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Abstract 
Ischemic stroke (IS) has a high recurrence rate. Machine learning (ML) models have been developed based on single-modal 
biochemical tests, and imaging data have been used to predict stroke recurrence. However, the prediction accuracy of these 
models is not sufficiently high. Therefore, this study aimed to collect biochemical detection and magnetic resonance imaging (MRI) 
data to establish a dataset and propose a high-performance heterogeneous multimodal IS recurrence prediction model based on 
deep learning. This is a retrospective cohort study. Data were retrospectively collected from 634 IS patients in Zhuhai, China, a 
12-month follow-up was conducted to determine stroke recurrence. We propose the ischemic stroke multi-group learning (ISGL) 
model, an integrated model for predicting the recurrence risk of multimodal IS in patients, based on a capsule neural network and 
a linear support vector machine (SVM). Two capsule neural network prediction models based on T1 and T2 signals in the MRI data 
and a SVM prediction model based on biochemical test data were established. Finally, a vote was conducted on the final judgment 
of the integrated model. The ISGL model was compared with 6 classical ML and deep learning models: k-nearest neighbors, 
SVM, logistic regression, random forest, eXtreme Gradient Boosting, and visual geometry group. The results revealed that the 
accuracy, specificity, sensitivity and the area under the curve of the ISGL model were 95%, 96%, 94%, and 95%, respectively. 
Among the comparison models, the visual geometry group method exhibited the best performance, but it much lower than those 
of the ISGL model. Analysis of the importance of biochemical test data revealed that low-density lipoprotein, smoking, and heart 
disease history were the positively correlated factors, and total cholesterol, high-density lipoprotein, and diabetes were and the 
negatively correlated factors. This study proposes the ISGL model can be used simultaneously with MRI and biochemical data to 
predict IS recurrence. This combination resulted in higher rate of performance than that of the other ML models. Additionally, this 
study found related risk factors affected recurrence, which can be used to intervene in high-risk patients’ recurrence as early as 
possible and promote the development of secondary prevention of stroke.

Abbreviations: AUC = The area under the curve, HDL = high-density lipoprotein, IS = ischemic stroke, ISGL = ischemic stroke 
multi-group learning, LDL = low-density lipoprotein, ML = machine learning, MRI = magnetic resonance imaging, SVM = support 
vector machine.
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1. Introduction
Stroke is the second leading cause of death and the third 
leading cause of disability in the world.[1–3] In China, stroke 

is the leading cause of death and disability.[4] Patients with 
recurrent stroke have more severe functional disabilities than 
those with first-episode stroke.[5] The focus of this study was 
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ischemic stroke (IS), which is the most common type of stroke, 
accounting for approximately 80% of stroke cases.[6] Studies 
have revealed that the secondary prevention of stroke can 
reduce the risk of IS recurrence events by approximately 13% 
and up to 67%.[7] The accurate identification of risk factors 
is the premise and foundation of secondary prevention and is 
the most effective means of reducing the disability and mor-
tality rates of patients with IS.[8] Therefore, it is important to 
establish a high-performance and comprehensive IS recurrence 
model and identify possible factors influencing stroke recur-
rence in patients.

In clinical practice, senior neurologists combine patient base-
line data, laboratory tests, and imaging examinations to com-
prehensively develop personalized diagnoses and treatment 
and nursing programs.[9,10] However, no study has constructed 
a multimodal IS recurrence dataset to develop a prediction 
model. Most existing studies were based on traditional statis-
tical methods for analyzing single-modal biochemical test data, 
which exhibit simple calculation methods and poor prediction 
effect, leading to less comprehensive and robust clinical appli-
cations. Recently, artificial intelligence has flourished in the field 
of cerebrovascular disease.[11–13] Machine learning (ML) meth-
ods have better sensitivity and specificity for screening test data 
features and identifying image features.[14,15] Many studies have 
shown that compared with traditional statistical methods, ML 
methods can be effectively applied to IS recurrence prediction 
and can better predict results.[16,17] Therefore, this study aimed 
to use multimodal data to construct a deep learning model for 
IS recurrence.

