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The pathophysiological processes leading to epilepsy are poorly understood. Understanding the molecular and cellular mechanisms
involved in the onset of epilepsy is crucial for drug development. Epileptogenicity is thought to be associated with changes in
synaptic plasticity; however, whether extracellular matrix molecules—known regulators of synaptic plasticity—are altered during
epileptogenesis is unknown. To test this, we used a pentylenetetrazole- (PTZ-) kindling model mouse to investigate changes to
hippocampal parvalbumin- (PV-) positive neurons, extracellular matrix molecules, and perineuronal nets (PNNs) after the last
kindled seizure. We found an increase in Wisteria floribunda agglutinin- (WFA-) and Cat-315-positive PNNs and a decrease in
PV-positive neurons not surrounded by PNNs, in the hippocampus of PTZ-kindled mice compared to control mice.
Furthermore, the expression of WFA- and Cat-315-positive molecules increased in the extracellular space of PTZ-kindled mice.
In addition, consistent with previous studies, astrocytes were activated in PTZ-kindled mice. We propose that the increase in
PNNs after kindling decreases neuroplasticity in the hippocampus and helps maintain the neural circuit for recurrent seizures.
This study shows that possibility of changes in extracellular matrix molecules due to astrocyte activation is associated with
epilepticus in PTZ-kindled mice.

1. Introduction

Epilepsy is one of the most common chronic neurological
disorders with a prevalence of 0.4% to 1.0% [1]. To date, none
of the drugs used to treat epilepsy are able to prevent its onset
or reverse epileptogenesis [2]. Therefore, the current treat-
ment of epilepsy merely prevents or suppresses seizures,
rather than halting the process of developing epilepsy. The
pathophysiological processes leading to epilepsy are poorly
understood. A better understanding of the molecular and
cellular mechanisms involved in the onset of epilepsy will
help the development of therapeutic agents that alter or halt
epileptogenesis.

Kindling is an experimental epilepsy model, where
repeated electrical or chemical stimulation of certain fore-

brain structures gradually causes stronger signals on electro-
encephalography and behavioral seizure activity [3, 4]. Once
established, kindling results in a permanent state of seizure
susceptibility.

Although seizures can induce neuronal death, they also
have nonfatal pathophysiological effects on neuronal struc-
ture and function [5]. For example, epileptogenesis is associ-
ated with changes to synaptic plasticity [6, 7]. However, what
causes and maintains these changes has not been clarified.
The extracellular matrix (ECM)—which fills the extracellular
domain of all organs and tissues and contains water and ions
[8, 9]—is thought to regulate synaptic plasticity; whether it is
altered in the early stages of epilepsy is currently unknown.

ECM in the central nervous system (CNS) is formed from
hyaluronic acid, tenescin-R, glycoproteins, and chondroitin
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sulfate proteoglycans (CSPGs) [8]. In the mature CNS, ECM
molecules are distributed as neural granules or perineuronal
nets (PNN) [8]. A PNN is a mesh-like special structure that
covers the cell body, axonal origin, and proximal dendrites
of specific neurons in the CNS [10]. In the cortex and hippo-
campus, PNNs mainly form around parvalbumin- (PV-)
positive GABAergic neurons [10]. Although the exact
function of PNNs is not known, they stabilize synaptic
connections, regulate synaptic plasticity, participate in ECM
linkage with the cytoskeleton, and promote neuron-
astrocyte interactions [11–13]. PNNs form late in develop-
ment, and are thought to reduce synaptic plasticity leading
to the termination of the critical period of the CNS. Indeed,
it has been suggested that aggrecan, a component of PNNs,
controls plasticity [14–16]. Once mature synapses are estab-
lished and surrounded by aggrecan-containing PNNs, they
are stable and poorly reorganized in adults [14, 17].

The vegetable lectin Wisteria floribunda agglutinin
(WFA) is widely used to detect PNNs. WFA binds to N-
acetylgalactosamine [18–20]. The antibody Cat-315 against
aggrecan is also often used to detect PNNs. Cat-315 recog-
nizes HNK-1 carbohydrate epitope of aggrecan [14, 21,
22]. In this study, WFA lectin and Cat-315 were used to
investigate the expression of extracellular matrix molecules
and PNNs.

