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Peroxisome proliferator-activated receptors (PPARs) have lately attracted much attention as therapeutic targets. Previously, PPAR
ligands were associated with the treatment of diabetes, hyperlipidemia and cardiovascular diseases, as they modulate the expression
of genes regulating glucose and lipid metabolism. Recently, PPAR ligands have been also considered as potential anticancer
agents, with relatively low systemic toxicity. The emerging evidence for antiproliferative, proapoptotic, antiinflammatory and
potential antimetastatic properties of PPARα ligands prompted us to discuss possible roles of PPARα in tumor suppression. PPARα
activation can target cancer cells energy balance by blocking fatty acid synthesis and by promoting fatty acid β-oxidation. In the
state of limited nutrient availability, frequently presents in the tumor microenvironment, PPARα cooperates with AMP-dependent
protein kinase in: (i) repressing oncogenic Akt activity, (ii) inhibiting cell proliferation, and (iii) forcing glycolysis-dependent
cancer cells into “metabolic catastrophe.” Other potential anticancer effects of PPARα include suppression of inflammation,
and upregulation of uncoupling proteins (UCPs), which attenuates mitochondrial reactive oxygen species production and cell
proliferation. In conclusion, there are strong premises that the low-toxic and well-tolerated PPAR ligands should be considered
as new therapeutic agents to fight disseminating cancer, which represents the major challenge for modern medicine and basic
research.

Copyright © 2008 M. Grabacka and K. Reiss. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. PPARα AND CANCER CELL ENERGY BALANCE

The concept that neoplastic transformation based on the
failure of energy homeostasis is currently regaining consider-
able interest. This notion was associated with the hypothesis
by Otto Warburg who indicated a distinctive dependence
of tumor cell metabolism from glycolysis, even when there
is sufficient amount of oxygen available for much more
efficient oxidative phosphorylation [1, 2]. Only recently, it
has been established that the inclination of tumor cells for
glycolysis is mainly driven by mitochondrial dysfunction or
oncogenic activity of Akt, Ras, or Myc [3, 4].

PPARα, which is a transcriptional activator of fatty
acid β-oxidation machinery (e.g., acyl-CoA oxidase (ACO),
acyl-CoA synthetase (ACS), carnitine palmitoyl transferase
(CPT1), fatty acid binding protein (FABP), and fatty acid
transporter (FAT)), can switch energy metabolism toward

fatty acid degradation, and decrease glucose uptake by
repressing glucose transporter GLUT4 [5, 6]. Interestingly,
PPARα acts as a direct sensor for fatty acids, which are
considered natural ligands for this nuclear receptor [7, 8].
According to fatty acid, glucose cycle paradigm increased rate
of fatty acid and ketone bodies oxidation forces the decline
in glucose utilization through the inhibition of glycolytic
enzymes [9, 10]. This concept was supported by the results of
animal studies, showing that during fasting-activated PPARα
can divert energy metabolism from the glucose to fatty acid
utilization as a primary source of energy.

Mitochondria are the main organelles that carry out fatty
acid β-oxidation and produce ATP through oxidative phos-
phorylation [11]. Oncogenic transformation is frequently
associated with mitochondrial dysfunction, however, it is
still controversial if this is a result, cause, or contribution
to the malignant phenotype [12]. A direct link between
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aerobic respiration and carcinogenesis has been provided
by the demonstration that the loss of p53, which is most
commonly mutated gene in cancer, results in decrease of
synthesis of cytochrome c oxidase (SCO2) gene expression
[13]. SCO2 is crucial for the incorporation of mitochondrial
DNA-encoded cytochrome c oxidase subunit (MTCO2) into
the cytochrome c oxidase complex, and the proper assembly
of this complex is essential for the mitochondrial respiration.
Therefore, SCO2 downregulation in p53-deficient cells heav-
ily inpairs oxidative phosphorylation and triggers the switch
toward glycolysis [13].