Baseline, biochemical test, and magnetic resonance imaging 
(MRI) data were collected for the following purposes. First, a 

multimodal IS recurrence feature dataset was established based 
on the patients’ complete clinical data. Second, a heterogeneous 
multimodal IS recurrence risk prediction ensemble model was 
proposed, based on the capsule neural network and linear sup-
port vector machine (SVM) methods (Fig. 1). This model inte-
grates multisource heterogeneous data of patients with IS and 
analyzes the importance of the biochemical test data. Finally, the 
6 most popular ML algorithms were compared with the isch-
emic stroke multi-group learning (ISGL) model to verify their 
prediction performance. In addition, the feature importance of 
the model was analyzed, and 6 important biochemical detec-
tion features that were most related to stroke recurrence were 
identified.

2. Material and methods

2.1. Study design and study population

This was a single-center, retrospective cohort study, and all data 
were obtained from the hospital’s electronic health record sys-
tem. All subjects were recruited at the Fifth Affiliated Hospital 
of Zunyi Medical University (Zhuhai) from June 1, 2017, to 
June 30, 2019. In total, 634 patients were recruited (Fig. 2). 
The inclusion criteria were: (1) patients aged ≥18 years; (2) 
patients diagnosed with IS at discharge (i.e., diagnostic cri-
teria of various cerebrovascular diseases in the 2015 edition 
of the Chinese Classification of Cerebrovascular Diseases); 
and (3) patients who had MRI on admission or during hos-
pitalization (no surgical or drug treatment was performed). 
The exclusion criteria were as follows: (1) patients who had 
died or were transferred to the hospital; (2) patients with a 

Figure 1.  ISGL model constructed by the capsule neural network (i.e., deep learning model), the linear-SVM model (i.e., ML model), and the voting method 
used to judge the final recurrence result. ML = machine learning.
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history of stroke; (3) patients diagnosed with transient isch-
emic attack, cerebral embolism, cerebral watershed infarction, 
or other definite etiologies of IS; and (4) patients in whom 
the endpoint event (i.e., recurrence) could not be determined. 
All procedures involving human participants were consis-
tent with the Declaration of Helsinki (revised in 2013 by the 
reference[18]).

2.2. Feature selection

To determine the biochemical test collection indicators 
related to the risk of IS recurrence and to use these vari-
ables to create a prediction model, a literature review and 
word frequency analysis were conducted to obtain the recur-
rence factors of the modal test data. First, the risk factors 
for IS recurrence were extracted by searching the literature 
related to risk factors for IS recurrence over the past 10 years 
(Fig. 3). Subsequently, the Jieba Library in Python software 
was used to complete the word frequency analysis of the risk 

factors, and 78 recurrence risk factors were extracted. Based 
on the results of the frequency analysis and availability of 
hospital-related examinations, 30 recurrence risk factors 
were included as the collection content of the modal test data. 
Demographic data (e.g., sex, age, and length of hospital stay), 
medical history (e.g., smoking, drinking, history of peptic 
ulcers, hypertension, diabetes, heart disease, and atheroscle-
rosis), self-care scores, and hospitalization event information 
(e.g., recurrence or not) were collected from the patients’ 
electronic medical records. This study also recorded the labo-
ratory examination data of the patients on admission, includ-
ing uric acid, triglyceride, total cholesterol, high-density 
lipoprotein (HDL), low-density lipoprotein (LDL), homocys-
teine, C-reactive protein, serum albumin level, apolipoprotein 
A1, apolipoprotein B, platelet level, white blood cell level, 
neutrophil percentage, fibrinogen, and glycosylated hemo-
globin. Two basic MRI images were collected (the patients 
did not undergo surgery nor were they treated with medica-
tion during the MRI examination): T1-weighted imaging and 

Figure 2.  Flow chart of patient recruitment.

Figure 3.  Flow chart of literature screening.
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T2-weighted imaging, as the model features of the imaging 
modality.