About 80% of parvalbumin- (PV-) positive GABAergic
interneurons are surrounded by PNNs ([23]. GABAergic
inhibitory interneurons are known to regulate excitatory
neurons and play an important role in epileptogenesis by
causing an imbalance in excitation and inhibition [24–26].
GABAergic interneurons can be classified into various sub-
classes according to their anatomical, neurochemical, and
electrophysiological characteristics [27–30]. PV-expressing
fast-spiking (100-800Hz) interneurons account for 40-50%
of GABAergic interneurons and form synapses at the soma
and axon initial segment of pyramidal cells [31, 32]. PV-
positive neurons generate strong feedforward inhibition
[33, 34]. PV-expressing basket cells extend their axons to
the somata of pyramidal neurons. In addition, PV-
expressing axo-axonic cells innervate the axon initial seg-
ments of pyramidal neurons. In the hippocampus, the vast
majority of PV-expressing basket cells were surrounded by
WFA-positive PNNs, while PV-expressing axo-axonic cells
often lacked WFA-positive PNNs [35].

Astrocytes—a group of specialized glial cells in the CNS
that control ion concentrations, neurotransmitter homeosta-
sis, metabolism, and synapse development and signaling
[36]—are one of the major sources of both ECM components
and modulators. During epileptic seizures, astrocytes
respond rapidly by exhibiting a form and function change
called reactive astrogliosis [37]. Whether reactive astrogliosis
following seizures results in ECM remodeling—which plays a
role in synaptic plasticity both during postnatal development
and after injury—is currently unclear. Astrocytes control
synaptic plasticity in glutamatergic synapses by releasing of
D-serine [38]. Previous study has shown that the reduced
Ca2+-dependent release of D-serine by astrocytes impairs
initiation of synaptic plasticity [39]. Therefore, astrocyte
can potentially play an important role in epileptogenesis.

The purpose of this study is to determine whether early-
onset seizure activity is associated with changes to ECM
molecules and astrocytes in an experimental model of epi-
lepsy. Increasing our understanding of ECM and astrocyte
changes in vivo following an increase in seizure activity will
help reveal the specific mechanistic role of astrocytes in
epilepsy. The results obtained in this study may provide an
opportunity to develop new therapeutic approaches to
prevent seizures or their consequences.

2. Material and Methods

2.1. Animals. Eleven-week-old male mice (C57BL/6N) were
used for experiments. Mice were housed five to a cage under
standard laboratory conditions. All procedures related to
animal maintenance and experimentation were approved
by the Committee for Animal Experiments at Kawasaki
Medical School Advanced Research Center and conformed
to the U.S. National Institutes of Health (NIH) Guide for
the Care and Use of Laboratory Animals (NIH Publication
No. 80-23, revised in 1996). We purchased the mice from
Charles River Laboratories (Kanagawa, Japan). The mice
were housed in a room with a 12-hour light/dark cycle (light
on 8:00 a.m. and off 8:00 p.m.) with temperature maintained
at 23–26°C. They were provided with nesting material, food,
and water ad libitum.

2.2. Pentylenetetrazole Kindling Procedure. All mice were
randomized into two groups (n = 15). Pentylenetetrazole
(PTZ; Sigma-Aldrich Japan, Tokyo, Japan) was dissolved in
saline to prepare concentrations of 20mg/mL. A dose of
40mg/kg was injected intraperitoneal for a total period of
15 days. Vehicle control mice were injected with saline.
Seizure events during a 30min period after each PTZ injec-
tion were observed. The resultant seizures were scored as
follows [40]: stage 0 (no response), stage 1 (ear and facial
twitching), stage 2 (myoclonic body jerks), stage 3 (forelimb
clonus, rearing), stage 4 (clonic convulsions, turn onto the
side), and stage 5 (generalized clonic convulsions, turn onto
the back). On day 16, mice were sacrificed and the brains
were removed.

2.3. Tissue Preparation. We did following methods in Ueno
et al. [15, 41]. Mice were anesthetized with a lethal dose of
sodium pentobarbital (120mg/kg, i.p.) and transcardially
perfused with 25mL of phosphate-buffered saline (PBS)
followed by 100mL of 4% paraformaldehyde in PBS
(pH7.4). Brains were dissected and postfixed overnight at
4°C in the above fixative. The brains were then cryoprotected
in 15% sucrose for 12 h followed by 30% sucrose for 20 h at
4°C. Next, the brains were frozen in an optimum cutting
temperature compound (Tissue-Tek; Sakura Finetek, Tokyo,
Japan) using a slurry of normal hexane in dry ice. Serial
coronal sections with a thickness of 40 μm were obtained at
-20°C using a cryostat (CM3050S; Leica Wetzlar, Germany).
The sections were collected in ice-cold PBS containing 0.05%
sodium azide.

