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Abstract

Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of
p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies
of mice with a germ-line mutation that replaces Ser18 with Ala (p53S18A mice) have demonstrated that loss of
phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and
leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in
Atm2/2 animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent
tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we
analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed
no cooperation in survival and tumorigenesis in compound p53S18A and Atm2/2 animals. However, we observed embryonic
lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of
Atm2/2 animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies
demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.
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Introduction

Ataxia telangiectasia (A-T) is a recessive childhood disease with

no cure. Patients with ataxia telangiectasia exhibit pleiotropic

symptoms, including ataxia, telangiectasia, early aging, radiosensi-

tivity and susceptibility to cancer [1]. The predominant childhood

malignancy is lymphoid malignancies, such a B-cell non-Hodgkin

lymphoma and T-cell lymphoid tumors (T-cell lymphoma and T-

cell acute lymphoblastic leukemia) [2]. Mutations in ataxia-

telangiectasia mutated (ATM, the gene mutated in A-T) have also been

detected in sporadic lymphoid tumors, such as T-cell prolympho-

cytic leukemia [3,4,5], B-cell chronic lymphocytic leukemia [6,7,8]

and mantle cell lymphoma [9]. In addition, other tumors, including

brain tumors and certain carcinomas, are also seen in patients

with A-T [10]. Studies also indicate a role for malignancy in

heterozygous carriers. For example, women who are heterozygous

carriers for A-T are at an increased risk for breast cancer [11].

Atm-null mice have been generated and can phenocopy several

aspects of the A-T disease. The Atm-null animals develop tumors,

predominantly lymphomas [12,13,14,15]. The tumor cell type

that develops is mainly immature T-cell thymic lymphoblastic

lymphoma [13,15]. Atm-deficient animals have been shown to

exhibit gross motor skill impairment [15]. In addition, cells from

Atm-deficient mice can exhibit some of the neurodegeneration

observed in A-T [16,17]. Additional studies have demonstrated

that Atm-deficient animals undergo early aging when crossed into a

telomerase deficient background [15,18]. Recently, a knock-in

mouse has been generated corresponding to the common human

ATM763del6 observed in A-T patients [19]. The ATM763del6

mutation produces an almost full-length protein that lacks kinase

activity. These mice had a longer life-span than Atm-null mice as

well as a reduction in the number of lymphomas. This observation

points to the fact that the outcome of the disease depends on the

nature of the ATM mutation in the patients [1].

The tumor suppressor function of ATM has been linked to its

role in DNA repair and checkpoint function [20,21,22]. The

checkpoint response is coupled in part to the phosphorylation of

downstream effector molecules, such as the tumor suppressor p53

[23]. ATM activates p53 directly or indirectly through activation

of its downstream kinase chk2, leading to p53-dependent responses

such as transient T-cell cycle arrest, senescence or apoptosis.

p53 is a critical tumor suppressor mutated in over 50% of

human malignancies. Regulation of p53 can occur through

phosphorylation of the amino-terminal transactivation domain

[24]. An important site for regulation of p53 function is the Ser15

(murine Ser18) residue, a substrate for ATM and ATR (ATM-

related) protein kinases. Studies of mice with a germ-line mutation

that replaces Ser18 with Ala (p53S18A mice) have demonstrated

that phosphorylation of p53Ser18 is required for normal DNA

damage-induced PUMA expression and apoptosis, but not for
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DNA damage-induced cell cycle arrest [25]. p53S18A mice

developed lymphomas mostly of B-cell origin, which is in contrast

to the T-cell lymphomas which develop in Atm-null mice. These

mice also developed several malignancies, including fibrosarcoma,

leukemia, leiomyosarcoma, and myxosarcoma, which are unusual

in p53-null and Atm-null mice.

Thus, the phosphorylation site Ser18 on p53 contributes to tumor

suppression and regulation of lifespan in vivo. The p53Ser18 moiety

can be phosphorylated by additional kinases other than ATM,

suggesting there may be ATM-independent roles for p53Ser18.