2.3. Outcome definitions

Before the patients were discharged from the hospital, they were 
given corresponding health education and asked to provide the 
researchers their phone numbers and those of at least 2 family 
members. The patients were reminded by telephone to return 
for follow-up visits at 3, 6, and 12 months post discharge. Two 
neurologists assisted with these procedures. According to a 
report by the World Health Organization, comprehensive clin-
icopathological information, and computed tomography and/
or MRI are required to diagnose IS during hospitalization.[19] 
The diagnostic criteria were as follows: (1) new neurological 
deficit symptoms appearing after the symptoms and signs of 
the original neurological deficit improved or disappeared; (2) 
new ischemic lesions confirmed by a head computed tomogra-
phy and/or MRI; and (3) exclusion of progressive stroke and 
disease progression.

2.4. Sample size

According to the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis guide-
lines, the rule of thumb for sample size is that each variable has 
at least 10 outcome events.[20] According to the risk factors for 
recurrence included in the modal test data, 31 variables were 
incorporated into the construction of the ISGL model. This 
study required at least 310 patients with first-episode IS to be 
recruited for the model development.

2.5. Processing of missing data

In the dataset, the original test data contained a small number 
(2.07%) of vacancy values. The gradient boosting decision tree 
method was used to predict the vacancy values (i.e., missing-value 
interpolation) based on known test information. The gradient 
boosting decision tree, also known as a multiple additive regres-
sion tree, is an iterative decision tree algorithm, which constructs 
a set of weak learners (i.e., trees) and accumulates the results of 
multiple decision trees as the final prediction output. The algo-
rithm effectively combines the decision tree with the integration 
of ideas to scientifically and effectively fill in missing data.

2.6. Heterogeneous multimodal model development

In total, 634 patients with first-episode IS were included in this 
study. Owing to the data imbalance, complete IS recurrence 
patient data were used for each independent random experiment 
and 2-fold data of non-recurrence patient data were randomly 
selected. The test and training sets were then randomly cut using 
a ratio of 8:2. We performed 100 random repeat experiments 
on the model and calculated the average value to reduce data 
overfitting.

2.7. MRI image processing model based on the capsule 
neural network

The recurrence of IS is closely related to the infarction loca-
tion; therefore, it is necessary to track the lesion area and stroke 
infarction signal using imaging examinations. As the occur-
rence, development, and recurrence of IS is a complex patho-
logical process, the characteristics of the entire image are more 
representative, and contribute to the prediction of recurrence in 
patients. Therefore, in this study, we used 3 dimensions images of 
the entire brain region of a patient for modeling and performed 
an overall analysis of all plane slice images of the patient’s head. 

The entire spatial structure was incorporated into the model, 
including the infarct area and its location. Capsule neural net-
works, which use scalars to record local image information, 
have been proposed to solve the problems of convolutional 
neural networks. However, other local information cannot be 
analyzed with a convolutional neural networks, which renders 
it difficult to explain the relationship between certain features 
and the overall image. The capsule neural network uses vector 
feature states to represent feature information. Vector features 
no longer represent the specific existence of local features, but 
different properties of the same global image.[21] Currently, there 
is no research on the construction of stroke recurrence predic-
tion models using capsule networks. In previous studies, the 
capsule network had a positive effect on MRI image process-
ing. Researchers have used a capsule neural network to segment 
MRI images, which effectively improved the cutting accuracy.[22] 
More researchers have realized automatic segmentation of the 
left ventricle in cardiac MRI based on a deep learning model of 
the capsule network.[23] The MRI data in this study were mod-
eled using a capsule neural network, which accurately captured 
the relationship between infarction location and IS recurrence.