Furthermore, loss of function mutations in the nuclear
genes encoding the Krebs cycle enzymes (such as succi-
nate dehydrogenase and fumarate hydratase) are frequently
observed in uterine leiomyomas, renal carcinomas para-
gangliomas, and phaeochromocytomas [14]. The clinical
data suggest that these proteins might have other functions
besides energy metabolism and can be involved in the
induction of apoptosis, similarly to mitochondrial apoptosis
inducing factor (AIF) [15]. Nevertheless, it is likely that the
glycolysis-promoting metabolism of cancer cells relieves the
selection pressure and permits clonal growth of the cells with
defective mitochondrial system. Such cells could be brought
to the verge of metabolic catastrophe in the condition of
limited glucose availability or when the oxidative metabolism
is forced pharmacologically. This opens an opportunity for
the use of PPARα ligands, as they should be selectively toxic
for cancer cells and neutral for normal cells.

Energetic function of mitochondria is not restricted to
ATP generation in the process of oxidative phosphorylation.
Systemic thermal homeostasis maintained by mammals
relies broadly on nonshivering thermogenesis carried on by
brown adipocytes. In these cells, uncoupling protein (UCP1)
is responsible for the “proton leak” of mitochondrial inner
membrane, which separates respiration from ATP synthesis.
The energy released through the proton flow in line with
electric potential gradient is dissipated as heat.

Recently, several mammalian UCP homologues have
been discovered, among which ubiquitously expressed UCP2
and muscle—specific UCP3 gained deep interest [16]. They
share high degree of structural similarity with UCP1 though
their primary function, which still remains elusive, is not
limited to thermogenesis, but their mitochondrial uncou-
pling activity is connected with fatty acid anion transport.
The expression of both UCP2 and UCP3 is regulated by
PPARα [6, 17–19], and this notion provides an interesting
link with cancer cell metabolism and behavior.

The recent report by Pecqueur and colleagues [20] has
revealed that UCP2 controls proliferation through driving
cellular metabolism to fatty acid oxidation and limiting gly-
colysis. UCP2- deficient cells proliferate significantly faster
than wild-type cells and rely on glycolysis-derived pyruvate
catabolism, like all rapidly normal and transformed dividing
cells do. Remarkably, the higher proliferation rate in these
cells is a result of cell cycle shrinkage and not the decrease in
the quiescent (G0/G1) cell fraction, even though the propro-
liferative PI3K/Akt and MAPK signaling pathways are more
activated in UCP −/− than wt cells [20]. Interestingly, UCP2
is also involved in cellular adhesion and invasive potential,

as was revealed in the studies on the THP1 monocytes with
UCP2 overexpression, which showed impaired β2 integrin—
mediated adhesion and transendothelial migration [21].
Taking together, these data suggest that PPARα- mediated
UCP2 upregulation might have a negative impact on cancer
progression.

Uncoupling proteins due to their ability to reduce ATP
bisynthesis inhibit production of reactive oxygen species
(ROS) during respiration. ROS and products of their activity,
such as lipid peroxides, are not only toxic and mutagenic,
but also stimulate inflammatory response, and therefore
contribute to cancer development. PPARα regulates the
expression of three proteins which govern the transport
of fatty acids in and out of mitochondria. This includes
CPT1 and UCP3 as well as mitochondrial thioesterase 1
(MTE-1) [17, 22]. This trio controls the mitochondrial
pool of fatty acids in order to keep the danger of their
peroxidation at minimal level. CPT1 supplies mitochondria
with long chain fatty acid—CoA (LCFA-CoA) complexes,
which undergo β-oxidation. At a high rate of β-oxidation,
UCP3 in the conjunction with MTE-1 acts to prevent LCFA-
CoA accumulation: MTE-1 releazes CoA-SH and enables its
recycling, whereas UCP3 exports fatty acid anions outside
the mitochondrial matrix, and therefore reduces the chance
of their peroxidation by the superoxide generated in the
complex I and III of mitochondrial electron chain [23–
25]. Simultaneously, UCP2 and UCP3 due to their proton
leak activity reduce the rate of ROS production, which
is proportional to the protonmotive force [16, 26]. The
hypothesis of protective role of PPARα in oxidative stress
is supported by the results from in vivo studies showing
that PPARα-deficient mice have higher level of oxidative
damage in cardiac muscle, and that fenofibrate diminishes
inflammatory response and oxidative stress in the neural
tissue in rats subjected to traumatic brain injury [27, 28].

The above described evidence indicates that PPARα ac-
tivation might metabolically target neoplastic cells through
inhibition of glycolysis and promotion of fatty acid catab-
olism, but also might elicit chemopreventive effect through
the decrease of respiratory ROS production.