2.4. Immunohistochemistry. We treated the cryostat sections
with 0.1% Triton X-100 with PBS at room temperature for
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15min. After three washes with PBS, we incubated the sec-
tions with 10% normal goat serum (ImmunoBioScience
Corp., Mukilteo, WA) in PBS at room temperature for 1 h,
we washed them three times with PBS, and we incubated
them overnight at 4°C in PBS containing biotinylated WFA
(B-1355, Vector Laboratories; 1 : 200) and/or the antibodies
described in Antibodies and Lectins. After washing with
PBS, we incubated the sections with Alexa Fluor 594-
conjugated streptavidin (S11227; Molecular Probes, Eugene,
OR) and/or the corresponding secondary antibodies
(described in Antibodies and Lectins) at room temperature
for 2 h. We rinsed the labeled sections again with PBS, and
we mounted them on glass slides with VECTASHIELD
medium (H-1400; Vector Laboratories, Funakoshi Co.,
Tokyo, Japan). We stored the prepared slides at 4°C until
we used them in the microscopy analysis.

2.5. Antibodies and Lectins.We used the following lectins and
primary antibodies for staining: biotinylated WFA (B-1355,
Vector Laboratories; 1 : 200), mouse anti-parvalbumin (clone
PARV-19, P3088; Sigma-Aldrich Japan, Tokyo, Japan;
1 : 1,000), mouse anti-NeuN (clone A60, MAB377; Millipore,
Bedford, MA; 1 : 500), mouse anti-aggrecan (Cat-315;
MAB1581, Millipore; 1 : 1,000), rabbit anti-GFAP (ab7260;
Abcam, Cambridge, MA; 1 : 1,000), rabbit anti-IBA-1 (019-
19741; FUJIFILMWako Pure Chemical Corporation, Osaka,
Japan; 1 : 1,000), mouse anti-GAD67 (clone 1G10.2,
MAB5406; Millipore; 1 : 1,000), and guinea pig anti-
VGLUT1 (AB5905; Millipore; 1 : 1,000).

We used the following secondary antibodies for
visualization: Alexa Fluor 488-conjugated goat anti-mouse
IgG (ab150113; Abcam, Cambridge, MA; 1 : 1,000), Alexa
Fluor 594-conjugated goat anti-guinea pig (A-11076;
Thermo Fisher Scientific, Waltham, MA; 1 : 500), FITC-
conjugated anti-mouse IgM (sc-2082, Santa Cruz Biotech-
nology, Santa Cruz, CA, 1 : 1,000), Texas Red-conjugated
goat anti-rabbit (TI-1000; Vector Laboratories, Funakoshi
Co., Tokyo, Japan), and streptavidin-conjugated Alexa Fluor
594 (S11227, Thermo Fisher Scientific; 1 : 1,000).

2.6. Microscopy Imaging. To quantify the density of PV- and
WFA-positive PNNs and analysis of ECM fluorescence
intensity, we used a confocal laser scanning microscope
(LSM700; Carl Zeiss, Oberkochen, Germany) to obtain
images of stained sections. Images (1024 × 1024 pixels) were
saved as TIFF files using the ZEN software (Carl Zeiss).
Briefly, we performed the analysis using a 10x objective lens
and a pinhole setting that corresponded to a focal plane
thickness of less than 1μm. For observing ECM molecules
and GAD67- and VGLUT1-positive synaptic terminals, sam-
ples were randomly selected and high-magnification images
using a 100x objective lens were acquired. Prior to capture,
the exposure time, gain, and offset were carefully set to ensure
a strong signal but to avoid saturation. Identical capture con-
ditions were used for all sections. Images from whole sections
were acquired using a 10x objective lens of a fluorescence
microscope (BZ-X; KEYENCE, Tokyo, Japan), and we
merged them using the KEYENCE BZ-X Analyzer software
(KEYENCE).