The capsule neural network uses vector feature states to rep-
resent feature information. Vector features no longer represent 
the specific existence of local features but different properties 
of the same global image. Capsule network vector has the fol-
lowing properties: 1. The modulus of the vector represents the 
probability of the existence of the feature; 2. The direction of 
the vector represents the attitude information of the feature; 3. 
Moving features will change the Capsule vector, which does not 
affect the probability of feature existence. The general overall 
operation mode of the capsule network is as follows:

Enter 2 vectors, v1 and v2, multiplied by the weight matrix w1 
and w2, get and u1 and u2:

u1 = w1v1

u2 = w2v2

Next, calculate s by the following formula,

s = c1u1 + c2u2

Subsequently, the squash activation function is used to obtain 
v;

v = Squash (s)

v =
‖s‖2

1+ ‖s‖2
s
‖s‖

Among them, the calculation process of c1 and c2 becomes a 
dynamic routing process, and its workflow is as follows:

b01 = 0, b02 = 0

For r = 1 to T do

sr = c1u1 + c2u2

ar = Squash (sr)

bri = br−1
i + ar∗ui

2.8. Biochemical detection data processing model based 
on the support vector machine

An SVM is a generalized linear classifier that classifies data using 
supervised learning. The decision boundary is the maximum 
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margin hyperplane for the learning samples. This method has 
been widely used in various fields. The core idea is to solve a 
hyperplane formula for a two-dimensional classification prob-
lem. In the SVM model, a linear function was chosen as the 
kernel function. That is to solve the following formula:

WTX+ b = 0

2.9. Model voting

Based on the imaging and test data collected, 3 sub-models of 
multimodal IS recurrence prediction were constructed based 
on the capsule neural network (i.e., deep learning model) and 
the linear-SVM model (i.e., ML model). Voting is an ensem-
ble learning model that follows the principle of majority. The 
overall classification performance of the model was improved 
through the integration of multiple models and the error rate 
of the model was reduced. Ideally, the prediction effect of the 
voting method would be better than that of any sub-model. The 
voting method was chosen to integrate the prediction results of 
the 3 sub-models and construct the ISGL model.

2.10. Model performance evaluation

The area under the curve (AUC), receiver operating charac-
teristic curve, accuracy, specificity, and sensitivity were used 
to evaluate the predictive performance of the ISGL model. Six 
algorithms—k-nearest neighbors, SVM, random forest, logistic 
regression, eXtreme Gradient Boosting, and visual geometry 

group—were used as benchmark models for comparison with 
the ISGL-integrated model.

2.11. Statistical analysis

The data were preprocessed before constructing the modal 
test data model. The continuous variables in these data did 
not conform to a normal distribution; therefore, they were 
expressed as median and quartile ranges and analyzed 
using the Mann–Whitney U test. Categorical variables were 
expressed as percentages and analyzed using the Pearson chi-
square test. All statistical tests were two-tailed, and statisti-
cal significance was set at P < .05. The algorithms used in the 
study were extracted from the Python 3.7 and SPSS (version 
29.0) software.

3. Results

3.1. Baseline characteristics

Overall, 634 adult patients met the inclusion criteria, and 77 
patients relapsed within 1 year after their first-episode stroke, 
with a recurrence rate of 12.1%. The multimodal IS recurrence 
prediction dataset established in this study primarily con-
tained 3 types of modal data: modal test, MRI T1 signal, and 
MRI T2 signal data. The data used in this study contained 31 
features. Of the 634 patients, 57.4% were male. The median 
patient age was 69 years (interquartile range = 59–77). The 
3 most common comorbidities were carotid atherosclerosis 
(86.8%), hypertension (70%), and diabetes (21.4%). Table 1 

Table 1

Characteristics of the IS patients. For continuous data, values are expressed as medians in IQR (quartile range). Other values are 
expressed in numbers and percentages.

