonoid (3,4′,5,7-tetrahydroxyflavone) that is derived from the rhi-
zome Kaempferia galanga L. and can also be found in numerous common vegetables and
fruits, including beans, broccoli, cabbage, grapes, strawberries, tomatoes, citrus fruits, and
apples [73]. Kaempferol alleviates IL-1β-stimulated inflammation in rat OA chondrocytes
by decreasing the production of PGE2 and NO and downregulating the expression of
MMPs, ADAMTS-5, iNOS, and COX-2. These effects were all mediated through the inhibi-
tion of the MAPK p38 and NF-κB pathways [74,75]. It has been shown that kaempferol
increased the osteoblast differentiation and mineralization, and increasing the expression
of BMP-2, Runx-2, Osx, and collagen type I by activating Wnt/β-catenin signaling [76,77].
Another study revealed that kaempferol stimulated bone formation in part via the mTOR
signaling pathway [78]. Kaempferol prevents osteoclast formation through MAPKs, c-Fos,
and NFATc1 [76,79]. In addition, in vivo studies have reported that kaempferol decreased
bone loss in ovariectomized mice [80,81].

2.2.8. Luteolin

Luteolin is a flavonoid (3′,4′,5,7-tetrahydroxyflavone) that is present in herb vegetables
and fruits, including Salvia tomentosa, Chrysanthemum indicum, Artemisia asiatica, broccoli,
carrots, peppers, cabbages, parsley, thyme, peppermint, basil, and celery [82]. Luteolin
has shown anti-inflammatory and anti-catabolic effects in chondrocytes through the inhi-
bition of NF-κB signaling [83]. It diminishes the IL-1β-induced production of NO, PGE2,
TNF-α, MMP-2, MMP-3, MMP-8, and MMP-9; downregulates the expression of COX-2,
iNOS, MMP-1, MMP-3, MM-13, ADAMTS-4, and ADAMTS-5; inhibits the degradation
of collagen type II [83–85]. Luteolin also protects chondrocytes from apoptosis by increas-
ing Foxo3a expression via regulating the IRE1α pathway and miR-29a/Wnt/β-catenin
signaling [86,87]. Its administration can also attenuate cartilage degradation and increase
collagen type II expression in OA rats in vivo [83]. In vitro studies have demonstrated
that luteolin upregulates the expression of osteoblastic differentiation markers, includ-
ing TGF-β1, BMP7, Runx-2, ALP, Osc, Osx, and collagen type I [34,88,89]. It also has
anti-oxidative and anti-apoptotic effects on osteoblasts, in part via the regulation of the
ERK/Lrp-5/GSK-3β signaling pathway [90–92]. Furthermore, luteolin diminishes osteo-
clastic differentiation and function in vitro and in vivo, increasing the bone mineral density
and content of trabecular and cortical bones in ovariectomized rats [93,94].

2.2.9. Naringin

Naringin is a flavonoid (flavanone-7-O-glycoside) that is formed from the flavanone
naringenin and the disaccharide neohesperidose, and is found in citrus fruits, such as grape-
fruit. Naringenin inhibited TNFα-, LPS-, and IL-1β-induced catabolic effects, diminishing
the expression of MMPs, ADAMTS-4, and ADAMTS-5 via the suppression of the NF-κB
pathway and caveolin–p38 MAPK signaling [95–98]. In vivo, naringin attenuates cartilage
destruction via the suppression of inflammatory cytokines. Naringin also promotes bone
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formation via increased osteoblast proliferation and differentiation [99–101]. Mechanisti-
cally, this occurs through the increased expression and secretion of bone-formation-related
genes including Osc, Runx-2, Osx, OPN, BMP-2, and collagen type I [102]. Naringin also
inhibits osteoclast differentiation and maturation, therefore preventing bone loss [103].

2.2.10. Puerarin

Puerarin is a flavonoid (isoflavone) that is found in several plants and herbs, such as
the root of Pueraria lobate [104]. It reduces OA progression by inhibiting the pro-catabolic
responses in chondrocytes [105]. It also has a negative effect on monocyte recruitment [106]
and promotes bone formation through the estrogen receptor, p38 MAPK, ERK1/2–Runx2,
and Wnt/β–catenin pathways [107,108]. Oral administration of puerarin in ovariectomized
rats protected against a reduction in bone mineral density and content while improving
femur trabecular bone structure [108]. The effects of puerarin on osteoblastic proliferation
and differentiation are mediated by the inhibition of TRPM3/miR-204 expression and the
activation of Runx-2 [109–111]. In ovariectomized rats, puerarin was shown to inhibit
osteoblastogenesis through the downregulation of TRAP and RANKL [112]. The inhibition
of RANKL osteoclastogenesis is mediated by the downregulation of CREB/PGC1β/c-
Fos/NFATc1 signaling [113]. Furthermore, another study showed that puerarin inhibits
osteoclastogenesis by suppressing RANKL-dependent and -independent autophagic re-
sponses [114].

2.2.11. Silibinin/Silymarin

Silibinin, also known as silybin, is the major active flavonoid constituent of silymarin,
which is an extract of milk thistle seeds (Silybum marianum), comprising approximately
50–70% of the extract [115,116]. It is also a phytoestrogen. Other flavonolignans, such as
silychristin, isosilychristin, silydianin, and silimonin, are also present in silymarin. The
anti-inflammatory properties of silymarin for OA treatment have been demonstrated us-
ing several protocols [115–118]. A study employing MIA-induced OA rats showed that
silymarin exerts anti-inflammatory and antioxidant effects by diminishing the NO and
IL-1β content in synovial tissue and attenuating cartilage degradation [119]. Another
study demonstrated that silibinin inhibits the IL-1β-induced production of NO, PGE2,
TNF-α, and IL-6; downregulates the expression of COX-2, iNOS, MMP-1, MMP-3, MMP-13,
ADAMTS-4, and ADAMTS-5; diminishes the degradation of aggrecan and collagen type II
in human OA chondrocytes through the suppression of PI3K/Akt and NF-κB signaling
pathways [120]. Furthermore, treatment with silibinin prevented cartilage degradation
and synovitis in an in vivo mice OA model. Silibinin also has osteoprotective proper-
ties, promoting osteoblastogenesis and inhibiting osteoclastogenesis [121,122]. In vitro
experiments have shown that silibinin and silymarin induce osteoblast differentiation in
MC3T3-E1 osteoblasts by increasing the expression of ALP, collagen type I, Runx-2, and
BMP-2 [122,123]. It also promotes the osteogenic differentiation of human bone marrow
stem cells via BMP signaling [124]. In addition, silibinin has antioxidant and anti-apoptotic
effects in osteoblasts [125]. It has been reported that silibinin and silymarin suppress
osteoclastic differentiation in RAW 264.7 osteoclasts, decreasing TRAP and cathepsin K in-
duction induced by RANKL via disturbing TRAF6-c-Src signaling pathways and inhibiting
femoral bone loss in ovariectomized mice [121,126].

2.2.12. Wogonin

Wogonin is a flavonoid (O-methylated flavone) that is found in Scutellaria baicalensis
as baicalein [127,128]. It has been reported that wogonin has chondroprotective effects,
inhibiting IL-1β-induced catabolic markers, such as IL-6, COX-2, iNOS, MMP-3, MMP-9,
MMP-13, and ADAMTS-4, while increasing the anabolic markers aggrecan and collagen
type II in chondrocytes and cartilage explants [129–131]. These wogonin effects are me-
diated through the suppression of c-Fos/AP-1 and JAK/STAT signaling pathways and
the activation of ROS/ERK/Nrf2 signaling pathways [129,131,132]. A recent study has
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shown that the utilization of tetrahedral framework nucleic acid/wogonin complexes alle-
viated inflammation in in vitro and in vivo OA models, preventing cartilage destruction
and increasing bone mineral density [133]. Wogonin has also been shown to attenuate
intervertebral disc degeneration [134].

Table 2. Natural-flavonoid-based pharmacology therapy for OA.

Compound
(Source) Category Structure Therapeutic Target Treatment Ref.

Apigenin
(chamomile, thyme,
tea, extra virgin oil)

4′,5,7-
Trihydroxyflavone
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stem cells via BMP signaling [124]. In addition, silibinin has antioxidant and anti-apop-
totic effects in osteoblasts [125]. It has been reported that silibinin and silymarin suppress 
osteoclastic differentiation in RAW 264.7 osteoclasts, decreasing TRAP and cathepsin K 
induction induced by RANKL via disturbing TRAF6-c-Src signaling pathways and inhib-
iting femoral bone loss in ovariectomized mice [121,126]. 