Interestingly, the metabolic peculiarities of cancer cells
are not restricted to aerobic glycolysis but paradoxically
include also fatty acid synthesis. Some types of tumors,
particularly of hormone responsive epithelial origin, are
characterized by the abnormally high activity of fatty acid
synthase (FAS), which is an enzyme with barely detectable
levels in normal tissues. The FAS produces palmitate from
the condensation of acetyl-CoA and malonyl-CoA. Interest-
ingly, FAS overexpression correlates well with prostate cancer
progression in which the highest levels of FAS activity have
been observed in bone metastases [30]. For this reason,
FAS has been named a “metabolic oncogene” [31]. FAS
is also involved in biosynthesis of phospholipids, which
are substrates for the new membrane synthesis in rapidly
dividing cells, protein myristoylation, and lipid partition-
ing into membrane microdomains [31, 32]. FAS activity
provides a significant growth advantage for transformed
cells. Indeed, pharmacological inhibition of FAS induced
apoptosis in cancer cell, possibly by the accumulation of
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Figure 1: PPARα interferes with the metabolic pathways in the cancer cells. In the state of energy deprivation, AMPK activates fatty acid
oxidation through PPARα- and p53-dependent pathways and blocks anabolic processes, for example, cholesterol biosynthesis. AMPK is a
potent inhibitor of Akt-induced glycolysis. In response to nutrient deficiency, PGC-1α and PPARα upregulate expression of TRB3, which
inactivates Akt via direct interaction [29]. PPARα promotes fatty acid β-oxidation as a transcriptional activator of fatty acid catabolic
enzymes and transport proteins (e.g., ACO, CPT1, UCP2, and UCP3). Simulateneously, PPARα blocks lipid synthesis by repression of
SREBP-1 and -2, ACC, and FAS. FAS inhibition in various cancer types results in toxic accumulation of malonyl-CoA and apoptosis.
For more details, see the text. Arrowheads represent activation/upregulation, and blunted lines indicate inhibition/downregulation of the
cellular proteins or processes. ACC—acetyl-coA carboxylase; ACO—acyl-coA oxidase; AMPK—AMP-dependent kinase; CTP-1—carnitine
palmitoyltransferase-1; FAS—fatty acid synthase; PGC-1α—PPARγ coactivator 1α; PUFA—polyunsaturated fatty acids; SREBP—steroid
response element binding protein; TRB3—mammalian homolog of tribbles; UCP2, UCP3—uncoupling proteins.

malonyl-CoA [33]. In addition, pharmacological or RNA
silencing-mediated inhibition of FAS significantly reduced
the expression of the oncogenic Her-2/neu (erbB-2) [34, 35],
but it also induced a dramatic increase in VEGF expression
by activating the Erk1/2 pathway [36].

Importantly, activation of PPARα has been shown to
block FAS pathways through the transcriptional repression
of genes, which are directly involved in its metabolic activity
(FAS; acyl-CoA carboxylase (ACC); steroid response element
binding proteins (SREBP1, SREBP2)) [37–41] (Figure 1).
Simultaneously, PPARα blocks Erk1/2 activation [42]. There-
fore, the possibility exists that PPARα agonists could block
Her-2/neu expression without a danger of proangiogenic
stimulation of VEGF expression. This might encourage new
clinical applications for PPARα ligands against those cancer
cells, which are characterized by the overactive FAS.

Lipid metabolism deregulation manifested by hiper-
lipidemia has been described as a significant risk factor
for colorectal cancer development [43]. Increased serum
trigliceride and cholesterol level were observed in patients
with familial adenomatous polyposis coli. An interesting
study by Niho and coworkers [44] showed that APC-
deficient mice, the animal model for human adenomatous
polyposis coli syndrome, when treated with PPARα lig-
and and lipid level normalizing drug—bezafibrate, develop

significantly fewer intestinal polyps. This protective action
of PPARα agonists against colorectal carcinogenesis seems
promising from the therapeutic point of view, suggesting that
the patients might benefit not only from normolipidemic
activity of PPARα, but also from its antineoplastic effects as
well.