Category/company Total (N = 634) Recurrence (N = 77) No recurrence (N = 557) P value

Gender (N/%) Male 364 (57.4) 49 (63.6) 315 (56.6) .269
Age (IQR) Year 69 (59,77) 72 (65.5,78) 68 (59,77) .038
Length of hospitalization (IQR) Day 7 (5.75,9) 8 (6,9.5) 7 (5,9) .026
Smoking history (N/%) Yes 137 (21.6) 30 (39.0) 107 (19.2) <.000
Drinking history (N/%) Yes 106 (16.7) 23 (29.9) 83 (14.9) .002
History of peptic ulcers (N/%) Yes 68 (10.7) 8 (10.4) 60 (10.8) 1.000
Diabetes (N/%) Yes 136 (21.4) 20 (26.0) 116 (20.8) .302
Hypertension (N/%) No 190 (30.0) 13 (16.9) 177 (31.8) .008

Primary 41 (6.4) 4 (5.2) 37 (6.6)
Secondary 72 (11.4) 11 (14.3) 61 (11.0)

Tertiary 331 (52.2) 49 (63.6) 282 (50.6)
Admission microcomputer blood glucose (IQR) mmol/L 7 (6.1,8.7) 7.3 (6.1,9.3) 6.9 (6,8.6) .053
Heart disease (N/%) Yes 94 (14.8) 16 (20.8) 78 (14.0) .124
Atrial fibrillation (N/%) Yes 29 (4.6) 7 (9.1) 22 (3.9)(96.1) .072
Admission systolic blood pressure (IQR) mm Hg 150 (136,169) 153 (141,176.5) 149 (135,167) .047
Admission diastolic blood pressure (IQR) mm Hg 86 (77,94) 87 (79.5,97) 86 (76,94) .207
Self-care (N/%) Fully self-care 237 (37.4) 25 (32.5) 212 (38.1) <.000

Need care 397 (62.6) 52 (67.5) 345 (61.9)
Carotid atherosclerosis (N/%) Yes 550 (86.8) 75 (97.4) 475 (85.3) <.000
Uric acid (IQR) µmol/L 344.5 (284,402.3) 359 (298.5407.5) 343 (279,399.5) .140
Triglyceride (IQR) mmol/L 1.34 (0.99,1.91) 1.44 (1.07,1.89) 1.33 (0.99,1.92) .319
Total cholesterol (IQR) mmol/L 4.72 (4.11,5.27) 4.77 (4.13,5.2) 4.71 (4.1,5.28) .715
High-density lipoprotein (IQR) mmol/L 1.16 (0.97,1.39) 1.15 (0.98,1.37) 1.16 (0.97,1.39) .709
Low-density lipoprotein (IQR) mmol/L 3.14 (2.54,3.65) 3.21 (2.81,3.68) 3.13 (2.53,3.66) .301
Homocysteine (IQR) umol/L 9.1 (7.6,11.2) 9.7 (8.4,11.6) 8.9 (7.5,11.2) .014
C-reactive protein (IQR) mg/L 2.45 (0.93,7.71) 2.57 (0.97,8.77) 2.42 (0.92,7.59) .877
Serum albumin (IQR) g/L 40.4 (38.2,42.7) 40 (37.6,41.8) 40.5 (38.3,42.8) .085
Apolipoprotein A1 (IQR) g/L 1.08 (0.98,1.17) 1.09 (0.99,1.15) 1.08 (0.98,1.18) .729
Apolipoprotein B (IQR) g/L 1.02 (0.87,1.15) 1.04 (0.92,1.15) 1.02 (0.87,1.15) .398
Platelet count (IQR) L 227 (194,256) 227 (195,256) 227 (194,256) .940
Glycosylated hemoglobin (IQR) % 5.9 (5.6,6.5) 6.1 (5.8,7) 5.9 (5.7,6.4) .823
Fibrinogen (IQR) L 3.17 (2.75,3.59) 3.23 (2.83,3.73) 3.16 (2.74,3.57) .420
Leukocyte count (IQR) L 7 (5.7,8.3) 7.1 (6.2,8) 7 (5.7,8.3) .140
Neutrophil percentage (IQR) % 64.2 (57.8,70.2) 63.3 (56.7,69.2) 64.3 (57.9,70.3) .004
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shows the feature distributions of the patient-relevant test 
variables.