2.2.12. Wogonin 
Wogonin is a flavonoid (O-methylated flavone) that is found in Scutellaria baicalensis 

as baicalein [127,128]. It has been reported that wogonin has chondroprotective effects, 
inhibiting IL-1β-induced catabolic markers, such as IL-6, COX-2, iNOS, MMP-3, MMP-9, 
MMP-13, and ADAMTS-4, while increasing the anabolic markers aggrecan and collagen 
type II in chondrocytes and cartilage explants [129–131]. These wogonin effects are medi-
ated through the suppression of c-Fos/AP-1 and JAK/STAT signaling pathways and the 
activation of ROS/ERK/Nrf2 signaling pathways [129,131,132]. A recent study has shown 
that the utilization of tetrahedral framework nucleic acid/wogonin complexes alleviated 
inflammation in in vitro and in vivo OA models, preventing cartilage destruction and in-
creasing bone mineral density [133]. Wogonin has also been shown to attenuate interver-
tebral disc degeneration [134]. 

Table 2. Natural-flavonoid-based pharmacology therapy for OA. 

Compound 
(Source) Category Structure Therapeutic Target Treatment Ref 

Apigenin 
(chamomile, thyme, 
tea, extra virgin oil) 

4′,5,7-Trihy-
droxyflavone  

Inhibition of IL-1β-induced 
effects and NF-κB, Hif-2α, and 

TGFβ/Smad2/3 pathways in 
chondrocytes. 

Anti-inflammatory 
effect, prevent 

cartilage degradation. 
[32,33] 

Increases BMP-2, BMP-7, APL, 
and Col I in osteoblasts. Induces 
JNK and p38 MAPK pathways in 

osteoblasts. 

Promotes osteoblastic 
differentiation. [34,35] 

Astragalin 
(Cuscuta chinensis) 

Kaempferol 3-
glucoside  

Inhibition of IL-1β/NF-κB and 
MAPK in chondrocytes. 

Anti-inflammatory 
effect, suppresses bone 

destruction. 
[38,39] 

Baicalein 
(Scutellaria 
baicalensis) 

5,6,7-Trihy-
droxyflavone 

 

Inhibition of IL-1β-induced ef-
fects in chondrocytes. Increases 

secretion of GAG and Col II. 

Anti-catabolic and 
anti-apoptotic effects. 

[42–44] 

Increases osteoblast differentia-
tion and inhibits osteoclast differ-

entiation. 

Attenuated OA in pre-
clinical models. 

Inhibition of bone loss. 
[45,46] 

Chrysin 
(Passiflora caerulea, 

Scutellaria 
baicalensis) 

5,7-Dihy-
droxyflavone  

Inhibition of IL-1β/NF-κB 
induction. Dowregulates the 
expression of iNOS, COX-2, 
MMP-1, MMP-3, MMP-13, 

ADAMTS-4, ADAMTS-5, and 
HMGB-1 in chondrocytes. The 
level of NO, PGE2 decreases. 

Anti-inflammatory and 
anti-apoptotic effects. [48,49] 

Activation of ERK/MAPK 
signaling in osteoblasts and 

upregulation of Runx-2 and Osx. 

Induction of osteoblast 
differentiation. [50,51] 

Inhibition of IL-1β/NF-κB
and MAPK in
chondrocytes.

Anti-inflammatory
effect, suppresses
bone destruction.

[38,39]

Baicalein
(Scutellaria baicalensis)

5,6,7-
Trihydroxyflavone
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stem cells via BMP signaling [124]. In addition, silibinin has antioxidant and anti-apop-
totic effects in osteoblasts [125]. It has been reported that silibinin and silymarin suppress 
osteoclastic differentiation in RAW 264.7 osteoclasts, decreasing TRAP and cathepsin K 
induction induced by RANKL via disturbing TRAF6-c-Src signaling pathways and inhib-
iting femoral bone loss in ovariectomized mice [121,126]. 

2.2.12. Wogonin 
Wogonin is a flavonoid (O-methylated flavone) that is found in Scutellaria baicalensis 

as baicalein [127,128]. It has been reported that wogonin has chondroprotective effects, 
inhibiting IL-1β-induced catabolic markers, such as IL-6, COX-2, iNOS, MMP-3, MMP-9, 
MMP-13, and ADAMTS-4, while increasing the anabolic markers aggrecan and collagen 
type II in chondrocytes and cartilage explants [129–131]. These wogonin effects are medi-
ated through the suppression of c-Fos/AP-1 and JAK/STAT signaling pathways and the 
activation of ROS/ERK/Nrf2 signaling pathways [129,131,132]. A recent study has shown 
that the utilization of tetrahedral framework nucleic acid/wogonin complexes alleviated 
inflammation in in vitro and in vivo OA models, preventing cartilage destruction and in-
creasing bone mineral density [133]. Wogonin has also been shown to attenuate interver-
tebral disc degeneration [134]. 

Table 2. Natural-flavonoid-based pharmacology therapy for OA. 

Compound 
(Source) Category Structure Therapeutic Target Treatment Ref 

Apigenin 
(chamomile, thyme, 
tea, extra virgin oil) 

4′,5,7-Trihy-
droxyflavone  

Inhibition of IL-1β-induced 
effects and NF-κB, Hif-2α, and 

TGFβ/Smad2/3 pathways in 
chondrocytes. 

Anti-inflammatory 
effect, prevent 

cartilage degradation. 
[32,33] 

Increases BMP-2, BMP-7, APL, 
and Col I in osteoblasts. Induces 
JNK and p38 MAPK pathways in 

osteoblasts. 

Promotes osteoblastic 
differentiation. [34,35] 

Astragalin 
(Cuscuta chinensis) 

Kaempferol 3-
glucoside  

Inhibition of IL-1β/NF-κB and 
MAPK in chondrocytes. 

Anti-inflammatory 
effect, suppresses bone 

destruction. 
[38,39] 

Baicalein 
(Scutellaria 
baicalensis) 

5,6,7-Trihy-
droxyflavone 

 

Inhibition of IL-1β-induced ef-
fects in chondrocytes. Increases 

secretion of GAG and Col II. 

Anti-catabolic and 
anti-apoptotic effects. 

[42–44] 

Increases osteoblast differentia-
tion and inhibits osteoclast differ-

entiation. 

Attenuated OA in pre-
clinical models. 

Inhibition of bone loss. 
[45,46] 

Chrysin 
(Passiflora caerulea, 

Scutellaria 
baicalensis) 

5,7-Dihy-
droxyflavone  

Inhibition of IL-1β/NF-κB 
induction. Dowregulates the 
expression of iNOS, COX-2, 
MMP-1, MMP-3, MMP-13, 

ADAMTS-4, ADAMTS-5, and 
HMGB-1 in chondrocytes. The 
level of NO, PGE2 decreases. 

Anti-inflammatory and 
anti-apoptotic effects. [48,49] 

Activation of ERK/MAPK 
signaling in osteoblasts and 

upregulation of Runx-2 and Osx. 

Induction of osteoblast 
differentiation. [50,51] 

Inhibition of
IL-1β-induced effects in
chondrocytes. Increases
secretion of GAG and

Col II.

Anti-catabolic and
anti-apoptotic

effects.
[42–44]

Increases osteoblast
differentiation and inhibits
osteoclast differentiation.

Attenuated OA in
pre-clinical models.

Inhibition of
bone loss.

[45,46]

Chrysin
(Passiflora caerulea,

Scutellaria baicalensis)

5,7-
Dihydroxyflavone
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stem cells via BMP signaling [124]. In addition, silibinin has antioxidant and anti-apop-
totic effects in osteoblasts [125]. It has been reported that silibinin and silymarin suppress 
osteoclastic differentiation in RAW 264.7 osteoclasts, decreasing TRAP and cathepsin K 
induction induced by RANKL via disturbing TRAF6-c-Src signaling pathways and inhib-
iting femoral bone loss in ovariectomized mice [121,126]. 

2.2.12. Wogonin 
Wogonin is a flavonoid (O-methylated flavone) that is found in Scutellaria baicalensis 

as baicalein [127,128]. It has been reported that wogonin has chondroprotective effects, 
inhibiting IL-1β-induced catabolic markers, such as IL-6, COX-2, iNOS, MMP-3, MMP-9, 
MMP-13, and ADAMTS-4, while increasing the anabolic markers aggrecan and collagen 
type II in chondrocytes and cartilage explants [129–131]. These wogonin effects are medi-
ated through the suppression of c-Fos/AP-1 and JAK/STAT signaling pathways and the 
activation of ROS/ERK/Nrf2 signaling pathways [129,131,132]. A recent study has shown 
that the utilization of tetrahedral framework nucleic acid/wogonin complexes alleviated 
inflammation in in vitro and in vivo OA models, preventing cartilage destruction and in-
creasing bone mineral density [133]. Wogonin has also been shown to attenuate interver-
tebral disc degeneration [134]. 