2. AMPK AND AUTOPHAGY

In the state of energy depletion, caused for instance by a
limited glucose availability, normal cells can switch between
energy metabolic pathways to support their survival. AMP-
dependent protein kinase (AMPK) plays an integral role in
the response to starvation by sensing the rise in AMP/ATP
ratio and switching off the ATP-consuming anabolic pro-
cesses, such as protein and lipid synthesis or DNA repli-
cation. AMPK can induce several rescue pathways, which
enhance cell survival during glucose deprivation (Figures 1
and 2). One of them includes p53-dependent check point,
which blocks cell cycle progression and promotes fatty acid
oxidation and autophagy, as an alternative source of energy
[45, 46]. Interestingly, p53-deficient cancer cells are very
sensitive to the lack of glucose, and being incapable of
autophagy, underwent massive apoptosis [46, 47]. It was
demonstrated that PPARα acts downstream from AMPK and
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Figure 2: PPARα and AMPK activities in the cancer cells exposed to energetic stress. AMPK switches on p53-dependent cell cycle metabolic
check point and autophagy and blocks Akt/mTOR protein de novo synthesis pathway. PPARα induces cell cycle arrest and downregulates
Akt neutralizing its antiapoptotic actions. For more details, see the text. Arrowheads represent activation/upregulation, and blunted lines
indicate inhibition/downregulation of the cellular proteins or processes. IRS-1—insulin receptor substrate-1; mTOR—mammalian target of
rpamycin kinase; TSC1—tuberous sclerosis 1 (hamartin); TSC2—tuberous sclerosis 2 (tuberin).

was responsible for AMPK-induced fatty acid oxidation in
cardiac and skeletal muscle [48, 49]. This might suggest that
PPARαmediates other activities of AMPK. AMPK is a potent
inhibitor of PI3K/Akt signaling, especially of Akt-induced
glycolysis and protein synthesis [45, 50, 51]. Oncogenic Akt
is responsible for increased activity of mammalian target
of rapamycin (mTOR) kinase, which phosphorylates down-
stream regulators of translation such as 4EBP-1 and p70S6
kinase (Rsk) [51, 52]. AMPK antagonizes this Akt-induced
mTOR activation by activating tumor suppressor tuberous
sclerosis 2 (TSC2, tuberin), which in turn inactivates a small
G-protein, Rheb, and in consequence disabled Rheb cannot
activate mTOR [53–55]. Some of theses multiple signaling
and metabolic connections between PPARα, AMPK, and
mTOR are additionally explained in Figures 1 and 2.

We have demonstrated that PPARα activation inhibits
Akt phosphorylation and reduces the metastatic potential of
mouse melanoma cells [42]. This may provide an interesting
synergy between AMPK and PPARα toward mTOR inhibi-
tion and the activation of autophagy. Although the mecha-
nism by which fenofibrate attenuates Akt phosphorylation
is still under investigation. It has recently been reported
that fenofibrate increases plasma membrane rigidity in a
manner similar to elevated cholesterol content [56]. In this
report, fenofibrate did not change the membrane content of
cholesterol but increased plasma membrane rigidity by itself,
altering activities of different membrane-bound proteins.

Therefore, one could speculate that fenofibrate, besides its
role as a PPARα agonist, may also act in a nonspecific manner
by altering membrane-bound growth factor receptors such as
IGF-IR or EGFR, which are known to have a strong signaling
connection to Akt. Further experiments are required to
determine whether similar fenofibrate-mediated changes in
the fluidity of the plasma membrane are indeed responsible
for the attenuation of the ligand-induced clustering of
receptor molecules—a critical step in the initiation of growth
and survival promoting signaling cascades.

It has also been demonstrated that omega 3 polyunsat-
urated fatty acids (n-3 PUFA), which are potent ligands of
PPARα, induce fatty acid β-oxidation via AMPK [57]. AMPK
is regulated by a tumor suppressor LKB1 and coordinates
various cellular responses, which can exert antineoplastic
effects [58]. One of them is autophagy, which has been inten-
sively explored in the context of carcinogenesis. Autophagy,
also called a type II programmed cell death, is a lysosomal-
mediated digestion of different cellular components, includ-
ing organelles to obtain energy, however, it may also lead to
cell death [3, 59, 60]. There is a growing body of evidence
that defective autophagy may result in cancer progression
[59, 61]. Beclin 1, a protein required for autophagy, is
frequently lost in ovarian, breast, and prostate cancers, and
beclin 1 +/− mutant mice are prone to increase incidence
of tumors derived from epithelial or lymphopoietic tissues
[62, 63]. Autophagy is negatively controlled by Akt/PI3K
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signaling and specifically by mTOR, which acts as a sensor of
growth stimuli and nutrient availability and at the same time
is the main target for the rapamycin-mediated antitumor
activity [64]. Degenhardt et al. [3] demonstrated that cells
transformed by Akt overexpression and by deficiency in
proapoptotic genes, BAX, and BAK show a highly invasive
phenotype, however, became necrotic when deprived of
oxygen and glucose.