3.2. Performance of the ISGL model with 6 popular 
algorithms

The accuracy, specificity, and sensitivity of the ISGL model are 
95%, 96%, and 94%, respectively. The test results were in line 
with the expectations. The results of the integrated model were 
superior to those of the single-modal image data and modal 
test data, and the AUC reached 95% (95% CI, 0.94–0.96). The 
image data revealed very good test results (92% and 93% accu-
racy), whereas the text modal data results were relatively poor 
(69% accuracy), in line with previous experimental results. 
The integrated model results were superior to the single- 
image modal and text modal data results (95% accuracy). This 
indicated that the integrated ISGL model was superior to the 
single-modal IS prediction model (Table 2). The decision, cal-
ibration, and PR-AUC curves of the ISGL model are shown 
in Figures 4, 5, and 6. The decision curve reveals that the net 
income value of the model is satisfactory, and the calibration 
curve reveals that the model’s prediction and observation 
probabilities are highly consistent. The PR-AUC curve revealed 
that the ISGL model had a superior ability to correctly pre-
dict true lesions. The performances of 6 popular algorithms on 
the test set are shown in Figure 7. The ISGL model performed 
well in the experimental results, and the F1-score was much 

larger than that of the other 6 algorithms, which indicates that 
the overfitting of the model was alleviated. Among the 6 algo-
rithms, the model with the best prediction performance was 
visual geometry group, with an accuracy, specificity, sensitivity, 
AUC, and F1-score of 0.76, 0.79, 0.47, 0.87, and 0.47, respec-
tively (Table 3).

3.3. Feature weight of the modal test data

Finally, 30 modal test data variables were included in the con-
struction of the ISGL model, including the baseline data, clinical 
history, and biochemical test data of patients with IS. The weight 
values of the 30 variables were calculated by constructing a lin-
ear SVM model for the modal test data. Finally, 18 positive and 
12 negative risk factors affecting recurrence of first-episode IS 
were identified (Figs. 8 and 9). Among them, for the positive 
risk factors, the weight values of LDL (1.25343591), smok-
ing (1.17272469), and history of heart disease (1.05821598) 
were >1, whereas for the negative risk factors, the weight value 
of total cholesterol (1.1022789) was >1, followed by HDL 
(0.19130034) and diabetes (0.12935474).

4. Discussion
Eligible patients were recruited to construct an IS recurrence 
model. By collecting complete baseline, laboratory, and imag-
ing examination data from the hospital information system, a 

Table 2

Comparison of the accuracy of the integrated ISGL model and the independent modeling of the 3 modes.

Accuracy (95% CI) Specificity (95% CI) Sensitivity (95% CI) AUC (95% CI)

Textomics 69% (68–70%) 70% (68–71.5%) 67% (66–68%) 69% (68–70%)
MRI T1 93% (92.5–94%) 94% (93–95%) 92% (90.5–93.5%) 93% (92–94%)
MRI T2 92% (91–93%) 93% (91.5–94.5%) 91% (90–92%) 92% (91–93%)
ISGL model 95% (94–96%) 96% (95–97%) 94% (93–95%) 95% (95–97%)

AUC = The area under the curve.

Figure 4.  Decision curve of the ISGL model. Dotted line: net benefit of predicting no patients; black line: net benefit of predicting all patients; red line: net benefit 
of predicting patients according to the ISGL model. The ISGL model-based decisions were supported in the range of threshold probabilities of approximately 
0% to 85%. ISGL = ischemic stroke multi-group learning.
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multimodal dataset, including test and image modes, was estab-
lished. The ISGL integrated model was constructed using an 
SVM, capsule neural network, and model voting method. Six 
typical ML algorithms were used for comparison with the ISGL 
model. Regarding the performance of the single-modal data of 
the ISGL model, the accuracy of MRI-T1 was the highest, fol-
lowed by MRI-T2, and finally, the biochemical detection data of 
text model. MRI has a different emphasis on the pathological 
observation of stroke.[24] T1-weighted imaging can better show 
anatomical structures, whereas T2-weighted imaging can better 
show tissue lesions. Based on the current results, MRI-T1 has 
a more evident predictive effect on IS recurrence. Although the 

accuracy of text data, such as biochemical tests, is not high, it 
contains a series of other data, such as the patients’ medical 
history and laboratory tests. This has a complementary and aux-
iliary effect on the image modality. As a result, the data of the 
single modality are fused using the voting method, which signifi-
cantly improves the overall prediction result value.