Further support for this hypothesis is that p53Ser18 deficient

animals (p53S18A mice) develop mostly B-cell tumors [26], which are

not observed in Atm2/2 mice. In addition, it has also been shown

that p53 can have a tumor suppressive role in Atm-deficiency [26].

In order to examine the function of p53Ser18 in the process of

tumor suppression independent of ATM, we generated and

characterized compound p53S18A and Atm-deficient animals.

Surprisingly, the status of p53Ser18 did not alter the survival of

Atm-null or Atm2/+ mice. The tumor onset or profile of Atm-null mice

was also not affected by p53Ser18 status. However, we observed

embryonic lethality in the compound mutant animals. Furthermore,

cell cycle was greatly affected in cells from these animals.

Interestingly, we observed a decrease in weight in compound

Atm2/2; p53S18A/S18A animals compared to Atm2/2 mice. We

present here our findings of the contribution of p53Ser18 to ATM-

mediated tumor suppression. Furthermore, these studies confirm

the importance of p53Ser18 in regulating tumorigenesis in vivo.

Materials and Methods

Ethics statement
All mice were housed in a pathogen-free facility accredited by

the American Association for Laboratory Animal Care (AALAC).

Mice were under protocol number 1032. Mice were bred under

standard conditions with a 12-hour light/dark cycle, and were fed

ad libitum with standard chow (Iso-Pro3000, Prolab). The

Institutional Animal Care and Use Committee of the University

of Massachusetts approved all studies using animals.

Mouse strains and tumor analysis
The generation and genotyping of the p53S18A mice [25], p532/2

mice [27], Atm2/+ and Atm2/2 mice [15] have been previously

described. Because Atm2/2 mice are sterile, Atm2/2; p53S18A/+ mice

were interbred to obtain the genotype Atm2/2; p53S18A/S18A. Similar

age-matched cohorts of Atm2/+, Atm2/2, Atm2/2; p53S18A/S18A,

Atm2/2; p53S18A/+, Atm2/+; p53S18A/S18A, and Atm2/+; p53S18A/+

mice were established. All mice were on a mixed 129SvEv/C57Bl6

background. Litters with greater than 5 animals were included in

the offspring analysis. The survival and tumor data in the control

(wild-type) mice has been published [26]. The mice in the survival

analysis were observed twice a week for any signs of tumors or

distress. Mice were sacrificed when a tumor was apparent or when

the mice became unhealthy (severe weight loss, severe dermatitis, or

pronounced lordosis). Some animals were included in the survival

but not the tumor analysis because of post-mortem autolysis. The

mice were examined by necropsy to detect tumors or other gross

pathology and tissues were fixed in 10% formalin. Fixed tumors or

organs were embedded in paraffin and sectioned. Sections were

mounted on slides and stained with hematoxylin and eosin. Slides

were examined by a board-certified veterinary pathologist.

Cell culture and proliferation assays
Murine embryonic fibroblasts (MEFs) were generated from day

13.5 embryos. Since Atm2/2 mice are sterile the compound

mutant MEFs were obtained from an Atm2/+; p53S18A/S18A

intercross. The MEFs were maintained in Dulbeccos’ Modified

Eagles Medium (DMEM) supplemented with 10% fetal bovine

serum, 5 mM glutamine, and penicillin and streptomycin (Invitro-

gen). The MEFs were cultured at sub-confluence and were passaged

no more than 4 times, unless otherwise indicated. Cellular

proliferation/survival analysis was performed as described [25]

with pass 2 MEFs. Briefly, 26104 MEFs were plated onto each well

of a 6-well plate, and each day after plating MEFs from three plates

of each genotype were fixed, stained with trypan blue and

absorbance was determined. MEFs from two different intercrosses

were used for the experiments. Experiments were performed in

triplicate for each line and are presented as mean values with

standard deviations.

Rota Rod Experiment
The rotarod apparatus (Stoelting) was used to measure motor

coordination and balance, as well as the ability of mice to improve

motor skill performance with training. During training, mice were

placed on a rotarod accelerating from 4–40 RPM over 5 minutes.

Each mouse received ten trials (one trial every five minutes) and

the latency to fall off the rotarod in each trial was measured. The

following day, mice received three test trials on the accelerating

rotarod with each trial separated by one minute.