Table 2. Natural-flavonoid-based pharmacology therapy for OA. 

Compound 
(Source) Category Structure Therapeutic Target Treatment Ref 

Apigenin 
(chamomile, thyme, 
tea, extra virgin oil) 

4′,5,7-Trihy-
droxyflavone  

Inhibition of IL-1β-induced 
effects and NF-κB, Hif-2α, and 

TGFβ/Smad2/3 pathways in 
chondrocytes. 

Anti-inflammatory 
effect, prevent 

cartilage degradation. 
[32,33] 

Increases BMP-2, BMP-7, APL, 
and Col I in osteoblasts. Induces 
JNK and p38 MAPK pathways in 

osteoblasts. 

Promotes osteoblastic 
differentiation. [34,35] 

Astragalin 
(Cuscuta chinensis) 

Kaempferol 3-
glucoside  

Inhibition of IL-1β/NF-κB and 
MAPK in chondrocytes. 

Anti-inflammatory 
effect, suppresses bone 

destruction. 
[38,39] 

Baicalein 
(Scutellaria 
baicalensis) 

5,6,7-Trihy-
droxyflavone 

 

Inhibition of IL-1β-induced ef-
fects in chondrocytes. Increases 

secretion of GAG and Col II. 

Anti-catabolic and 
anti-apoptotic effects. 

[42–44] 

Increases osteoblast differentia-
tion and inhibits osteoclast differ-

entiation. 

Attenuated OA in pre-
clinical models. 

Inhibition of bone loss. 
[45,46] 

Chrysin 
(Passiflora caerulea, 

Scutellaria 
baicalensis) 

5,7-Dihy-
droxyflavone  

Inhibition of IL-1β/NF-κB 
induction. Dowregulates the 
expression of iNOS, COX-2, 
MMP-1, MMP-3, MMP-13, 

ADAMTS-4, ADAMTS-5, and 
HMGB-1 in chondrocytes. The 
level of NO, PGE2 decreases. 

Anti-inflammatory and 
anti-apoptotic effects. [48,49] 

Activation of ERK/MAPK 
signaling in osteoblasts and 

upregulation of Runx-2 and Osx. 

Induction of osteoblast 
differentiation. [50,51] 

Inhibition of IL-1β/NF-κB
induction. Dowregulates
the expression of iNOS,
COX-2, MMP-1, MMP-3,

MMP-13, ADAMTS-4,
ADAMTS-5, and HMGB-1
in chondrocytes. The level

of NO, PGE2 decreases.

Anti-inflammatory
and anti-apoptotic

effects.
[48,49]

Activation of ERK/MAPK
signaling in osteoblasts

and upregulation of
Runx-2 and Osx.

Induction of
osteoblast

differentiation.
[50,51]

Genistein
(Genista tinctoria) Isoflavone
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Genistein 
(Genista tinctoria) Isoflavone 

 

Inhibition of IL-1β-induced ef-
fects via the activation of 

Nrf2/HO-1 signaling in chondro-
cytes. 

Anti-catabolic effect. 
Attenuated OA in pre-

clinical models. 
[58,59] 

Increases osteoblast 
differentiation via MAPK 

activation and inhibits osteoclast 
differentiation via NF-κB 

inhibition. 

Inhibition of bone loss. [60–63] 

Icariin 
(Epimedium) 

Flavonoid gly-
coside 

 

Inhibition of IL-1β/TNF-α/LPS-
induced effects via the inhibition 

of NF-κB and the activation of 
Nrf2/HO-1 signaling in chondro-
cytes. Increases the secretion of 

ACAN and Col II. Decreases the 
expression of MMP-1, 3, 9, 13, 

COX-2, and iNOS. 

Anti-inflammatory and 
anti-catabolic effects. 
Increased cartilage 

repair in pre-clinical 
OA models. 

[64–68] 

Increases osteoblast differentia-
tion via the activation of ERK, 

JUNK, and miR-153/Runx2 sig-
naling. Increases the secretion of 

Col I APL. 

Inhibition of bone loss. 
Improved bone 

remodeling in pre-
clinical models. 

[69–72] 

Kaempferol 
(Kaempferia galanga) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting p38 

MAPK/NF-κB pathways in chon-
drocytes. 

Anti-inflammatory 
effect. 

[74,75] 

Increases osteoblast differentia-
tion via the activation of Wnt/β-
catenin and mTOR signaling, in-
creasing BMP-2, Rux-2, Osx, and 
Col I expression. Inhibits osteo-

clastogenesis by downregulating 
MAPK, c-Fos, and NFATc1. 

Inhibition of bone loss 
and stimulation of 

bone formation. 
[76–81] 

Luteolin 
(Salvia tomentosa, 
Artemisia asiatica) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting NF-κB path-

ways and the activation of 
Foxo3a in chondrocytes. De-

creases the expression of COX-2, 
iNOS, MMPs, and ADAMTS-4,5. 
Attenuates cartilage degradation 

and increases Col II secretion. 

Anti-inflammatory and 
anti-catabolic effects. 

Attenuation of 
cartilage degradation. 

[83–87] 

Increases osteoblast differentia-
tion via the regulation of 

ERK/Lrp-5/GSK-3β signaling, in-
creasing BMP-7, Rux-2, Osx, Osc, 
APL, TGF-β1, and Col I expres-
sion. Inhibition of osteoclast dif-

ferentiation. 

Inhibition of bone loss 
and stimulation of 

bone formation. 

[34,88–
94] 

Inhibition of
IL-1β-induced effects via

the activation of
Nrf2/HO-1 signaling in

chondrocytes.

Anti-catabolic
effect. Attenuated
OA in pre-clinical

models.

[58,59]

Increases osteoblast
differentiation via MAPK

activation and inhibits
osteoclast differentiation

via NF-κB inhibition.

Inhibition of
bone loss. [60–63]
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Icariin
(Epimedium)

Flavonoid
glycoside
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Genistein 
(Genista tinctoria) Isoflavone 

 

Inhibition of IL-1β-induced ef-
fects via the activation of 

Nrf2/HO-1 signaling in chondro-
cytes. 

Anti-catabolic effect. 
Attenuated OA in pre-

clinical models. 
[58,59] 

Increases osteoblast 
differentiation via MAPK 

activation and inhibits osteoclast 
differentiation via NF-κB 

inhibition. 

Inhibition of bone loss. [60–63] 

Icariin 
(Epimedium) 

Flavonoid gly-
coside 

 

Inhibition of IL-1β/TNF-α/LPS-
induced effects via the inhibition 

of NF-κB and the activation of 
Nrf2/HO-1 signaling in chondro-
cytes. Increases the secretion of 

ACAN and Col II. Decreases the 
expression of MMP-1, 3, 9, 13, 

COX-2, and iNOS. 

Anti-inflammatory and 
anti-catabolic effects. 
Increased cartilage 

repair in pre-clinical 
OA models. 

[64–68] 

Increases osteoblast differentia-
tion via the activation of ERK, 

JUNK, and miR-153/Runx2 sig-
naling. Increases the secretion of 

Col I APL. 

Inhibition of bone loss. 
Improved bone 

remodeling in pre-
clinical models. 

[69–72] 

Kaempferol 
(Kaempferia galanga) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting p38 

MAPK/NF-κB pathways in chon-
drocytes. 

Anti-inflammatory 
effect. 

[74,75] 

Increases osteoblast differentia-
tion via the activation of Wnt/β-
catenin and mTOR signaling, in-
creasing BMP-2, Rux-2, Osx, and 
Col I expression. Inhibits osteo-

clastogenesis by downregulating 
MAPK, c-Fos, and NFATc1. 

Inhibition of bone loss 
and stimulation of 

bone formation. 
[76–81] 

Luteolin 
(Salvia tomentosa, 
Artemisia asiatica) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting NF-κB path-

ways and the activation of 
Foxo3a in chondrocytes. De-

creases the expression of COX-2, 
iNOS, MMPs, and ADAMTS-4,5. 
Attenuates cartilage degradation 

and increases Col II secretion. 

Anti-inflammatory and 
anti-catabolic effects. 

Attenuation of 
cartilage degradation. 

[83–87] 

Increases osteoblast differentia-
tion via the regulation of 

ERK/Lrp-5/GSK-3β signaling, in-
creasing BMP-7, Rux-2, Osx, Osc, 
APL, TGF-β1, and Col I expres-
sion. Inhibition of osteoclast dif-

ferentiation. 