2.7. Quantification of Labeled PNNs and ECM Molecules.
Brain regions were determined in accordance with the mouse
brain atlas of Paxinos and Franklin [42]. From each mouse,
four serial coronal dorsal hippocampal sections (from
-0.8mm to -1.8mm relative to bregma) were selected and
processed for staining. All confocal images were acquired as
TIFF files and analyzed with the NIH ImageJ software
(NIH, Bethesda, MD; http://rsb.info.nih.gov/nih-image/).
Stained PNNs (soma size above 60μm2) were manually
tagged and counted within the area of interest. Background
intensity was subtracted using unstained portions of each
section. Labeled neuron density was calculated as cells/mm2.
Quantifications were performed by a blinded independent
observer. To quantify the fluorescence intensity of ECM-
positive molecules, GAD67- and VGLUT1-positive synaptic
terminals, WFA- and Cat-315-positive PNNs, we selected
four sections from each mouse brain and stained them as
described in Sections 2.4 and 2.5. The ellipse circumscribing
the WFA- and Cat-315-positive PNNs was traced manually
on 8-bit images of each section, and the gray levels for
WFA or Cat-315 labeling were measured using the ImageJ
software, which was assigned arbitrary units (a.u.). We
manually outlined the parts excluding PNNs and measured
the gray level with NIH ImageJ. Background intensity was
subtracted using unstained portions of each section. We
acquired all confocal images as TIFF files and analyzed them
with NIH ImageJ. We coded the slides, and a blinded
independent observer quantified them.

2.8. Data Analysis. Statistical analysis was conducted using
the SPSS software (IBM Corp., Tokyo, Japan). To test for
the area and PTZ kindling effects, statistical significance
was determined by two-way analysis of variance followed
by Bonferroni t-tests. The statistical significance threshold
was set at p < 0:05. Data are expressed as the mean ± SEM
of 6 animals per group.

3. Results

3.1. PTZ-Kindled Mouse Model. The PTZ-kindled mouse
model was generated by treating the mice with PTZ at a dose
of 40mg/kg. The mice repeatedly administered PTZ showed
a progressive development of seizures, compared to control
mice (Figure 1; F = 5163:6, p < 0:001). Of 15 mice used in
the present experiments, 10 mice reached a kindled status
for a total period of 15 days. There was a greater seizure-
associated mortality in the PTZ-kindled mouse. Nine of the
15 PTZ-kindled mice died before the end of the experiment.
No control mice died unexpectedly.

To examine whether neurodegeneration occurred
following seizures, we first looked for changes to NeuN-
positive cells in the hippocampus in fully kindled mice
(Figure 2(a)–(f)). While there were no apparent changes in
the distribution of NeuN-positive cells in the hippocampus
of PTZ-kindled mice, NeuN-positive cells showed nuclear
anomaly compared with controls, indicative of neurodegen-
eration. Perturbed nucleoli were observed in the hippocam-
pus of PTZ-kindled mice (Figure 2(d) and (e)).

3Neural Plasticity

http://rsb.info.nih.gov/nih-image/


3.2. PV-Positive Neurons, WFA-Positive, and Cat-315-
Positive PNNs in the PTZ-Kindled Mouse Hippocampus.
PV-positive neurons were observed in the hippocampus of
PTZ-kindled mice (Figures 3(a), (A′), and 3(d)–(f)). To
examine the spatial distribution of PNNs and ECM
molecules, we stained for WFA and Cat-315, which detects
aggrecan (Figure 3(b)–(f)). The distribution of PV-positive
neurons, WFA- and Cat-315-positive PNNs in the hippo-
campus were very similar in control and PTZ-kindled mice.
An enlarged image of Cat-315-positive molecules under the
same conditions is shown in Figure 3(d)–(f), revealing that
Cat-315 fluorescence intensity differed between control and
PTZ-kindled mice.

We quantified PV-positive neurons and WFA- and Cat-
315-positive PNNs in the PTZ-kindled mouse hippocampus
(Figures 4(a)–4(c)). While there was no difference in the
density of PV-positive neurons in all three areas (CA1,
CA3, and DG) (Figure 4(a); F2,70 = 1:491, CA1: p = 0:803,
CA3: p = 0:097, and DG: p = 0:561), the density of both
WFA- and Cat-315-positive PNNs was significantly higher
only in the CA3 region of PTZ-kindled mice compared with
control mice (Figure 4(b); F2,70 = 2:318, CA1: p = 0:093, CA3:
p = 0:004, and DG: p = 0:931, Figure 4(c); F2,70 = 5:209, CA1:
p = 0:242, CA3: p < 0:001, and DG: p = 0:739).