Data Analysis
Survival of mice was determined by Kaplan Meier analysis

using JMP software (SAS, Cary, NC). Pair-wise comparison of the

Kaplan Meier analysis was done using the Log Rank test.

Statistical analysis on perinatal lethality was done comparing

expected # per genotype for each litter compared to actual # per

genotype for each litter using a student’s t-test. MEF analysis was

done using student’s t-test on triplicate readings per time point.

Average latencies to fall from the rotarod were compared using

One-way Analysis of Variance followed by Tukey post-hoc tests.

Statistical significance was set at P,0.05.

Results

Growth Properties of Atm2/2; p53S18A/S18A Cells and
Animals

Cells from Atm-deficient animals exhibit decreased growth

properties, characterized by decreased cell proliferation [12]. We

compared the growth properties of Atm2/2, p53S18A/S18A and

compound Atm2/2; p53S18A/S18A MEFs. Figure 1A demonstrates

the results from a representative experiment, and cell lines were

plated in triplicate. Atm2/2 MEFs exhibited a decrease in trypan

blue staining, which is correlative of slower proliferation,

compared to wild-type cells, as previously reported [12,15].

p53S18A/S18A MEFs also exhibited decreased growth compared to

wild-type cells as previously described [25]. Cell lines generated

from heterozygous mice (p53S18A/+ and Atm2/+) grew similar to

wildtype cells (data not shown). The p53S18A/S18A cells exhibited

greater rate of growth than Atm2/2 cells (Figure 1A). Important-

ly, the cells used were early pass MEFs which do not exhibit the

significant number of senescenT-cells observed in higher pass cells.

Interestingly, the compound MEFs exhibited a proliferation rate

that was slower than p53S18A/S18A MEFs, but not as slow as Atm2/2

MEFs (Figure 1A). This suggested there was no cooperation in

the cell growth defects observed in the compound MEFs as they

did not grow slower than single mutant (Atm2/2) MEFs. However,

there was a decrease on the growth of p53S18A/S18A MEFs with the

loss of Atm, suggesting an additional site of ATM regulation on the

p53S18A protein.

Tumor Analysis of p53S18A; ATM Mutant Mice

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e24813



Atm2/2 mice exhibit additional growth defects including

decreased body weight [13,14,15]. We observed a significant

reduction in weight in Atm2/2 animals compared to wildtype

animals at 5–6 months of age (Figure 1B). There was a further

significant reduction in body weight of Atm2/2; p53S18A/S18A

animals compared to Atm2/2 animals. Importantly, p53S18A

homozygous or heterozygous mice had a body weight similar to

wildtype. Thus, the presence of the p53Ser18 mutation synergizes

with loss of Atm in providing a growth advantage.

Prenatal Lethality in Atm2/2; p53S18A/S18A Animals
It has been reported that loss of p53 in an Atm-deficient

background leads to embryonic lethality [28]. The frequency of

Atm2/2 offspring from 13 Atm2/+ intercrosses was not significantly

reduced (Table 1, Cross A), confirming that loss of Atm does not

lead to embryonic lethality. Importantly, we previously observed

no embryonic lethality due to the p53S18A mutation [26]. To

determine whether p53Ser18 loss would lead to perinatal lethality

in an Atm-null background, Atm2/+; p53S18A/S18A mice were

intercrossed and genotype of the offspring was analyzed

(Table 1, Cross B). The number of Atm2/2; p53S18A/S18A offspring

was significantly reduced in 25 litters, from the expected 25% to

16.9%. Thus, 30 out of the predicted 45.75 Atm2/2; p53S18A/S18A

mice were born, indicating about 35% of Atm2/2; p53S18A/S18A

offspring die prenatally. This percent is less than the 60% of

Atm2/2; p532/2 mice which have been reported to die prenatally

[28]. However, it has been reported up to 15% of p532/2 mice

exhibit embryonic lethality [29]. Thus, although there is a prenatal

lethality associated with p53S18A, it is not as robust as that with loss

of p53.