Inhibition of bone loss 
and stimulation of 

bone formation. 

[34,88–
94] 

Inhibition of IL-1β/TNF-
α/LPS-induced effects via

the inhibition of NF-κB
and the activation of

Nrf2/HO-1 signaling in
chondrocytes. Increases
the secretion of ACAN

and Col II. Decreases the
expression of MMP-1, 3, 9,

13, COX-2, and iNOS.

Anti-inflammatory
and anti-catabolic
effects. Increased
cartilage repair in

pre-clinical OA
models.

[64–68]

Increases osteoblast
differentiation via the

activation of ERK, JUNK,
and miR-153/Runx2

signaling. Increases the
secretion of Col I APL.

Inhibition of bone
loss. Improved

bone remodeling
in pre-clinical

models.

[69–72]

Kaempferol
(Kaempferia galanga)

3,4′,5,7-
Tetrahydroxyflavone
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Genistein 
(Genista tinctoria) Isoflavone 

 

Inhibition of IL-1β-induced ef-
fects via the activation of 

Nrf2/HO-1 signaling in chondro-
cytes. 

Anti-catabolic effect. 
Attenuated OA in pre-

clinical models. 
[58,59] 

Increases osteoblast 
differentiation via MAPK 

activation and inhibits osteoclast 
differentiation via NF-κB 

inhibition. 

Inhibition of bone loss. [60–63] 

Icariin 
(Epimedium) 

Flavonoid gly-
coside 

 

Inhibition of IL-1β/TNF-α/LPS-
induced effects via the inhibition 

of NF-κB and the activation of 
Nrf2/HO-1 signaling in chondro-
cytes. Increases the secretion of 

ACAN and Col II. Decreases the 
expression of MMP-1, 3, 9, 13, 

COX-2, and iNOS. 

Anti-inflammatory and 
anti-catabolic effects. 
Increased cartilage 

repair in pre-clinical 
OA models. 

[64–68] 

Increases osteoblast differentia-
tion via the activation of ERK, 

JUNK, and miR-153/Runx2 sig-
naling. Increases the secretion of 

Col I APL. 

Inhibition of bone loss. 
Improved bone 

remodeling in pre-
clinical models. 

[69–72] 

Kaempferol 
(Kaempferia galanga) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting p38 

MAPK/NF-κB pathways in chon-
drocytes. 

Anti-inflammatory 
effect. 

[74,75] 

Increases osteoblast differentia-
tion via the activation of Wnt/β-
catenin and mTOR signaling, in-
creasing BMP-2, Rux-2, Osx, and 
Col I expression. Inhibits osteo-

clastogenesis by downregulating 
MAPK, c-Fos, and NFATc1. 

Inhibition of bone loss 
and stimulation of 

bone formation. 
[76–81] 

Luteolin 
(Salvia tomentosa, 
Artemisia asiatica) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting NF-κB path-

ways and the activation of 
Foxo3a in chondrocytes. De-

creases the expression of COX-2, 
iNOS, MMPs, and ADAMTS-4,5. 
Attenuates cartilage degradation 

and increases Col II secretion. 

Anti-inflammatory and 
anti-catabolic effects. 

Attenuation of 
cartilage degradation. 

[83–87] 

Increases osteoblast differentia-
tion via the regulation of 

ERK/Lrp-5/GSK-3β signaling, in-
creasing BMP-7, Rux-2, Osx, Osc, 
APL, TGF-β1, and Col I expres-
sion. Inhibition of osteoclast dif-

ferentiation. 

Inhibition of bone loss 
and stimulation of 

bone formation. 

[34,88–
94] 

Attenuation of
IL-1β-induced effects by

inhibiting p38
MAPK/NF-κB pathways

in chondrocytes.

Anti-inflammatory
effect. [74,75]

Increases osteoblast
differentiation via the

activation of
Wnt/β-catenin and mTOR

signaling, increasing
BMP-2, Rux-2, Osx, and

Col I expression. Inhibits
osteoclastogenesis by

downregulating MAPK,
c-Fos, and NFATc1.

Inhibition of bone
loss and

stimulation of
bone formation.

[76–81]

Luteolin
(Salvia tomentosa,
Artemisia asiatica)

3,4′,5,7-
Tetrahydroxyflavone
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Genistein 
(Genista tinctoria) Isoflavone 

 

Inhibition of IL-1β-induced ef-
fects via the activation of 

Nrf2/HO-1 signaling in chondro-
cytes. 

Anti-catabolic effect. 
Attenuated OA in pre-

clinical models. 
[58,59] 

Increases osteoblast 
differentiation via MAPK 

activation and inhibits osteoclast 
differentiation via NF-κB 

inhibition. 

Inhibition of bone loss. [60–63] 

Icariin 
(Epimedium) 

Flavonoid gly-
coside 

 

Inhibition of IL-1β/TNF-α/LPS-
induced effects via the inhibition 

of NF-κB and the activation of 
Nrf2/HO-1 signaling in chondro-
cytes. Increases the secretion of 

ACAN and Col II. Decreases the 
expression of MMP-1, 3, 9, 13, 

COX-2, and iNOS. 

Anti-inflammatory and 
anti-catabolic effects. 
Increased cartilage 

repair in pre-clinical 
OA models. 

[64–68] 

Increases osteoblast differentia-
tion via the activation of ERK, 

JUNK, and miR-153/Runx2 sig-
naling. Increases the secretion of 

Col I APL. 

Inhibition of bone loss. 
Improved bone 

remodeling in pre-
clinical models. 

[69–72] 

Kaempferol 
(Kaempferia galanga) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting p38 

MAPK/NF-κB pathways in chon-
drocytes. 

Anti-inflammatory 
effect. 

[74,75] 

Increases osteoblast differentia-
tion via the activation of Wnt/β-
catenin and mTOR signaling, in-
creasing BMP-2, Rux-2, Osx, and 
Col I expression. Inhibits osteo-

clastogenesis by downregulating 
MAPK, c-Fos, and NFATc1. 

Inhibition of bone loss 
and stimulation of 

bone formation. 
[76–81] 

Luteolin 
(Salvia tomentosa, 
Artemisia asiatica) 

3,4′,5,7-Tetra-
hydroxyfla-

vone  

Attenuation of IL-1β-induced ef-
fects by inhibiting NF-κB path-

ways and the activation of 
Foxo3a in chondrocytes. De-

creases the expression of COX-2, 
iNOS, MMPs, and ADAMTS-4,5. 
Attenuates cartilage degradation 

and increases Col II secretion. 

Anti-inflammatory and 
anti-catabolic effects. 

Attenuation of 
cartilage degradation. 

[83–87] 

Increases osteoblast differentia-
tion via the regulation of 

ERK/Lrp-5/GSK-3β signaling, in-
creasing BMP-7, Rux-2, Osx, Osc, 
APL, TGF-β1, and Col I expres-
sion. Inhibition of osteoclast dif-

ferentiation. 

Inhibition of bone loss 
and stimulation of 

bone formation. 

[34,88–
94] 

Attenuation of
IL-1β-induced effects by

inhibiting NF-κB
pathways and the

activation of Foxo3a in
chondrocytes. Decreases
the expression of COX-2,

iNOS, MMPs, and
ADAMTS-4,5. Attenuates
cartilage degradation and
increases Col II secretion.

Anti-inflammatory
and anti-catabolic

effects.
Attenuation of

cartilage
degradation.

[83–87]

Increases osteoblast
differentiation via the

regulation of
ERK/Lrp-5/GSK-3β
signaling, increasing

BMP-7, Rux-2, Osx, Osc,
APL, TGF-β1, and Col I
expression. Inhibition of
osteoclast differentiation.

Inhibition of bone
loss and

stimulation of
bone formation.

[34,88–94]
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Compound
(Source) Category Structure Therapeutic Target Treatment Ref.

Naringin
(Citrus × paradisi)

Flavanone-7-O-
glycoside
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Naringin 
(Citrus × paradisi) 

Flavanone-7-O-
glycoside  

Alleviation of IL-1β/TNFα/LPS-
induced effects via inhibiting 

MAPK p38 and NF-κB signaling 
and the activation of Foxo3a in 
chondrocytes. Decreases the ex-

pression of MMPs and 
ADAMTS-4,5. Attenuates carti-

lage degradation. 

Anti-inflammatory and 
anti-catabolic effects. 

Attenuation of 
cartilage degradation. 

[95–98] 

Increases osteoblast proliferation 
and differentiation. Increases the 

expression of Rux-2, Osx, Osc, 
BMP-2, OPN, and Col I expres-

sion. Inhibits osteoclast differen-
tiation. 