To examine whether PNNs are associated with PV-
positive neurons in the PTZ-kindled mouse hippocampus,
we carried out a quantitative analysis (Figures 4(d)–4(g)).
In the CA1 and CA3 areas, we found that the percentage of
PV-positive neurons not surrounded by both WFA- and
Cat-315-positive PNNs was significantly lower in PTZ-
kindled mice (Figure 4(d); F2,70 = 2:164, CA1: p = 0:035,
CA3: p = 0:049, and DG: p = 0:637). While there was no sig-
nificant difference in the percentage of PV neurons sur-
rounded by both WFA- and Cat-315-positive PNNs
(Figure 4(e); F2,70 = 0:693, CA1: p = 0:102, CA3: p = 0:336,
and DG: p = 0:997), the percentage of PV-positive neurons

surrounded by WFA-positive PNNs was significantly
higher in the CA1 region of PTZ-kindled mice
(Figure 4(f); F2,70 = 0:965, CA1: p = 0:047, CA3: p = 0:34,
and DG: p = 0:953). There was no significant difference
in the percentage of PV neurons surrounded by Cat-
315-positive PNNs between control and PTZ-kindled
mice in all areas examined (Figure 4(g); F2,70 = 1:832,
CA1: p = 0:093, CA3: p = 0:057, and DG: p = 0:606).

3.3. PV-, WFA-, and Cat-315-Positive Fluorescence Intensity
in the PTZ-Kindled Mouse Hippocampus. To analyze the
effect of PTZ kindling on the expression of PV protein,
we analyzed the fluorescence intensity of PV-positive
neurons in the PTZ-kindled mouse hippocampus
(Figure 5(a); F2,351 = 3:683, CA1: p < 0:001, CA3: p < 0:001,
and DG: p = 0:535). Parvalbumin fluorescence intensity was
higher in both the CA1 and CA3 areas of the hippocampus
in PTZ-kindled mice (Figure 5(a)).

To analyze the effect of PTZ kindling on the expres-
sion of WFA- and Cat-315-positive molecules, we ana-
lyzed the fluorescence intensity of each WFA- and Cat-
315-positive PNN in the PTZ-kindled mouse hippocampus
(Figure 5(b); F2,162 = 1:158, CA1: p = 0:521, CA3: p = 0:017,
and DG: p = 0:662, Figure 5(c); F2,270 = 4:632, CA1: p = 0:05,
CA3: p = 0:006, and DG: p = 0:188). We found that WFA
and Cat-315 fluorescence intensities were higher only in the
CA3 area of the hippocampus in PTZ-kindledmice compared
with control mice.

Next, we analyzed WFA- and Cat-315-positive mole-
cules, excluding PNNs, in the PTZ-kindled mouse
hippocampus (Figure 5(d); F3,304 = 5:282, CA1 SO: p =
0:252, CA1 SR: p = 0:862, CA3 SO: p < 0:001, and CA3 SR:
p = 0:043). In the CA1 area of the hippocampus, the mean
fluorescence intensity of WFA-positive molecules, excluding
PNNs, was higher in PTZ-kindled mice than in control mice
(Figure 5(d)). In both the CA1 and CA3 area of the hippo-
campus, the mean fluorescence intensity of Cat-315-
positive molecules, excluding PNNs, was higher in PTZ-
kindled than in control mice (Figure 5(e); F3,304 = 0:721,
CA1 SO: p < 0:001, CA1 SR: p < 0:001, CA3 SO: p < 0:001,
and CA3 SR: p < 0:001).

3.4. GFAP-Positive Astrocytes and iba-1-Positive Microglia in
the PTZ-Kindled Mouse Hippocampus. The effect of PTZ
kindling on astrocytes in the hippocampus was also assessed
by quantifying GFAP immunoreactivity in the CA1 area
(Figure 6(a), (A′), and 6(c)). GFAP-positive astrocytes
showed increased ramification (increased branching) in the
CA1 area of PTZ-kindled mice compared with controls,
indicating astrocytosis (Figures 6(c) and 6(d)). We quantified
the area of GFAP-positive signal in the CA1 area
(Figures 6(e) and 6(f)) and found that it was significantly
higher in PTZ-kindled mice than in control mice
(Figure 6(f); F1,44 = 1:375, SO: p < 0:001 and SR: p < 0:001).
Next, we investigated the relationship between GFAP-
positive astrocytes and Cat-315-positive molecules
(Figures 6(c) and 6(d)). GFAP-positive astrocytes colocalized
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with Cat-315-positive molecules in the PTZ-kindled mouse
hippocampus (Figure 6(d)).