Previous studies have used traditional statistics to predict 
IS recurrence. For example, Yu et al (2021) combined logistic 
regression and laboratory test data to develop a nomogram for 
predicting IS recurrence in hospitals. The AUC of the nomogram 
in the validation cohort was 0.717.[25] Compared with test data, 
such as ordinary laboratory tests, imaging is more valuable for 

Figure 5.  Calibration curve of the ISGL model. The solid line represents the performance of ISGL model; a closer fit to the diagonal dotted line represents a 
better prediction. ISGL = ischemic stroke multi-group learning.

Figure 6.  The PR-AUC curve of the ISGL model. The greater the area under the curve (AUC), the better the model was at correctly predicting true lesions. 
Precision is equivalent to positive predictive value and recall is equivalent to sensitivity. ISGL = ischemic stroke multi-group learning.
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predicting recurrence.[26–28] Therefore, a comprehensive multi-
dimensional prognostic prediction model for stroke, based on 
imaging and biological markers, has become a new research 
direction in recent years.[29] Zhang et al used logistic regres-
sion to synthesize clinical and imaging information, with an 
AUC value of 0.753.[1] Owing to the lack of robustness of the 
logistic regression, single-modal and multimodal data did not 
show good prediction performance. In recent years, owing to 
the excellent performance of artificial intelligence in the field of 
image processing, researchers have combined ML with modal 
image data to develop models. For example, Lee et al (2020) 
developed 3 models using 3 ML methods to predict stroke devel-
opment time, which performed significantly better than manual 
predictions.[30] In addition, ML achieved excellent performance 
in modal test prediction. Some studies have used prehospital 
data to develop ML models to predict large-vessel occlusion in 
IS, with an AUC value of 0.831.[31] It is generally believed that 
comprehensive clinical features contribute to the accurate pre-
diction of IS recurrence. Complete baseline data, laboratory test 
results, and MRI scans of the patients with IS were collected. 
Therefore, the multimodal ISGL model based on ML has the 
highest application value for predictions.

In China, patients with IS receive treatment and nursing 
management from community hospitals at home following 
discharge; however, community doctors and nurses cannot 
make the same professional judgments as those made by neu-
rologists. This is detrimental to the prevention and manage-
ment of recurrence, greatly delaying the treatment of patients 
and resulting in a higher prevalence of recurrence.[32] In the 
post-discharge management of stroke, various biochemi-
cal tests play important roles in the prevention of stroke 
recurrence. This study found that LDL level, smoking, and 
a history of heart disease were the most important positive 
correlation factors affecting IS recurrence. By managing the 
indicators (e.g., blood lipids, blood pressure, and blood glu-
cose) of patients, the probability of recurrence and death after 
a first-episode IS can be effectively reduced. This finding is 
consistent with that of previous studies, which reported that 
elevated LDL levels, long-term smoking, and a history of heart 
disease increased the risk of IS recurrence.[33–35] More atten-
tion should be paid to the top 3 negative risk factors, total 
cholesterol, HDL, and diabetes, which are the most important 
factors for IS recurrence. HDL, LDL, and total cholesterol are 
the basic parameters of blood lipid examination; therefore, the 

Figure 7.  Comparison of the ROC curves between the ISGL and the 6 algorithms. The larger the area under the ROC curve is, the better the prediction per-
formance of the model is. The area under the ROC curve of the ISGL model is larger than that of the 6 machine learning algorithms. ISGL = ischemic stroke 
multi-group learning, ROC = receiver operating characteristic curve.

Table 3

Accuracy, specificity, sensitivity, AUC, and F1-score values of the ISGL model and 6 popular algorithms.