Inhibition of bone loss 
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loss and promotes
bone formation.

[99–103]
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Attenuation of

cartilage
degradation and

synovitis.

[118–120]

Induces osteoblast
differentiation, increasing
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Table 2. Cont.

Compound
(Source) Category Structure Therapeutic Target Treatment Ref.

Wogonin
(Scutellaria baicalensis)
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2.3. Phenols
2.3.1. Curcumin

Curcumin is a natural phenol (diferuloylmethane) that is responsible for turmeric’s
yellow color and comes from the Curcuma longa root (Table 3). Anti-inflammatory, anti-
oxidant, anti-apoptotic, and anti-catabolic effects were observed on chondrocytes under
curcumin treatment. It inhibited the expression of the inflammation mediators IL-6, iNOS,
and COX-2. It also blocked the expression of proteinases MMP-1, MMP-3, MMP-9, MMP-
13, ADAMTS-4, and ADAMTS-5, and increased the expression of SOX-9 and production of
collagen II, attenuating cartilage degradation [12,135–138]. These effects occur through the
direct inhibition of 5-LOX and NF-κB, indirect inhibition of phospholipase A2 and COX-2,
and activation of the Nrf2/ARE signaling pathway [135–138]. Chen et al. showed that
curcumin also inhibited osteoblast apoptosis and promoted osteoblast differentiation, both
in vitro and in vivo [139]. It increased the gene expression of Runx2, Osx, Osc, and collagen
type I via the regulation of Wnt signaling [140,141]. The bioavailability of curcumin is
a major challenge because it is inherently low in humans, but new formulations have
enhanced the therapeutic efficacy of curcumin [142,143]. Furthermore, the use of curcumin
in combination with other natural products, such as Boswellia serrate, gingerly, and pipeline,
are being studied in several clinical trials to investigate whether their therapeutically
synergy enhances their performance in OA treatment but the results showed no significant
difference between each component separately or in combination [144–146].

2.3.2. Gingerly/Ginger

Ginger is the rhizome of the Zingier officinal plant and has been commonly consumed
as a spice and herbal medicine due to its anti-inflammatory properties. The major active
component is the phenolic gingerly (6-gingerol) [147]. The efficacy and safety of ginger
were evaluated in various studies [148]. Ginger extract has shown anti-inflammatory, an-
tioxidant, and anti-apoptotic effects in IL-β-treated human chondrocytes via the activation
of Nrf2 [149,150]. It also stimulated osteoblasts differentiation and inhibited IL-1β-induced
osteoclasts differentiation in in vitro studies [151,152]. Randomized clinical trials have
demonstrated that ginger extracts improved pain and mobility and reduced osteoarthritis
inflammation in OA individuals [153,154]. The local application of ginger was also found
to be effective at reducing symptoms of knee OA [155]. In addition, the synergistic effects
of ginger with other natural products were also studied in patients with chronic OA, but
the results did not show any significant enhanced effects [145,156,157].
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2.3.3. Oleuropein

Oleuropein is a phenolic compound (secoiridoid glycoside) that is present in green
olive (Olea europea) and argan oil [158]. It has been reported that olive oil extract has benefi-
cial effects in OA treatment [159]. An in vivo study demonstrated that oleuropein decreases
the spontaneous development of OA in guinea pigs, reducing cartilage, osteophytes, and
synovial OA scores [160]. It also inhibited IL-1β-induced inflammatory response in human
OA chondrocytes in vitro by suppressing NF-κB and MAPK signaling pathways [161].
It suppresses the production of NO and PGE2 and decreased the expression of COX-2,
iNOS, MMP-1, MMP-13, and ADAMTS-5. Furthermore, it has been shown that oleuropein
does not stimulate osteoblast proliferation but increases the deposition of calcium and sup-
presses osteoclast formation and differentiation [162–164]. It also protected against bone
loss in ovariectomized rats [165]. Yet, there is no clinical trial with this natural compound
for OA; however, a randomized clinical trial with postmenopausal women showed that
the consumption of a polyphenol extract from olive increases serum osteocalcin levels and
improves serum lipid profiles [166].

2.3.4. Resveratrol

Resveratrol is a stilbenoid (3,5,4′-trihydroxy-trans-stilbene), which is a type of natural
phenol that is produced by several plants in response to injury and in fruits, such as red
grapes, blueberries, raspberries, and mulberries [167,168]. Since it prevents degeneration
and apoptosis, resveratrol has been strongly suggested to be a potential therapeutic agent
for OA [169,170]. Resveratrol was demonstrated to inhibit IL-1β-induced catabolic ef-
fects in chondrocytes. It suppressed the expression of iNOS, MMP-3, MMP-1, MMP-13,
ADAMTS-4, ADAMTS-5, and NO production by inducing SIRT-1 expression and inhibit-
ing NF-κB signaling [171–173]. It also prevented IL-1β-mediated inflammation via TLR4
inhibition [174,175]. In vitro studies have demonstrated that these inhibitory effects of
resveratrol are mediated via the activation of SIRT-1 by suppressing HIF-2 expression
and inducing autophagy via the AMPK/mTOR pathway [171,176–178]. Preclinical mod-
els have shown that resveratrol treatment prevented OA progression, maintaining the
structural homeostasis in cartilage and subchondral bone [173,178–180]. Resveratrol was
demonstrated to exert bone protection through the suppression of osteoclast functions
and the induction and differentiation of osteoblasts in both in vivo and in vitro studies.
Resveratrol induced osteoblast differentiation by regulating autophagy and modulating
the Sirt1/Runx-2/Fox-O1 and PI3K/AKT/mTOR signaling pathways, therefore, amelio-
rating bone loss in osteoporotic animal models [181–184]. It was also shown to induce
osteoblastic MC3T3-E1 cells differentiation via the induction of the calcineurin/NFATc1
signaling pathway [185]. Resveratrol also inhibited RANKL-induced osteoclastogenesis
via SIRT1 and FoxOs activation [186–188]. A clinical study on postmenopausal women
showed that resveratrol supplementation reduces pain experience; thus, it was proposed as
a potential treatment to reduce chronic pain in age-related osteoarthritic individuals [189].
Another pilot study demonstrated that the co-administration of resveratrol with meloxicam
in patients with knee OA improves pain, functions, and associated symptoms compared
with a placebo, yet it was superior in terms of safety and efficacy compared to meloxicam
alone [190].

2.3.5. Salvianolic Acid B

Salvianolic acid B (Sal B) is a major polyphenol constituent of the plant Radix salvia mil-
tiorrhiza, which is commonly used in traditional Chinese medicine to cure pain [191]. It
has been recently proposed as a potential therapeutic agent against OA that acts through
the regulation of gene expression and the viability of chondrocytes [192]. It has been
demonstrated that the pre-treatment of chondrocytes with Sal B followed by induction
with IL-1β inhibited the overproduction NO and PGE2 and downregulated the expression
of iNOS, COX-2, MMP-13, and ADAMTS-5 via the suppression of NF-κB [193]. This study
also revealed that Sal B reduced cartilage degradation in an OA mouse model. Sal B was
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also found to stimulate osteoblastic differentiation in bone marrow stromal cells, upregu-
lating the expression of Runx2, OPN, and Osx and stimulating mineralization through the
activation of ERK signaling pathways [194]. In vivo, Sal B inhibited glucocorticoid-induced
osteopenia. It enhanced bone thickness and bone mass by increasing the expression of
BMPs, ALP activity, and collagen type I [194,195]. A pilot study in a rat tibia fracture model
revealed that treatment with Sal B led to an enhancement in callus growth, histological
scores, and post-fracture ALP activity, thus, accelerating early-stage fracture [196]. Further-
more, Sal B facilitates osteogenesis by targeting adipose tissue, reducing adipogenesis, and
activating the MEK–ERK signaling pathway [197].

Table 3. Natural-phenol-based pharmacology therapy for OA.

Compound Category Structure Therapeutic Target Treatment Ref.

Curcumine
(Curcuma longa)

Diferuloyl-
methane
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Table 3. Cont.

Compound Category Structure Therapeutic Target Treatment Ref.

Resveratrol
(red grapes,
blueberries,
raspberries,
mulberries)
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trans-stilbene
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2.4. Polysaccharides
Achyranthes bidentata Extracts

Achyranthes bidentata is one of the most commonly used Chinese herbal medicines
that is currently considered for the treatment of osteoarthritis (Table 4) [198]. This ex-
tract has shown chondroprotective effects in vitro, inducing chondrocyte proliferation via
Wnt/β-catenin pathway activation and inhibiting apoptosis via the MAPK/Akt signaling
axis [199,200]. Plant polysaccharides also have osteoprotective properties, suppressing
osteoclastogenesis and bone resorption by inhibiting RANKL and promoting bone forma-
tion [201–204].