To examine whether PTZ kindling affects immune
activation in the hippocampus, the morphology of iba-1-
positive microglia in the CA1 was examined (Figure 6(b),
6(B′), and 6(g)). We found no significant difference in the
morphology of iba-1-positive microglia between control
and PTZ-kindled mice.

3.5. Glutamatergic and GABAergic Synaptic Terminals in the
PTZ-Kindled Mouse Hippocampus. To investigate whether
synaptic terminals are altered in PTZ-kindled mice, we
labeled excitatory (VGLUT1-positive) and inhibitory synap-
tic terminals (GAD67-positive) (Figures 7(a) and (b)).
VGLUT1- and GAD67-positive synaptic terminals were
found in the neuropil of the mouse hippocampus
(Figure 7(b)). As expected, VGLUT1-positive synaptic termi-
nals did not colocalize with GAD67-positive synaptic termi-
nals (Figure 7(b)). We quantified VGLUT1- and GAD67-
positive signal intensities, excluding GAD67-positive
neurons, in the hippocampus CA1 area and found that both
VGLUT1 and GAD67 fluorescence intensities were higher in
PTZ-kindled mice than in control mice (Figure 7(c),
F1,236 = 0:188, SO: p < 0:001, SR: p < 0:001; Figure 7(d),
F1,236 = 0:022, SO: p = 0:002, SR: p = 0:001).

4. Discussion

The results of this study indicate that molecular components
of the ECM, namely, WFA- and Cat-315-positive molecules,
increase in the hippocampus of mice after kindling. We also
found an increase in activated astrocytes in the hippocampus
of PTZ-kindled mice, and we speculate that these activated
astrocytes may be responsible for the increase in ECM mole-
cule expression and secretion.

The present study showed an increase in WFA- and Cat-
315-positive PNNs in the hippocampus after kindling
acquisition. To our knowledge, no one has reported changes
in the number of PNNs in PTZ-kindled mice. While previous
studies have shown that aggrecan Cat-315-positive molecules
increase from day 2 to 7 after status epilepticus in
pilocarpine-induced epilepsy model rats [43] and
phosphacan-positive PNNs decrease in the kainic acid-
induced epilepsy model [44], neither of these studies looked
at changes in Cat-315-positive PNNs. Although the results
from these studies are not completely consistent with ours,
all three studies demonstrate a change in PNNs using differ-
ent animal models of epilepsy. Differences in the methods,
animal species, and stimulation pathways used to induce epi-
lepsy [45] may have contributed to the differences in results.
It is widely thought that WFA-positive PNNs control plastic-
ity. However, several reports have suggested the possibility
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that Cat-315-positive PNNs is involved in plasticity [14, 41].
Aggrecan expression in PNNs signals the end of the critical
period [17, 46]. Therefore, this study suggested that the
increase in PNNs after kindling decreases neuroplasticity in
the hippocampus.

Seizure activity is not randomly spread throughout the
brain; it is generated and transmitted by specific anatomical
pathways [47]. During development, many studies have
shown that PNNs are formed in a stimulus-dependent man-
ner that takes days [15, 48, 49]. Therefore, it makes sense that
the number of PNNs increases tomaintain the repetitive stim-
ulation pathway caused by PTZ administration. Based on the
role of PNNs in synaptic stability and their location around
GABAergic interneurons, this structural changemay contrib-
ute to the progression of epilepsy. The density of both WFA-
and Cat-315-positive PNNs was significantly higher only in
the CA3 region. The clear reason is unknown. However, the
CA3 region is suggested to play a critical role in generation
of hippocampal epileptiform activity [50, 51]. Moreover, it
has been suggested that the CA3 area is susceptible to hyper-
excitability [52].

In contrast, there was no change in the number of PV-
positive interneurons after PTZ kindling, similar to results
from other studies [44, 53]. In the mouse hippocampus,
around 70% of PV-positive neurons are surrounded by

WFA- and Cat-315-positive PNNs, which is consistent with
our results [54, 55]. Our study is consistent with studies
describing PNNs in the hippocampus in the past [54, 56].
In this study, we show that the proportion of PV neurons
covered with PNNs increases after kindling acquisition.