Analysis of mouse survival
To examine the role of p53Ser18 in an ATM-independent

survival, we performed a survival analysis to examine the effects of

p53S18A in the survival of Atm2/2 and Atm2/+ mice. The Atm2/2

mice had a rapid demise compared to wildtype mice (Figure 2A,
B). Of note, we observed a median survival of the Atm2/2 mice of

41 weeks, which has been reported for the mice in the same

genetic background and mouse facility conditions [30]. Surpris-

ingly, Kaplan Meier analysis indicated that the presence of the

homozygous p53S18A mutation had no significant effect on the

survival of Atm2/2 mice (Figure 2A). However there was a

reduction in the survival of Atm2/2; p53S18A/S18A mice compared

to p53S18A/S18A mice [26]. The presence of a heterozygous p53S18A

mutation also had no effect on the overall survival of Atm2/2 mice,

although the median was delayed (but not significantly)

(Figure 2A). The lack of cooperation in tumorigenesis is in

contrast to that observed for p532/2 animals, which demonstrate

cooperation in survival and tumorigenesis with Atm2/2 mice [28].

We observed a significant decrease in the overall survival of

Atm2/+ mice compared to wildtype mice (Figure 2B). In addition,

there was a significant decrease in the median survival. The

wildtype median survival age was 98 weeks, whereas the Atm2/+

median survival age was 81 weeks. The mutation of one or two

alleles of p53Ser18 had no significant effect on the overall survival

Figure 1. Analysis of growth and development in Atm2/2;
p53S18A/S18A animals. A. Atm2/2; p53S18A/S18A MEFs exhibit a decreased
proliferation. Growth comparison between wildtype, Atm2/2 and
Atm2/2; p53S18A/S18A MEFs (S18A = p53S18A, WT = wildtype). B Atm2/2

mice exhibit reduced weight. Weight of animals compared at 5–6
months of wildtype (n = 10); Atm2/2 (n = 5); Atm2/2; p53S18A/S18A (n = 8);
Atm2/+; p53+/+ (n = 12); Atm2/+; p53S18A/+ (n = 10); Atm+/+; p53S1A8/+

(n = 9); and Atm+/+; p53S18A/S18A (n = 12). The data presented are the
mean 6 S.E.M. Statistically significant differences are indicated with an
asterisk (*, P,0.05). n = # of animals.
doi:10.1371/journal.pone.0024813.g001

Table 1. Genotype of Offspring from Intercrosses.

Cross A: Atm2/+; p53+/+6Atm2/+; p53+/+ Total n = 202

Genotype: Atm+/+; p53+/+ Atm2/+; p53+/+ Atm2/2; p53+/+

Obtained 46 (22.8%) 116 (57.4%) 40 (19.8%)

Expected 50.5 (25%) 101 (50%) 50.5 (25%)

T-Test 0.43 0.08 0.12

Cross B: Atm2/+; p53S18A/S18A6Atm2/+; p53S18A/S18A Total n = 183

Genotype: Atm+/+; p53S18A/S18A Atm2/+; p53S18A/S18A Atm2/2; p53S18A/S18A

Obtained 50 (27.32%) 103 (56.28%) 30 (16.39%)

Expected 45.75 (25%) 91.5 (50%) 45.75 (25%)

T-Test 0.58 0.34 0.007

doi:10.1371/journal.pone.0024813.t001

Tumor Analysis of p53S18A; ATM Mutant Mice
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of Atm2/+ mice (Figure 2B). The median survival age for Atm2/+;

p53S18A/S18A and Atm2/+; p53S18A/+ mice was 90 and 81 weeks

respectively. Interestingly, we previously observed the median

survival age for p53S18A/+ mice was 94 weeks [26], thus, the loss of

one allele of Atm further decreased lifespan of p53S18A/+ mice. This

suggested that the residual ATM in Atm2/+; p53S18A/+ mice could

be phosphorylating the remaining p53Ser18 moiety, which would

explain the increased viability of p53S18A/+ animals compared to

p53S18A/S18A animals [26].