2.5. Terpenoids
2.5.1. Andrographolide

This terpenoid (diterpenoid) is a natural component from Andrographis paniculate, a
plant with medicinal properties, such as antioxidant, anti-inflammatory, and anti-arthritic
properties (Table 5) [205–208]. A recent study showed the effectiveness and safety of
andrographolide in reducing pain in individuals suffering from mild-to-moderate knee
osteoarthritis [209]. It has been reported to inhibit the expression of MMPs and reduces
oxidative stress injury in chondrocytes [210,211]. An in vivo mouse OA model study re-
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vealed that this compound alleviates cartilage damage via the miR-27-3p/MMP13 signaling
axis [212]. It also exerts a pro-osteogenic effect via inducing bone formation by inhibiting
NF-κB signaling, with this bioactive compound being a potential therapeutic target in
OA [213,214].

Table 4. Natural-polysaccharide-based pharmacology therapy for OA.

Compound
(Source) Category Therapeutic Target Treatment Ref.

Achyranthes bidentata
extracts

Various
polysaccharides

Induces chondrocyte
proliferation, Wnt/β-catenin

pathway activation, and
inhibits apoptosis via
MAPK/Akt signaling.

Anti-apoptotic effect
and induces
proliferation.

[199,200]

Promotes bone formation and
inhibits osteoclastogenesis via

the inhibition of RANK.
Bone formation. [201–203]

2.5.2. Astaxanthin

Astaxanthin is a carotenoid (tetraterpenoid) that is produced naturally in the microal-
gae Haematococcus pluvialis and can be found in animals who feed on the algae, such as
salmon, red trout, and crustaceans [215]. It has therapeutic properties against rheumatoid
arthritis and osteoarthritis [216–220]. In OA, astaxanthin has shown potent antioxidant and
anti-inflammatory activities on cartilage due to the activation of Nrf2–ARE signaling in
chondrocytes [221]. Astaxanthin also attenuated cartilage degradation in vitro and in vivo
via blockade MAPK signaling [222]. Despite the fact that the effects of astaxanthin’s prop-
erties on OA bone remodeling have not yet been examined, it could be a good therapeutic
target due to its effects on the suppression of bone loss in periodontitis and osteoporotic
models [223,224].

2.5.3. Aucubin

Aucubin is a terpenoid (iridoid glycoside) that is derived from diverse medicinal
plants, including Aucuba japonica and Eucommia ulmoides. It has recently received increasing
attention due to its pharmacological properties, including antioxidation, anti-inflammation,
and osteoprotection [225]. In vitro studies showed that aucubin suppressed IL-1β-induced
inflammation and matrix degradation and reduced oxidative stress by decreasing iNOS ex-
pression and the production of NO [226,227]. It has been reported that aucubin prevented
OA progression in an in vivo mouse model and that the co-treatment with hyaluronic acid
(HA) enhanced the anti-catabolic and anti-inflammatory effects of HA on OA chondro-
cytes [228,229].

2.5.4. Boswellia serrata

Boswellia serrata is a plant that produces Indian frankincense and has two mains active
terpenoid compounds, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid [230].
The extracts of this plant have been clinically studied for osteoarthritis treatment, exerting
anti-inflammatory activity and resulting in decreased pain and increased joint functional-
ity [231]. B. serrata has been reported to have anti-inflammatory properties by inhibiting
5-LOX and TNF-α [232]. An in vitro model of cartilage degeneration showed that B. serrata
diminished the catabolic effects mediated by IL-1α and oncostatin-M through inhibiting
MMP-9 and MMP-13 transcription and reducing the levels of NO, PGE2, and COX-2 [233].
Its chondroprotective properties were confirmed in a mouse model of OA, showing an-
tioxidative and anti-inflammatory effects [15,234]. Additionally, it has been reported that
boswellic acids promoted osteoblast differentiation and suppressed osteoclastogenesis by
inhibiting TNF-α and NF-κB signaling [235,236].
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2.5.5. Celastrol

Celastrol is a terpenoid (triterpenoid) that is isolated from the root extracts of Triptery-
gium wilfordii and Celastrus regelii [237]. Celastrol is an inhibitor of heat shock protein
(HSP) 90β, which has chondroprotective effects. It has been reported that diminished
IL-1β-induced catabolic effects in human osteoarthritic chondrocytes, such as the decrease
expression of MMP1, MMP-3, MMP-13, iNOS, and COX-2 [238]. Using an in vivo OA rat
model, it has been shown that celastrol suppresses apoptosis through the inhibition of the
NF-κB signaling pathway and alleviates pain and cartilage damage via SDF-1/CXCR4
signaling [239,240]. Celastrol also has therapeutic effects on bone structure, where it pre-
vented bone loss and bone microarchitecture degradation in a rat model of arthritis [241]. It
has been shown that celastrol reduced the RANKL-induced expression of osteoclastic genes
(TRAP, CTSK, CTR, and MMP-9) and transcriptional factors (c-Fos, c-Jun, and NFATc1), as
well as the phosphorylation of NF-κB and MAPK in RAW 264.7 cells [242].

2.5.6. Ginsenoside

Ginsenosides are a class of natural product triterpene saponins (terpenoid glycoside)
that are found almost exclusively in the plant genus Panax (ginseng), which is used in
traditional medicine [243]. Ginsenosides exhibit a large variety of subtypes with different
chemical profiles and biological effects. It has been reported that ginsenosides Rg1, Rg3,
Rg5, Rk1, Rf, Rd, Rc, and F4 have chondroprotective effects [244]. Ginsenoside Rb1 has
antioxidative and anti-apoptotic effects in chondrocytes in vitro, stabilizing mitochon-
dria and inhibiting caspase-3 through PI3K/Akt signaling [245–247]. It also suppresses
IL-1β-induced effects on chondrocytes, decreasing MMP-1, MMP-13, iNOS, and COX-2
expressions and the concentration of PGE2, and promoting the expression of ACAN and
collagen type II [248,249]. Ginsenosides, such as Rb1, Rg1, and Rg5 have alleviated in-
flammation and cartilage degradation in in vivo OA rat models [250–252]. Recent studies
have reported the chondroprotective effect of different Panax plant extracts in vivo OA
rat models, protecting chondrocytes from inflammation, senescence, and apoptosis, thus,
attenuating OA progression [253,254]. Ginsenosides also have osteoprotective properties.
Several studies have demonstrated that Rb1, Rh1, Rg3, and Rg5 stimulated osteoblast
differentiation in vitro [255–258]. Furthermore, Rb1 and Rg3 inhibited osteoclastogenesis
by suppressing RANKL-induced activation via modulating MAPKs and NF-κB pathways
in vitro, but only Rg3 was able to alleviate bone mineral density loss in vivo [259,260].

2.5.7. Harpagophytum procumbens

Harpagophytum procumbens, also known as devil’s claw, is a medicinal plant native
to Africa that has been used as an analgesic for the treatment of degenerative diseases
of the musculoskeletal system [261]. The bioactive components responsible for the anti-
osteoarthritic effect are the iridoid glycosides (harpagoside, harpagide, and procumbide),
which are found in a higher amount in the tubers and root [262]. An in vitro study showed
that the pre-treatment of IL-1β-induced OA chondrocytes with harpagoside exerted some
anti-inflammatory effects, inhibiting IL-6 and MMP-13 expression via the suppressing
c-Fos/AP-1 activity [263]. Another study showed that harpagide improved bone proper-
ties, stimulating the differentiation of osteoblasts and suppressing the RANKL-induced
differentiation of osteoclasts in an ovariectomized mouse model, thus, improving the
recovery of bone mineral density and trabecular bone volume [264]. Furthermore, some
human clinical studies showed that various H. procumbens tuber extracts improved clinical
pain and movement limitation in individuals with knee and hip OA [265]. However, more
studies are required to elucidate the therapeutic properties of H. procumbens in OA.
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Table 5. Natural-terpenoid-based pharmacology therapy for OA.

Compound
(Source) Category Structure Therapeutic Target Treatment Ref.