Although Akt activation provides a growth advantage, it
simultaneously impairs autophagy in response to metabolic
stress and condemns cells to necrotic death. Abundant
necrosis stimulates inflammation and enhances macrophage
infiltration within tumors, which is a poor prognostic factor,
and actually accelerates tumor growth [3]. These findings
support the notion that loss of autophagy in apoptosis-
incompetent cells can have tumor promoting effects. This
can happen in cells with constitutively activated Akt, as
it triggers a strong antiapoptotic signal, mainly by the
inactivation of proapoptotic proteins, BAD, and FOXO [52].

In the state of nutrient deprivation, AMPK induces
autophagy in a p53-dependent manner and evokes apoptosis
through the serine phosphorylation of insulin receptor
substrate (IRS-1), which in turn inhibits PI3K/Akt signaling
pathway [65]. It is not known if PPARα is involved in
these actions downstream of AMPK, but possibly can
support them by the inhibition of Akt [66]. In this respect,
inhibition of Akt by PPARα ligand, fenofibrate, significantly
suppressed anchorage-independent growth, cell motility and
cell migration in vitro; and in the experimental animal
model, fenofibrate treatment reduced metastatic spread
of hamster melanoma cells to the lungs [42, 67]. This
apparent inhibition of cell migration and compromised
cell invasiveness was likely associated with alterations in
the cytoskeletal structure. Interestingly, AMPK has been
implicated in the maintenance of epithelial cell polarity, by
affecting actin-fiber distribution during energy deprivation
[68]. In particular, AMPK mutations disrupted the polarity
of the epithelium and triggered tumor-like hyperplasia, again
supporting the notion of a possible cooperation between
PPARα and AMPK.

3. PPARα AND INFLAMMATION

The anticancer effects of activated PPARα can be attributed
to its well-characterized anti-inflammatory properties.
PPARα inhibits expression of variety of inflammatory genes,
such as interleukin 6 (IL-6) and inducible cyclooxygenase-
2 (COX-2), as well as reduces nitric oxide production in
murine macrophages exposed to bacterial lipopolisaccharide
(LPS) [69–71]. These events can be ascribed to the PPARα
antagonistic action against the main transcription factors
mediating inflammatory responses, nuclear factor-κB (NF-
κB), and activating protein-1 (AP-1) (Figure 3). NF-κB
activity is repressed by inhibition of p50 and p65 nuclear
translocation or by I-κB upregulation, which induces p65
phosphorylation and subsequent proteasomal degradation
[72–76]. AP-1 is affected by PPARα through inhibition of
its binding to the consensus DNA sequence and by sup-
pressing c-Jun activity [77–79]. Inhibition of inflammatory
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Figure 3: PPARα antagonizes main inflammatory signaling path-
ways through repression of the main inflammatory transcription
factors: NFκB and AP-1. Additionally, PPARα reduces ROS-
mediated inflammation by upregulation of uncoupling proteins
UCP2 and UCP3. See the text for more detailed explanation.
Arrowheads represent activation/upregulation, and blunted lines
indicate inhibition/downregulation of the cellular proteins or
processes. AP-1—activating protein-1; Erk1/2—extracellular signal
response kinase 1/2; IκB—inhibitor of NFκB; MAPK—mitogen
activated protein kinase; NFκB—nuclear factor κB; ROS—reactive
oxygen species.

signaling is important for anticancer therapy in order to
reduce mitogenic and angiogenic cytokines and growth
factors released by activated immune and stromal cells
[80]. Moreover, inhibition of NF-κB, which coordinates a
number of antiapoptotic pathways, sensitizes neoplastic cells
to nutrient deficiency stress and facilitates apoptosis [81].
NF-κB induces expression of matrix metalloproteinases, such
as MMP-9 and urokinase-type plasminogen activator (uPA),
and a number of adhesion molecules including ICAM-
1, VCAM-1; thus promoting cancer cells’ invasiveness and
dissemination [82–84]. Therefore, one could speculate that
PPARα- mediated inhibition of NF-κB could contribute to
the observed reduction of metastatic spread in melanoma-
bearing animals treated with fenofibrate [67].