Analysis of Spontaneous Tumorigenesis in Atm and
p53Ser18 Deficient Mice

We analyzed spontaneous tumor development in Atm2/2 and

Atm2/2; p53S18A/S18A animals. The predominant tumor observed

Figure 2. Survival and tumorigenesis of compound Atm deficient and p53S18A mice. (A–B) Kaplan-Meier distribution of overall survival of
(A) Atm2/2; p53+/+ (n = 21); Atm2/2; p53S18A/+ (n = 19); Atm2/2; p53S18A/S18A (n = 22); Atm+/+; p53S18A/+ (n = 31); and Atm+/+; p53S18A/S18A (n = 42) mice. (B)
Atm+/+; p53+/+ (n = 12), Atm2/+; p53+/+ (n = 21), Atm2/+; p53S18A/+ (n = 24), and Atm2/+; p53S18A/S18A (n = 24) mice over the course of two years. Percent
survival is on the y-axis and age of death (in weeks) is on the x-axis. Death was by either presence of tumor, illness or case unknown. n = # of animals.
(C–E) Highly invasive lymphoma in an Atm2/2; p53S18A/S18A animal. C. A lymphoblastic lymphoma comprised of monomorphic cells showing
complete effacement of the thymus (206) D. Spread of lymphoma to the spleen with effacement of splenic architecture (46). E. Higher
magnification of the lymphoma in spleen showing malignant lymphocytes (206). (F–H) Tumors in Atm2/+; p53S18A/+ animals. F. Marginal
lymphoma in the spleen of one animal (406). G. Abdominal histiocytic sarcoma in one animal showing some spindle shaped cells and characteristic
macrophages/histiocyte cells (206). H. Histiocytic sarcoma from same animal invading the kidney (46). (I–K) Tumors in Atm2/+; p53S18A/S18A

animals. I. Lymphoma present in the thymus of one animal, visible as a diffuse sheet of lymphocytes (206). J. Hemangiosarcoma present in the
spleen of another animal (46). K. Higher magnification of hemangiosarcoma in spleen showing almost complete effacement of the spleen (206).
doi:10.1371/journal.pone.0024813.g002

Tumor Analysis of p53S18A; ATM Mutant Mice
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in these animals was lymphoma (Table 2). Among all tumors, the

incidence of lymphomas was 75% in Atm2/2 mice, 100% in

Atm2/2; p53S18A/S18A mice and 91% in Atm2/2; p53S18A/+ mice.

The age of onset was similar for all genotypes. Lymphoma was

detected in the thymus and the surrounding organs and tissues in

all genotypes, reflecting the aggressive nature of tumors found in

Atm2/2 mice [15]. By routine histology, there was a similar

morphological appearance in tumors of the three genotypes. In

Atm2/2 animals, the majority of thymic lymphomas had a

lymphoblastic appearance, which, along with the thymic involve-

ment, was consistent with T-cell origin. Organs that were affected

as well also exhibited a lymphoblastic morphology. In addition,

poorly differentiated lymphomas were also observed in some thymi

in Atm-null animals. In these animals the lymphomas in the

surrounding tissue also had a more poorly differentiated

appearance. The majority of lymphomas in the thymus in

Atm2/2; p53S18A/S18A mice were also lymphoblastic and any

invaded surrounding tissue also had a lymphoblastic profile.

Representative micrographs of a highly infiltrative lymphoma in

an Atm2/2; p53S18A/S18A animal are shown in Figure 2C–E.

Mice on the Atm2/2 background developed few cancers other

than lymphoma (Table 2). One bronchoalviolar carcinoma was

detected in an Atm2/2 animal, and this animal also had a

lymphoblastic lymphoma in the thymus. In addition, one

malignant histiocytoma was observed in an Atm2/2; p53S18A/+

animal.

We observed a shortened life-span of Atm2/+ mice compared to

wildtype animals (Figure 2B). We determined if Atm2/+ and

compound Atm2/+; p53S18A animals also developed spontaneous

tumors. We detected an increase of tumor incidence in Atm2/+

animals compared to wildtype animals. Whereas 23% of Atm2/+

animals developed tumors, only 8% of wildtype mice developed

malignant tumors [26]. The tumors detected in Atm2/+ mice were

lymphomas and a hemangiosarcoma (Table 2). A follicular

lymphoma in one animal involved the spleen, liver and also

mandibular lymph node. A poorly differentiated lymphoma in

another animal involved the liver and the spleen. The observed

hemangiosarcoma involved the spleen of one animal and had

ruptured.