Andrographolide
(Andrographis paniculate) Diterpenoid

Antioxidants 2021, 10, x FOR PEER REVIEW 14 of 27 
 

2.5.7. Harpagophytum procumbens 
Harpagophytum procumbens, also known as devil’s claw, is a medicinal plant native to 

Africa that has been used as an analgesic for the treatment of degenerative diseases of the 
musculoskeletal system [261]. The bioactive components responsible for the anti-osteoar-
thritic effect are the iridoid glycosides (harpagoside, harpagide, and procumbide), which 
are found in a higher amount in the tubers and root [262]. An in vitro study showed that 
the pre-treatment of IL-1β-induced OA chondrocytes with harpagoside exerted some anti-
inflammatory effects, inhibiting IL-6 and MMP-13 expression via the suppressing c-
Fos/AP-1 activity [263]. Another study showed that harpagide improved bone properties, 
stimulating the differentiation of osteoblasts and suppressing the RANKL-induced differ-
entiation of osteoclasts in an ovariectomized mouse model, thus, improving the recovery 
of bone mineral density and trabecular bone volume [264]. Furthermore, some human 
clinical studies showed that various H. procumbens tuber extracts improved clinical pain 
and movement limitation in individuals with knee and hip OA [265]. However, more 
studies are required to elucidate the therapeutic properties of H. procumbens in OA. 

Table 5. Natural-terpenoid-based pharmacology therapy for OA. 

Compound 
(Source) Category Structure Therapeutic Target Treatment Ref 

Andrographolide 
(Andrographis 

paniculate) 
Diterpenoid 

 

Reduces oxidative stress and 
inhibits MMP-13 expression. 

Attenuates cartilage degradation 
via miR-27-3p/MMP13 signaling. 

Anti-oxidant effects. 
Reduces the 

degradation of 
cartilage. 

[210–222] 

Promotes bone formation by 
inhibiting NF-κB signaling. Bone formation [213,214] 

Astaxanthin 
(Haematococcus 

pluvialis) 
Tetraterpenoid  

Anti-catabolic effects via the 
activation of Nrf2–ARE signaling. 
Reduces cartilage degradation via 

MAPK signaling inhibition. 

Antioxidant and anti-
inflammatory effects. 

Attenuates degradation 
of cartilage 

[221,222] 

Aucubin 
(Aucuba japonica) 

Iridoid glyco-
side  

Inhibits IL-1β-induced effects. 
Inhibits iNOS expression and NO 

production 

Anti-inflammatory and 
antioxidant effects. 

Prevents OA 
progression. 

[226–229] 

Boswellia serrata 

11-Keto-β-bos-
wellic, acetyl-
11-keto-β-bos-

wellic acid 

 

Inhibits IL-1β/oncostatin-M-
induced effect, decreasing the 

expression of MMP-9, MMP-13, 
and COX-2 and reducing the 
production of NO and PGE2. 
Inhibits 5-LOX and TNF-α. 

Anti-inflammatory and 
antioxidant effects. 

[15,232–
234] 

 

Promotes osteoblast differentiation 
and suppresses osteoclastogenesis 

by inhibiting TNF-α and NF-κB 
signaling. 

Bone protection. [235,236] 

Celastrol 
(Celastrus regelii, 

Tripterygium 
wilfordii) 

Triterpenoid 

 

Diminishes the IL-1β-induced cat-
abolic effect, decreasing the ex-

pression of MMP-1, MMP-3, 
MMP-13, iNOS, and COX-2. Re-

duces cartilage degradation by in-
hibiting NF-κB signaling and acti-

vating SDF-1/CXCR4 signaling.  

Anti-inflammatory and 
anti-catabolic effects. [238–240] 

Reduces oxidative stress
and inhibits MMP-13

expression. Attenuates
cartilage degradation via

miR-27-3p/MMP13
signaling.

Anti-oxidant effects.
Reduces the

degradation of
cartilage.

[210–222]

Promotes bone formation
by inhibiting NF-κB

signaling.
Bone formation [213,214]

Astaxanthin
(Haematococcus pluvialis) Tetraterpenoid

Antioxidants 2021, 10, x FOR PEER REVIEW 14 of 27 
 

2.5.7. Harpagophytum procumbens 
Harpagophytum procumbens, also known as devil’s claw, is a medicinal plant native to 

Africa that has been used as an analgesic for the treatment of degenerative diseases of the 
musculoskeletal system [261]. The bioactive components responsible for the anti-osteoar-
thritic effect are the iridoid glycosides (harpagoside, harpagide, and procumbide), which 
are found in a higher amount in the tubers and root [262]. An in vitro study showed that 
the pre-treatment of IL-1β-induced OA chondrocytes with harpagoside exerted some anti-
inflammatory effects, inhibiting IL-6 and MMP-13 expression via the suppressing c-
Fos/AP-1 activity [263]. Another study showed that harpagide improved bone properties, 
stimulating the differentiation of osteoblasts and suppressing the RANKL-induced differ-
entiation of osteoclasts in an ovariectomized mouse model, thus, improving the recovery 
of bone mineral density and trabecular bone volume [264]. Furthermore, some human 
clinical studies showed that various H. procumbens tuber extracts improved clinical pain 
and movement limitation in individuals with knee and hip OA [265]. However, more 
studies are required to elucidate the therapeutic properties of H. procumbens in OA. 

Table 5. Natural-terpenoid-based pharmacology therapy for OA. 

Compound 
(Source) Category Structure Therapeutic Target Treatment Ref 

Andrographolide 
(Andrographis 

paniculate) 
Diterpenoid 

 

Reduces oxidative stress and 
inhibits MMP-13 expression. 

Attenuates cartilage degradation 
via miR-27-3p/MMP13 signaling. 

Anti-oxidant effects. 
Reduces the 

degradation of 
cartilage. 

[210–222] 

Promotes bone formation by 
inhibiting NF-κB signaling. Bone formation [213,214] 

Astaxanthin 
(Haematococcus 

pluvialis) 
Tetraterpenoid  

Anti-catabolic effects via the 
activation of Nrf2–ARE signaling. 
Reduces cartilage degradation via 

MAPK signaling inhibition. 

Antioxidant and anti-
inflammatory effects. 

Attenuates degradation 
of cartilage 

[221,222] 

Aucubin 
(Aucuba japonica) 

Iridoid glyco-
side  

Inhibits IL-1β-induced effects. 
Inhibits iNOS expression and NO 

production 

Anti-inflammatory and 
antioxidant effects. 

Prevents OA 
progression. 

[226–229] 

Boswellia serrata 

11-Keto-β-bos-
wellic, acetyl-
11-keto-β-bos-

wellic acid 

 

Inhibits IL-1β/oncostatin-M-
induced effect, decreasing the 

expression of MMP-9, MMP-13, 
and COX-2 and reducing the 
production of NO and PGE2. 
Inhibits 5-LOX and TNF-α. 

Anti-inflammatory and 
antioxidant effects. 

[15,232–
234] 

 

Promotes osteoblast differentiation 
and suppresses osteoclastogenesis 

by inhibiting TNF-α and NF-κB 
signaling. 

Bone protection. [235,236] 

Celastrol 
(Celastrus regelii, 

Tripterygium 
wilfordii) 

Triterpenoid 

 

Diminishes the IL-1β-induced cat-
abolic effect, decreasing the ex-

pression of MMP-1, MMP-3, 
MMP-13, iNOS, and COX-2. Re-

duces cartilage degradation by in-
hibiting NF-κB signaling and acti-

vating SDF-1/CXCR4 signaling.  

Anti-inflammatory and 
anti-catabolic effects. [238–240] 

Anti-catabolic effects via
the activation of

Nrf2–ARE signaling.
Reduces cartilage

degradation via MAPK
signaling inhibition.

Antioxidant and
anti-inflammatory
effects. Attenuates

degradation of
cartilage

[221,222]

Aucubin
(Aucuba japonica) Iridoid glycoside

Antioxidants 2021, 10, x FOR PEER REVIEW 14 of 27 
 

2.5.7. Harpagophytum procumbens 
Harpagophytum procumbens, also known as devil’s claw, is a medicinal plant native to 

Africa that has been used as an analgesic for the treatment of degenerative diseases of the 
musculoskeletal system [261]. The bioactive components responsible for the anti-osteoar-
thritic effect are the iridoid glycosides (harpagoside, harpagide, and procumbide), which 
are found in a higher amount in the tubers and root [262]. An in vitro study showed that 
the pre-treatment of IL-1β-induced OA chondrocytes with harpagoside exerted some anti-
inflammatory effects, inhibiting IL-6 and MMP-13 expression via the suppressing c-
Fos/AP-1 activity [263]. Another study showed that harpagide improved bone properties, 
stimulating the differentiation of osteoblasts and suppressing the RANKL-induced differ-
entiation of osteoclasts in an ovariectomized mouse model, thus, improving the recovery 
of bone mineral density and trabecular bone volume [264]. Furthermore, some human 
clinical studies showed that various H. procumbens tuber extracts improved clinical pain 
and movement limitation in individuals with knee and hip OA [265]. However, more 
studies are required to elucidate the therapeutic properties of H. procumbens in OA. 