Algorithm AUC (95% CI) Accuracy (95% CI) Specificity (95% CI) Sensitivity (95% CI) F1-score (95%CI)

ISGL model 0.9516 (0.95–0.97) 0.95 (0.94–0.96) 0.96 (0.95–0.97) 0.94 (0.93–0.95) 0.92 (0.91–0.93)
KNN 0.6029 (0.58–0.61) 0.56 (0.55–0.57) 0.60 (0.59–0.61) 0.72 (0.70–0.74) 0.62 (0.61–0.63)
SVM 0.6257 (0.59–0.65) 0.63 (0.61–0.65) 0.67 (0.66–0.08) 0.66 (0.65–0.68) 0.72 (0.71–0.73)
Logistic regression 0.6257 (0.59–0.65) 0.64 (0.62–0.66) 0.64 (0.62–0.66) 0.62 (0.61–0.63) 0.45 (0.44–0.46)
Random forest 0.3429 (0.33–0.35) 0.69 (0.67–0.71) 0.20 (0.19–0.21) 0.86 (0.85–0.87) 0.25 (0.24–0.26)
XGBoost 0.4743 (0.45–0.50) 0.62 (0.61–0.63) 0.40 (0.39–0.41) 0.69 (0.67–0.71) 0.35 (0.34–0.36)
VGG 0.7617 (0.74–0.77) 0.79 (0.77–0.81) 0.77 (0.75–0.79) 0.78 (0.76–0.81) 0.77 (0.76–0.78)

KNN = k-nearest neighbors, VGG = visual geometry group, XGBoost = eXtreme Gradient Boosting.



9

Fan et al.  •  Medicine (2024) 103:35� www.md-journal.com

control of blood lipids is key to preventing IS recurrence.[36,37] 
A history of diabetes was negatively correlated with IS recur-
rence in this study. In a recent study, Wang et al found that 
stress hyperglycemia is a biomarker of stroke recurrence inde-
pendent of previous diabetes.[38] In contrast, researchers have 
found that diabetes is an important risk factor for IS recur-
rence in women.[39] Considering the different conclusions of 
various studies, more studies are needed to explore sex dif-
ferences and the pathological relationship between diabetes 
and IS recurrence. In general, the information weight of each 
test variable provided by the ISGL model can help community 
doctors to implement targeted preventive measures according 
to the importance of risk factors, as well as help them to better 
manage stroke secondary prevention and reduce stroke recur-
rence.[40] The ISGL model constructed in this study exhibited 
a considerably higher accuracy than that of previous similar 
IS recurrence prediction models.[41] The ISGL model identified 
the comprehensive risk of recurrence in patients and provided 
evidence for its high performance in the secondary prevention 
of stroke.

This study has few limitations. First, our research was a  
single-center study, and external verification and promotion of 

the ISGL prediction model require multicenter testing. Second, 
in our text modal data collection indicators, there was a lack 
of national institutes of health stroke scale, Modified Rankin 
Scale scores, etc, which may have had an impact on the predic-
tion results of the model. Finally, to synthesize the predictive 
effect of each mode on the model, we did not weigh the data 
for the different modes. In future work, we plan to expand and 
improve our database in Zunyi City, Guizhou Province, China, 
and improve the content of the text data collection indicators in 
the database. In addition, a multi-center model verification plan 
was implemented to ensure diversification of the data. Using an 
more completely diversified dataset, we plan to further improve 
the model according to the results of different omics models to 
dynamically weigh different omics and explore the predictive 
value of different modalities for IS recurrence.

5. Conclusion
In this study, the ISGL model was proposed to predict IS recur-
rence using both MRI and biochemical test data. The results 
showed higher prediction performance in comparison with 
other ML models. In addition, the study also found related risk 

Figure 8.  Positive risk factors affecting the recurrence of first-episode IS. IS = ischemic stroke.

Figure 9.  Negative risk factors affecting the recurrence of first-episode IS. IS = ischemic stroke.
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factors that affected recurrence, which should be used to inter-
vene in patients with high risk as early as possible and promote 
the development of the secondary prevention of stroke.
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