The Atm2/+; p53S18A/+ animals also developed tumors, with a

penetrance of 35%. One animal had a marginal zone lymphoma

in the spleen (Figure 2F). Another two animals had follicular cell

lymphomas. One animal had a hemangioma in the liver. In

addition, one animal had an abdominal mass that was a histiocytic

sarcoma (Figure 2G) that had spread to the kidney (Figure 2H).

The tumor penetrance for Atm2/+; p53S18A/S18A animals was

16%. Interestingly, very few lymphomas were observed in Atm2/+;

p53S18A/S18A mice. This observation was in contrast with what we

had observed in p53S18A/S18A animals where 35.7% of animals had

tumors, and 81% of tumors were lymphomas [26]. There was one

incipient lymphoma present in the thymus of one Atm2/+; p53S18A/

S18A animal, visible as a diffuse sheet of neoplastic lymphocytes

(Figure 2I). In addition, other animals developed an adenoma,

a fibrosarcoma, and a hemangiosarcoma in the spleen. The

hemangiosarcoma almost completely effaced the spleen (Figure 2
J,K).

We previously observed tumor-free p53S18A animals that

presented with cellular alterations at the time of death that were

consistent with accelerated lifespan [26]. We observed some of the

same alterations in cellular composition in the compound Atm2/+;

p53S18A animals [26]. In the Atm2/+; p53S18A/+ mice we observed

alterations in the kidney, such as increased inflammation, tubular

cysts, hematomas and fibrosis. The Atm2/+ mice also presented

with multifocal inflammation in liver. The Atm2/+; p53S18A/S18A

mice had liver inflammation and degeneration. Kidneys also had

increased inflammation as well as glomeruloneropathy. Further

analysis of a larger cohort of animals will be required to determine

if the animals are presenting with accelerated aging, as we

observed in the p53S18A animals [26].

Performance on the rota rod apparatus
ATM has been shown to contribute to motor coordination [15].

We therefore tested motor coordination in p53S18A animals to

determine if Ser18 contributes to this function. The accelerating

rotarod assay was used to measure motor coordination in p53S18A

mice. All data were collected on age- and gender-matched naı̈ve

animals. Immediately prior to training, mice were weighed.

Female wildtype and p53S18A mice did not significantly differ in

weight; whereas male p53S18A mice were modestly but significantly

heavier than wildtype mice (Figure 3A, B). During the training

phase, mice were placed on the accelerating rotarod for ten

consecutive trials over the course of one hour and latency to fall off

of the rotarod was recorded. Latency to fall off of the rotarod in

Table 2. Tumorigenesis in Atm and p53Ser18 deficient animals.

Atm2/2

p53+/+
Atm2/2

p53S18A/+
Atm2/2

p53S18A/S18A
Atm2/+

p53+/+
Atm2/+

p53+/S18A
Atm2/+

p53S18A/S18A

Mice Analyzed 11 16 16 15 14 18

Mice with tumors 8 12 12 3 5 3

Total tumors 8 13 13 3 5 4

Tumor Classification

Lymphoma 6 12 12 2 3 1

Histiocytoma 0 1 0 0 0 0

Histiocytic sarcoma 0 0 0 0 1 0

Hemangiosarcoma 0 0 0 1 0 1

Hemangioma 0 0 0 0 1 0

Fibrosarcoma 0 0 0 0 0 1

Carcinoma 1 0 0 0 0 0

Adenoma 1 0 0 0 0 1

doi:10.1371/journal.pone.0024813.t002

Tumor Analysis of p53S18A; ATM Mutant Mice
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both wildtype and p53S18A mice increased with successive trials

and reached a plateau by the tenth trial (Figure 3C, D). Twenty-

four hours after training, mice were again placed on the

accelerating rotarod and their performance was measured.