Table 5. Natural-terpenoid-based pharmacology therapy for OA. 

Compound 
(Source) Category Structure Therapeutic Target Treatment Ref 

Andrographolide 
(Andrographis 

paniculate) 
Diterpenoid 

 

Reduces oxidative stress and 
inhibits MMP-13 expression. 

Attenuates cartilage degradation 
via miR-27-3p/MMP13 signaling. 

Anti-oxidant effects. 
Reduces the 

degradation of 
cartilage. 

[210–222] 

Promotes bone formation by 
inhibiting NF-κB signaling. Bone formation [213,214] 

Astaxanthin 
(Haematococcus 

pluvialis) 
Tetraterpenoid  

Anti-catabolic effects via the 
activation of Nrf2–ARE signaling. 
Reduces cartilage degradation via 

MAPK signaling inhibition. 

Antioxidant and anti-
inflammatory effects. 

Attenuates degradation 
of cartilage 

[221,222] 

Aucubin 
(Aucuba japonica) 

Iridoid glyco-
side  

Inhibits IL-1β-induced effects. 
Inhibits iNOS expression and NO 

production 

Anti-inflammatory and 
antioxidant effects. 

Prevents OA 
progression. 

[226–229] 

Boswellia serrata 

11-Keto-β-bos-
wellic, acetyl-
11-keto-β-bos-

wellic acid 

 

Inhibits IL-1β/oncostatin-M-
induced effect, decreasing the 

expression of MMP-9, MMP-13, 
and COX-2 and reducing the 
production of NO and PGE2. 
Inhibits 5-LOX and TNF-α. 

Anti-inflammatory and 
antioxidant effects. 

[15,232–
234] 

 

Promotes osteoblast differentiation 
and suppresses osteoclastogenesis 

by inhibiting TNF-α and NF-κB 
signaling. 

Bone protection. [235,236] 

Celastrol 
(Celastrus regelii, 

Tripterygium 
wilfordii) 

Triterpenoid 

 

Diminishes the IL-1β-induced cat-
abolic effect, decreasing the ex-

pression of MMP-1, MMP-3, 
MMP-13, iNOS, and COX-2. Re-

duces cartilage degradation by in-
hibiting NF-κB signaling and acti-

vating SDF-1/CXCR4 signaling.  

Anti-inflammatory and 
anti-catabolic effects. [238–240] 

Inhibits IL-1β-induced
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and anti-catabolic
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Suppresses
osteoclastogenesis by
inhibiting MAPK and

NF-κB signaling.

Bone protection. [241,242]

Ginsenoside
(Panax)

Terpenoid glycoside
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of MMP-1, MMP-13,
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level of PGE2; promoting
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antioxidant, and
anti-degradative

effects.
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osteoclastogenesis by
inhibiting MAPK and

NF-κB signaling.

Bone protection [255–260]



Antioxidants 2021, 10, 265 16 of 27

Table 5. Cont.

Compound
(Source) Category Structure Therapeutic Target Treatment Ref.

Harpagophytum
procumbens Iridoid glycosides

Antioxidants 2021, 10, x FOR PEER REVIEW 15 of 27 
 

Suppresses osteoclastogenesis by 
inhibiting MAPK and NF-κB sig-

naling. 
Bone protection. [241,242] 

Ginsenoside 
(Panax) 

Terpenoid gly-
coside 

 

Inhibits the IL-1β-induced effect, 
decreasing the expression of 

MMP-1, MMP-13, iNOS, and COX-
2; the level of PGE2; promoting the 

expression of ACAN and Col II. 

Anti-inflammatory, 
anti-apoptotic, 

antioxidant, and anti-
degradative effects. 

[244–254] 

Promotes osteoblast differentiation 
and suppresses osteoclastogenesis 

by inhibiting MAPK and NF-κB 
signaling. 

Bone protection [255–260] 

Harpagophytum 
procumbens 

Iridoid glyco-
sides 

 

Inhibits IL-1β-induced anti-
inflammatory effects, decreasing 
the expression of IL-6 and MMP-

13 via the suppression of c-
Fos/AP-1 activity. 

Anti-inflammatory 
effect. [263] 

Stimulates osteoblast dif-
ferentiation and inhibits osteoclast 

differentiation. 
Bone protection. [264] 

3. Conclusions 
Osteoarthritis is a disease that is becoming more prevalent with the increase in the 

aging population. There are few conventional therapies that are available for the system-
atic treatment of OA and no treatment to prevent it. Unfortunately, all these therapies 
have significant adverse effects and are not adequate for long-term OA management. 
Therefore, the protective effects shown by natural products could be a potential alterna-
tive to conventional therapy. This review shows that natural compound supplementation 
plays an important role in the prevention of osteoarthritis. Various natural products have 
shown similar mechanistic properties, such as anti-inflammatory and antioxidant effects, 
on chondrocytes, inhibiting the cytokine-induced expression and catabolic activity of 
MMPs by inhibiting the NF-κB signaling pathway. Some phytochemicals have been 
shown to protect against cartilage degradation in preclinical studies. Natural products 
have also shown osteoprotective effects, upregulating the expression of various factors, 
such as Runx2, OPN, and Osx, in addition to the upregulation of the MAPK pathway and 
OPG/RANKL ratio. These regulations decreased bone resorption and enhanced osteo-
blastic activity and downregulation of the osteoclastic activity. Furthermore, some phyto-
chemicals showed synergistic effects when explored in combination with other natural 
products or standard therapies. Although there are several bibliographical studies that 
show that some natural compounds are of interest in terms of fighting against inflamma-
tion or oxidation processes, as far as we know, there is no natural product that can prevent 
osteoarthritis or reverse it. The studies of these natural products from human clinical trials 
are still too few to be able to confirm their therapeutic effect at present. Therefore, the 
optimization of the formulation of natural products, and/or the combination of them, to 
combat and prevent osteoarthritis is a challenge. 

Author Contributions: Conceptualization, M.-L.P.-L., A.C., E.E., E.L., T.M.B., M.M., S.B.-R. and 
H.T.; methodology, M.-L.P.-L., A.C., E.E., E.L., T.M.B., M.M., S.B.-R. and H.T.; validation, M.-L.P.-
L., A.C., E.E., E.L., T.M.B., M.M., S.B.-R. and H.T.; resources, E.L., S.B.-R. and H.T.; writing—original 
draft preparation, M.-L.P.-L.; writing—review and editing, T.M.B., S.B.-R. and H.T.; supervision, 
E.L., S.B.-R. and H.T.; project administration, E.L., S.B.-R. and H.T; funding acquisition, E.L., S.B.-R. 
and H.T. All authors have read and agreed to the published version of the manuscript. 

Inhibits IL-1β-induced
anti-inflammatory effects,
decreasing the expression

of IL-6 and MMP-13 via the
suppression of c-Fos/AP-1

activity.

Anti-inflammatory
effect. [263]

Stimulates osteoblast
dif-ferentiation and inhibits

osteoclast differentiation.
Bone protection. [264]

3. Conclusions

Osteoarthritis is a disease that is becoming more prevalent with the increase in the
aging population. There are few conventional therapies that are available for the systematic
treatment of OA and no treatment to prevent it. Unfortunately, all these therapies have
significant adverse effects and are not adequate for long-term OA management. Therefore,
the protective effects shown by natural products could be a potential alternative to con-
ventional therapy. This review shows that natural compound supplementation plays an
important role in the prevention of osteoarthritis. Various natural products have shown
similar mechanistic properties, such as anti-inflammatory and antioxidant effects, on chon-
drocytes, inhibiting the cytokine-induced expression and catabolic activity of MMPs by
inhibiting the NF-κB signaling pathway. Some phytochemicals have been shown to protect
against cartilage degradation in preclinical studies. Natural products have also shown
osteoprotective effects, upregulating the expression of various factors, such as Runx2,
OPN, and Osx, in addition to the upregulation of the MAPK pathway and OPG/RANKL
ratio. These regulations decreased bone resorption and enhanced osteoblastic activity and
downregulation of the osteoclastic activity. Furthermore, some phytochemicals showed
synergistic effects when explored in combination with other natural products or standard
therapies. Although there are several bibliographical studies that show that some natural
compounds are of interest in terms of fighting against inflammation or oxidation processes,
as far as we know, there is no natural product that can prevent osteoarthritis or reverse it.
The studies of these natural products from human clinical trials are still too few to be able
to confirm their therapeutic effect at present. Therefore, the optimization of the formulation
of natural products, and/or the combination of them, to combat and prevent osteoarthritis
is a challenge.
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