According to recent speculation, PNNs in the hippocam-
pus do not turn over after maturation and can help maintain
memories [57, 58]. Because PNNs mainly surround PV-
positive interneurons, the increase in PNNs can affect the
GABAergic circuit [59]. In particular, since PNNs are
thought to inhibit synaptic plasticity [14, 17], the decrease
in PV-positive neurons not surrounded by PNNs observed
in this study indicates a decrease in plasticity in the hippo-
campus of mice after kindling acquisition. It has long been
known that changes to synaptic plasticity are associated with
epileptogenesis [6, 7]. For instance, neural circuits that main-
tain high excitability are caused by changes in synaptic
plasticity due to repetitive stimulation in patients with
epilepsy and experimental animal models of epilepsy [60–
62]. However, the underlying cause of this change in synaptic
plasticity is unknown. We speculate that changes to the
ECM, and in particular PNNs, may reduce synaptic plasticity
in epilepsy.

The extracellular space (ECS) is an important mediator of
neuronal plasticity [63]. In this study, the expression of

0

10

20

30

CA1 CA3 DG

PV
 (+

) n
eu

ro
ns

 (m
m

2 )

PTZ
Control

(a)

⁎

CA1 CA3 DG
0

5

10

15

20

W
FA

 (+
) P

N
N

s (
m

m
2 )

PTZ
Control

(b)

⁎

CA1 CA3 DG
0

10

20

30

Ca
t-3

15
 (+

) P
N

N
s (

m
m

2 )

PTZ
Control

(c)

0

20

40

60

80

100

W
FA

 (–
) C

at
-3

15
 (–

)/
PV

 (+
) n

eu
ro

ns
 (%

)

⁎⁎

CA1 CA3 DG

PTZ
Control

(d)

0

20

40

60

80

100

W
FA

 (+
) C

at
-3

15
 (+

)/
PV

 (+
) n

eu
ro

ns
 (%

)

CA1 CA3 DG

PTZ
Control

(e)

0

20

40

60

80

100

W
FA

 (+
)/

PV
 (+

) n
eu

ro
ns

 (%
)

⁎

CA1 CA3 DG

PTZ
Control

(f)

0

20

40

60

80

100

Ca
t-3

15
 (+

)/
PV

 (+
) n

eu
ro

ns
 (%

)

CA1 CA3 DG

PTZ
Control

(g)

Figure 4: The densities of PV-positive neurons and WFA- and Cat-315-positive PNNs in the PTZ-kindled mouse hippocampus. Region-
specific patterns of PV neuron density (a), WFA-positive PNN density (b), and Cat-315-positive PNN density (c) are shown. The
percentage of PV-positive neurons that do not contain both WFA- and Cat-315-positive PNNs (d), the percentage of PV-positive neurons
that contain both WFA- and Cat-315-positive PNNs (e), the percentage of PV-positive neurons that contain WFA-positive PNNs (f), and
the percentage of PV-positive neurons that contain Cat-315-positive PNNs (g) in the hippocampus are shown. All data are presented as
the mean ± SEM (n = 6 mice per group). The p values indicate two-way ANOVA followed by post hoc Bonferroni t-tests. ∗p < 0:05. P:
parvalbumin; WFA: Wisteria floribunda agglutinin; PNN: perineuronal nets; PTZ: pentylenetetrazole.
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WFA- and Cat-315-positive molecules present in the ECS
increased in the PTZ-kindled model. It is unclear whether
ECM molecules present outside PNNs have the same
functions. ECM molecules in the developing CNS control
nerve migration, axonal outgrowth, synapse formation, and
synaptic maturation [64–67]. While PNNs are abundantly
expressed in the spinal cord, it is not the PNNs but the
ECM molecules that suppress axonal extension during
regeneration after spinal cord injury [68, 69]. The structure
of the net itself is not important since a random collection
of ECMmolecules has the same effect. Therefore, we propose
that the increase in ECM molecule expression in the ECS
observed in PTZ-kindled mice decreases synaptic plasticity
in the hippocampus.