Compared to wildtype female animals, female p53S18A animals

exhibited an increased latency to fall off of the rotarod (Figure 3E,

F(1, 9) = 31.6, p,0.001). Conversely, male p53S18A mice exhibited a

significant decreased latency to fall off of the rotarod compared to

male wildtype mice (Figure 3F, F(1,9) = 5.8, p,0.05).

Discussion

ATM has been shown to have a role in DNA repair, DNA-

damage induced checkpoints, and telomere maintenance. p53 is a

substrate of ATM that is intimately linked with its role in DNA

repair and checkpoint function. We previously generated mice

with a germ-line mutation that replaces Ser18 with Ala (p53S18A

mice). Studies with these mice and the same mice generated by

another lab have demonstrated that phosphorylation of p53Ser18

is required for normal DNA damage-induced PUMA expression

and apoptosis, but not for DNA damage-induced cell cycle arrest

[25,26,31]. In addition, p53S18A mice developed late-onset

lymphomas at 18 months of age [26]. Studies indicate an ATM-

independent tumor-suppression function of p53 [32]. Our

observation that p53S18A mice develop predominantly B-cell

tumors whereas Atm2/2 mice develop T-cell tumors lead us to

hypothesize that there is an ATM-independent growth suppressive

role for p53Ser18. We investigated the role of p53Ser18 in the

tumor suppressor function of ATM by generating and character-

izing compound mutant animals.

Cells generated from Atm2/2 and Atm2/2; p53S18A/S18A animals

grew slower than wildtype cells. In addition, p53S18A/S18A cells

grew significantly faster than Atm2/2 cells. However, there was no

synergy in the Atm2/2; p53S18A/S18A cells compared to the single

mutanT-cells (Figure 1A). This result was surprising, as there are

additional kinases that can phosphorylate p53Ser18 in an Atm2/2

background. If the decreased proliferation induced by loss of Ser18

is due to regulation by an ATM-independent pathway in MEFs,

one could observe that the compound MEFs would have a

combined reduced proliferation. We observed a decrease in the

proliferation of cells from Atm2/2; p53S18A/S18A mice compared to

cells from p53S18A/S18A mice. One possibility is that alternative

ATM sites are phosphorylated in the p53S18A protein that

contribute to cell proliferation. Alternatively, in the absence of

ATM, another kinase can compensate at a secondary site of

phosphorylation, but not as efficiently. In addition to growth

defects, Atm2/2 mice exhibit somatic growth defects [15].

Interestingly, we observed a significant reduction in the weight

Figure 3. Performance on an accelerating rotarod. Performance of wildtype (WT) and p53S18A/S18A animals on a rotarod apparatus. Data for
female mice is on the left and male mice on the right. A–B Weight of animals tested. Data are presented as mean 6 standard deviation. C–D Training
of animals on rotarod. 4–5 month old animals were trained for 10 trials separated by 5 min. on an accelerating rotarod (0–40 rpm). The latency to fall
was recorded (n = 5–6 mice/genotype/gender). E–F Average of three experimental trials 24 hrs. after training. Data are presented as mean 6
standard deviation. * P,0.05, ** P,0.01. Data were analyzed by two-tailed student’s t-test (A, B) and One-Way ANOVA followed by Tukey post-hoc
(C–F).
doi:10.1371/journal.pone.0024813.g003
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of Atm2/2; p53S18A/S18A mice compared to Atm2/2 animals at 5–6

months (Figure 1B). This is in contrast to our observations that

older p53S18A animals are obese [33]. In addition, we observed

embryonic lethality in Atm2/2; p53S18A/S18A animals (Table 1),

although not to the same extent seen in Atm2/2; p532/2 mice.

Interestingly, the overall survival of Atm-null mice was not

affected by the presence of a heterozygous or homozygous p53S18A

allele. Of note, the median death of the Atm2/2 mice we observed

is longer than reported for some studies [13,14,15], but similar to

animals maintained in comparable housing conditions [30]. This

observation confirms that the conditions of the mouse facility and

food can greatly affect the survival of Atm-deficient mice.

There was no cooperation in tumorigenesis observed in the

compound genotypes compared to Atm2/2 mice (Figure 2A, B).