Recently, a completely new image of PPARα in tumor
development has been proposed. Kaipainen and coworkers
were the first who initiated studies on the role of PPARα
expression in host-tumor interaction. They demonstrated
that PPARα depletion in the host significantly reduced tumor
growth and metastasis [85]. This effect was not correlated
with the tumor type and was independent from the presence
or absence of PPARα in the tumor cells. The loss of PPARα
in the host was associated instead with decreased microvessel
density and enhanced granulocyte infiltration in the tumor
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tissue and with the elevation of the angiogenesis inhibitor,
thrombospondin (TSP-1) [85].

Since necrosis and chronic inflammation within the
tumor are associated with intensified macrophage infiltra-
tion and poor prognosis [86], it is not entirely clear why
granulocyte influx is much more effective in eliminating
tumor cells and apparently does not increase the risk
of increased tumor vascularization. The possible answer
might be a distinct profile of cytokines/chemokines released
by macrophages and by granulocytes. The other specu-
lative explanation could be associated with acidic tumor
microenvironment, which is known to impair cellular and
humoral immune responses. However, it affects differentially
macrophages, neutrophils, and lymphocytes, leaving the
latter two less prone to this acidic inactivation [87].

4. CONCLUDING REMARKS

As presented above, PPARα contributes to the maintenance
of physiological homeostasis by multiple mechanisms. Par-
ticularly interesting is the interplay between PPARα and
AMPK, which represents evolutionary conserved sensor of
the metabolic equilibrium, governing the balance between
cell death and cell survival. The possible involvement of
PPARα in the control of autophagy is an exciting direction
to explore, which may reveal new aspects of PPARα role in
carcinogenesis.

The metabolic, anti-inflammatory and antiproliferative
properties of PPARα ligands provide premises for the poten-
tial use as supplementary agents in anticancer treatment,
and especially antimetastatic therapies. In addition, low
toxicity of synthetic PPARα agonists and the abundance of
effective natural ligands provide additional encouragement
for the anticancer treatment. However, it should be kept in
mind that PPARα was first described to promote peroxisome
proliferation and hepatocellular neoplasia in rodents which
conversely to humans, and the majority of other species,
turned out to be particularly sensitive to PPAR ligands.

Finally, role of PPARα in the tumor-host interactions
should be thoroughly studied and explained in order to
design effective anticancer therapies with minimized risk of
unwanted side effects.
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kinase: a universal regulator of autophagy?” Autophagy, vol.
3, no. 4, pp. 381–383, 2007.

[55] Y. Zhang, X. Gao, L. J. Saucedo, B. Ru, B. A. Edgar, and D.
Pan, “Rheb is a direct target of the tuberous sclerosis tumour
suppressor proteins,” Nature Cell Biology, vol. 5, no. 6, pp. 578–
581, 2003.

[56] M. Gamerdinger, A. B. Clement, and C. Behl, “Cholesterol-
like effects of selective cyclooxygenase inhibitors and fibrates
on cellular membranes and amyloid-β production,” Molecular
Pharmacology, vol. 72, no. 1, pp. 141–151, 2007.

[57] G. Suchankova, M. Tekle, A. K. Saha, N. B. Ruderman, S.
D. Clarke, and T. W. Gettys, “Dietary polyunsaturated fatty
acids enhance hepatic AMP-activated protein kinase activity in
rats,” Biochemical and Biophysical Research Communications,
vol. 326, no. 4, pp. 851–858, 2005.

[58] D. R. Alessi, K. Sakamoto, and J. R. Bayascas, “LKB1-
dependent signaling pathways,” Annual Review of Biochem-
istry, vol. 75, pp. 137–163, 2006.

[59] A. L. Edinger and C. B. Thompson, “Defective autophagy leads
to cancer,” Cancer Cell, vol. 4, no. 6, pp. 422–424, 2003.

[60] S. Jin, R. S. DiPaola, R. Mathew, and E. White, “Metabolic
catastrophe as a means to cancer cell death,” Journal of Cell
Science, vol. 120, no. 3, pp. 379–383, 2007.

[61] S. Pattingre and B. Levine, “Bcl-2 inhibition of autophagy: a
new route to cancer?” Cancer Research, vol. 66, no. 6, pp. 2885–
2888, 2006.