In mice lacking tenascin-R, which is an extracellular
matrix glycoprotein, the progression of kindling due to
electrical stimulation is delayed [70]. Furthermore, enzy-
matic removal of hyaluronan by hyaluronidase treatment
reduced kainate-induced hippocampal mossy fiber sprout-
ing, one of the salient features associated with temporal lobe
epilepsy [71]. Seizure upregulates the expression of multiple
ECM molecules, including tenascin-C, tenascin-R, neuronal
pentraxin 2, and hyaluronan [72]. Elevated levels of CSPG,
the main component of the brain extracellular matrix, have
been seen in patients with temporal lobe epilepsy [73, 74].

Similar to these reports, the results of this study suggest that
the ECM is involved in the onset of epilepsy by helping to
form and maintain hyperexcitable networks during kindling.

In the present study, we found that astrocytes, but not
microglia, were activated in PTZ-kindled mice. Activated
astrocytes are observed in the hippocampus of animal models
of epilepsy [75, 76] and in the human hippocampus with
temporal lobe epilepsy [77]. Reactive astrocytes show
increased expression of GFAP and are present in large num-
bers due to reactive astrocytosis [78, 79]. Astrocytes can
increase the volume of the ECS by producing ECMmolecules
such as CSPG [80, 81]. In addition, astrocytes play a role in
synaptic interactions and regulate synaptic strength [82].
Whether astrocyte activation leads to the increase in ECM
molecules following PTZ kindling is unknown. It is reason-
able to assume that both astrocyte activation and increased
ECM molecules may be directly related to the imbalance in
excitation and inhibition, as well as changes in synaptic plas-
ticity during epileptogenesis. It has been suggested that the
development of drugs that target ECM synthesis and degra-
dation will lead to effective antiepileptic treatments [72]. In
addition, our study suggests that therapeutic agents targeting
astrocytes may also be effective. Further studies are needed to
determine whether inhibiting astrocyte activation suppresses
ECM molecule secretion and epilepsy formation.
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Seizures are the result of an imbalance of excitation and
inhibition caused by excessive excitability and/or imperfect
GABAergic circuits. We showed that VGLUT1- and
GAD67-positive synaptic terminals increased in PTZ-
kindled mice. An increase in VGLUT1 in the hippocampus
has also been shown in other animal models of epilepsy,
which is consistent with the results of this study [83]. One
of the glutamate receptors, the NMDA receptor, is the main
focus of research on the molecular mechanisms underlying
epileptogenesis. Much evidence indicates that NMDA recep-
tors are involved in the pathogenesis of epilepsy firing [84–
86] and in seizure-induced selective excitotoxic cell death in
the hippocampus [87, 88].

In this study, we show that the expression of PV protein
in PV-positive neurons increased in the hippocampus after
PTZ kindling. PV, which is a calcium-binding protein,
regulates intracellular calcium dynamics in PV-expressing
neurons [89, 90]. In PV-positive neurons of the somatosen-
sory cortex, the expression level of PV protein depends on
the input stimulus [91]. PTZ, a noncompetitive GABAA
receptor antagonist, induces status epilepticus, a state of
increased neural excitation in the hippocampus [92]. Thus,
it is possible that the high excitability caused by status epilep-
ticus in PTZ-kindled mice leads to the increase in PV protein
expression in the hippocampus. In fact, we found that
VGLUT1-positive excitatory synaptic terminals increased in
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Figure 7: Distribution of VGLUT1-positive and GAD67-positive puncta in the PTZ-kindled mouse hippocampus. Double confocal images of
VGLUT1, GAD67, and merged images in CA1 (a) of control (upper panels) and PTZ-kindled mice (lower panels). High-magnification
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the hippocampus of PTZ-kindled mice. Furthermore,
seizures dramatically increase mRNA levels and protein
expression of the brain-derived neurotrophic factor (BDNF)
both in epilepsy animal models and humans with epilepsy
[93–95]. BDNF is known to increase PV protein expression
[96, 97], and we speculate that increased BDNF expression
increased PV protein expression in this study. Further studies
are needed to determine how BDNF expression changes in
PTZ-kindled mice.

5. Conclusions

We found that astrocyte activation, increased expression of
ECM molecules in the ECS region, and increased PNN
formation occurred simultaneously in PTZ-kindled epilepsy
model mice. We propose that changes in synaptic plasticity
due to astrocyte activation and increased ECM molecules
may contribute to epileptogenicity.
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