The majority of the p53S18A animals in the Atm2/2 background

succumbed to tumors and the tumors the animals developed were

similar (Table 2). The main tumor developed was thymic

lymphoma, which was either lymphoblastic or poorly differenti-

ated in appearance (Figure 2). The observation of predominantly

lymphoblastic lymphomas in Atm2/2; p53S18A/S18A animals is in

contrast to the B-cell lymphomas (follicular and centroblastic)

observed in p53S18A/S18A animals [26]. In addition, the thymus was

rarely involved in p53S18A/S18A animals.

The lack of cooperation in tumorigenesis suggests the Atm2/2;

p53S18A/S18A mice are still able to undergo tumor suppression in B-

cells in young animals, which is where p53S18A/S18A mice develop

tumors with a greater latency. It is interesting that the time frame

is longer for tumors to arise in p53S18A/S18A mice than in Atm2/2 or

Atm2/2; p53S18A/S18A mice, suggesting the mechanism is different.

Indeed, tumors in Atm2/2 thymocytes arise from translocations

[1], whereas as we linked the tumor suppression by p53Ser18 in B-

cells to defective apoptosis [26]. We have also linked apoptosis

effects of p53Ser18 to prevention of tumorigenesis by the Myc

oncogene [34]. An alternative explanation for the lack of synergy

in Atm-null and p53S18A mutant animals may be that the

phosphorylation of Ser18 may be redundant in certain cell types

and at certain stages, but that later it plays a more critical role.

The synergy observed in compound Atm-null and p53-null mice

may be due to the fact that there are additional functions of p53

which are lost in p53-null animals but still retained in p53S18A cells.

Nonetheless, the rapid demise of the Atm2/2; p53S18A/S18A

compound animals and the similar tumor type suggests that the

loss of Atm is dominant over the mutation in p53Ser18.

It has been reported that Atm2/+ mice do not develop

spontaneous tumors, whereas Atm763del6 mice have increased

cancer risk [35]. In our study, we found that the Atm2/+ mice

had a decreased lifespan (Figure 2B) and developed tumors

(Table 2). The tumor penetrance was 23% for Atm2/+ mice and

8% for wild-type mice. Our observation for tumors in Atm2/+ mice

is different than that reported, and may be due to a combination of

different genetic backgrounds and housing specifications. Different

observations have also been reported for studies with radiation-

induced tumorigenesis: whereas some studies have reported an

increased incidence in radiation-induced tumors in Atm2/+ mice

[36,37,38], another study has shown no effect of Atm heterozy-

gosity on radiation-induced tumors [39]. Our observation is

consistent with reports of increased risk of cancer in A-T

heterozygous carriers [40].

In addition to a role in tumor suppression, ATM also has a role

in motor function. A characteristic of A-T is ataxia. Although

Atm2/2 mice do not display overt ataxia, they display defects in

motor behavior [15]. In order to assess motor coordination in

p53S18A mice, we examined the performance of the mice on an

accelerating rotarod. We used animals at 4–5 months of age

(Figure 3). All mice used in the study improved rotarod

performance over successive trials during the training phase of

the experiment as evidenced by an increase in the mean time spent

on the rotarod before falling. Thus, mutant and wildtype mice did

not significantly differ in motor learning skills (Figure 3C, D).

Interestingly, during the test trial, female p53S18A mice showed a

significant improved performance on the rotarod (Figure 3E).

Conversely, male p53S18A mice exhibited a significant decrease in

performance on the rotarod during training (Figure 3F). A

significant, but modest, increase was seen in the weight of the

p53S18A males, potentially influencing rotarod performance. No

weight difference was observed that would affect the results for the

female mice. This gender difference suggested the tumor profile

could exhibit gender differences. However, we examined the

tumor onset and type for the various genotypes and found no

gender difference for Atm mice on a p53S18A background.

Nevertheless, these observations are the first to indicate a gender

difference associated with p53 phosphorylation and motor

coordination.

In summary, these studies further confirm the essential role of

the ATM/p53 pathway in tumor suppression. While loss of

p53Ser18 had no increased effects in survival and tumor

distribution in Atm-null mice, there appears to be a function of

p53Ser18 in mediating some of the role of ATM in embryonic

survival.
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