[62] X. Qu, J. Yu, G. Bhagat, et al., “Promotion of tumorigenesis
by heterozygous disruption of the beclin 1 autophagy gene,”
Journal of Clinical Investigation, vol. 112, no. 12, pp. 1809–
1820, 2003.

[63] Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, “Beclin 1,
an autophagy gene essential for early embryonic development,
is a haploinsufficient tumor suppressor,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 100, no. 25, pp. 15077–15082, 2003.

[64] A. Iwamaru, Y. Kondo, E. Iwado, et al., “Silencing mammalian
target of rapamycin signaling by small interfering RNA
enhances rapamycin-induced autophagy in malignant glioma
cells,” Oncogene, vol. 26, no. 13, pp. 1840–1851, 2007.

[65] A. Tzatsos and P. N. Tsichlis, “Energy depletion inhibits phos-
phatidylinositol 3-kinase/Akt signaling and induces apoptosis
via AMP-activated protein kinase-dependent phosphorylation
of IRS-1 at Ser-794,” Journal of Biological Chemistry, vol. 282,
no. 25, pp. 18069–18082, 2007.

[66] Q. Jin, L. Feng, C. Behrens, et al., “Implication of AMP-
activated protein kinase and Akt-regulated survivin in
lung cancer chemopreventive activities of deguelin,” Cancer
Research, vol. 67, no. 24, pp. 11630–11639, 2007.

[67] M. Grabacka, W. Placha, P. M. Plonka, et al., “Inhibition of
melanoma metastases by fenofibrate,” Archives of Dermatolog-
ical Research, vol. 296, no. 2, pp. 54–58, 2004.

[68] V. Mirouse, L. L. Swick, N. Kazgan, D. St Johnston, and J. E.
Brenman, “LKB1 and AMPK maintain epithelial cell polarity
under energetic stress,” Journal of Cell Biology, vol. 177, no. 3,
pp. 387–392, 2007.

[69] D. Bishop-Bailey, “Peroxisome proliferator-activated receptors
in the cardiovascular system,” British Journal of Pharmacology,
vol. 129, no. 5, pp. 823–834, 2000.

[70] E.-L. Paukkeri, T. Leppänen, O. Sareila, K. Vuolteenaho, H.
Kankaanranta, and E. Moilanen, “PPARα agonists inhibit
nitric oxide production by enhancing iNOS degradation in
LPS-treated macrophages,” British Journal of Pharmacology,
vol. 152, no. 7, pp. 1081–1091, 2007.

[71] B. Staels, W. Koenig, A. Habib, et al., “Activation of human
aortic smooth-muscle cells is inhibited by PPARα but not by
PPARγ activators,” Nature, vol. 393, no. 6687, pp. 790–793,
1998.

[72] S. Cuzzocrea, S. Bruscoli, E. Mazzon, et al., “Peroxisome
proliferator-activated receptor-α contributes to the anti-
inflammatory activity of glucocorticoids,” Molecular Pharma-
cology, vol. 73, no. 2, pp. 323–337, 2008.

[73] S. Cuzzocrea, E. Mazzon, R. Di Paola, et al., “The role of
the peroxisome proliferator-activated receptor-α (PPAR-α) in
the regulation of acute inflammation,” Journal of Leukocyte
Biology, vol. 79, no. 5, pp. 999–1010, 2006.

[74] P. Delerive, K. De Bosscher, W. Vanden Berghe, J.-C. Fruchart,
G. Haegeman, and B. Staels, “DNA binding-independent
induction of IκBα gene transcription by PPARα,” Molecular
Endocrinology, vol. 16, no. 5, pp. 1029–1039, 2002.

[75] S. Dubrac, P. Stoitzner, D. Pirkebner, et al., “Peroxisome
proliferator-activated receptor-α activation inhibits Langer-
hans cell function,” Journal of Immunology, vol. 178, no. 7, pp.
4362–4372, 2007.

[76] W. Vanden Berghe, L. Vermeulen, P. Delerive, K. De Bosscher,
B. Staels, and G. Haegeman, “A paradigm for gene regulation:
inflammation, NF-κB and PPAR,” Advances in Experimental
Medicine and Biology, vol. 544, pp. 181–196, 2003.

[77] R. Grau, C. Punzón, M. Fresno, and M. A. Iñiguez,
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