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Abstract

High intensity interval exercise (HIIE) improves aerobic fitness with decreased exercise time

compared to moderate continuous exercise. A gap in knowledge exists regarding the effects

of HIIE on cerebrovascular function such as cerebral blood velocity and autoregulation. The

objective of this systematic review was to ascertain the effect of HIIE on cerebrovascular

function in healthy individuals. We searched PubMed and the Cumulative Index to Nursing

and Allied Health Literature databases with apriori key words. We followed the Preferred

Reporting Items for Systematic Reviews. Twenty articles were screened and thirteen arti-

cles were excluded due to not meeting the apriori inclusion criteria. Seven articles were

reviewed via the modified Sackett’s quality evaluation. Outcomes included middle cerebral

artery blood velocity (MCAv) (n = 4), dynamic cerebral autoregulation (dCA) (n = 2), cerebral

de/oxygenated hemoglobin (n = 2), cerebrovascular reactivity to carbon dioxide (CO2) (n =

2) and cerebrovascular conductance/resistance index (n = 1). Quality review was moderate

with 3/7 to 5/7 quality criteria met. HIIE acutely lowered exercise MCAv compared to moder-

ate intensity. HIIE decreased dCA phase following acute and chronic exercise compared to

rest. HIIE acutely increased de/oxygenated hemoglobin compared to rest. HIIE acutely

decreased cerebrovascular reactivity to higher CO2 compared to rest and moderate inten-

sity. The acute and chronic effects of HIIE on cerebrovascular function vary depending on

the outcomes measured. Therefore, future research is needed to confirm the effects of HIIE

on cerebrovascular function in healthy individuals and better understand the effects in indi-

viduals with chronic conditions. In order to conduct rigorous systematic reviews in the future,

we recommend assessing MCAv, dCA and CO2 reactivity during and post HIIE.
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Introduction

High intensity interval exercise (HIIE) has emerged at the forefront of exercise regimens due

to the shorter activity time needed to benefit [1–3]. HIIE confers similar or significant

increased aerobic fitness compared to conventional moderate intensity continuous exercise [1,

4–7]. While aerobic fitness is a measure of increased cardiovascular health, the entire vascular

system (including the cerebral vascular system) may be improved following increased aerobic

fitness [8]. With aging, higher aerobic fitness is associated with a lower risk of stroke and

dementia [9, 10]. A review and meta-analysis of HIIE in healthy adults has shown significant

increases in aerobic fitness [1, 5, 6, 11]. Preliminary evidence has also shown HIIE may

improve cognitive function [12]. However, the effects of HIIE on cerebrovascular function

have not been systematically reviewed.

Cerebrovascular function is the ability of the cerebral blood vessels to deliver oxygen and

nutrients for neuronal metabolism and maintain cerebral blood flow through dynamic autore-

gulation (dCA). dCA is the ability of the brain to sustain a constant cerebral blood flow despite

large fluctuations in peripheral blood pressure [13, 14]. During resting conditions, cerebral

blood flow responds to arterial blood pressure fluctuations, neuronal metabolism, cortical acti-

vation, arterial blood gases and cardiac output [15]. Cerebral blood flow can be measured at

rest using magnetic resonance imaging or transcranial Doppler ultrasound (TCD). Middle

cerebral artery blood velocity (MCAv) measured by TCD is the only technique to measure

cerebral blood flow during exercise, with high temporal resolution [16]. MCAv is linearly

related to cerebral blood flow with the caveat that the MCA diameter remains unchanged [17].

A normal cerebrovascular response to submaximal moderate continuous exercise results in

increased MCAv [18–20], increased cerebral oxygenation [21, 22] and sustained dCA [23, 24].

MCAv has been shown to concomitantly increase as exercise intensity increases, up to moder-

ate intensity [15, 18, 25–28]. MCAv is affected differently during high intensity exercise. Dur-

ing continuous high intensity exercise and hyperventilation, MCAv is decreased due to a

reduction in arterial carbon dioxide (CO2) [29, 30] causing downstream arteriole constriction

[15, 31]. Cerebrovascular reactivity is the ability of the small vessels in the brain to vasodilate

and vasoconstrict in response to fluctuating CO2 levels [32, 33]. The cerebrovascular response

to HIIE may differ from continuous high intensity exercise due to the repetitive short interval

bouts that rapidly increase blood pressure which may cause cerebrovascular hyper-perfusion

[34, 35]. If neuroprotective mechanisms of the brain, such as dCA, do not respond quickly to

the repetitive and rapid increases in blood pressure, HIIE could elevate the risk for leakage

within the blood brain barrier [34, 36]. For clinical populations with cerebrovascular

impairment, such as stroke [37–39], the cerebrovascular response to HIIE may play an impor-

tant role in guiding exercise prescription [36].

Previous scientific statements and narrative reviews have recounted the molecular, hemo-

dynamic and structural processes (i.e. CO2, nitric oxide, systemic blood pressure, vessel com-

pliance, glial cell integrity) associated with the cerebrovascular response that may occur during

HIIE [36, 40]. However, these detailed narrative reviews [41, 42] did not report the statistical

findings of previous studies showing cerebrovascular function during HIIE. To our knowl-

edge, our current systematic review is the first to systematically search and report the results of

the dynamic cerebrovascular response during HIIE. Reporting the cerebrovascular response

during HIIE is important because it provides objective results to support the previously

described narrative statements on hemodynamic processes during HIIE [41, 42]. The purpose

of this systematic review was to address the gap in knowledge and report the various study

results of HIIE on cerebrovascular function compared to moderate continuous exercise or rest
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conditions. We systematically examined the results of HIIE studies in healthy individuals

based on the operationalization of cerebrovascular outcomes.

Methods

This review follows the guidelines for Preferred Reporting Items for Systematic Reviews [43].

Literature searches and reviews were performed using PubMed and the Cumulative Index to

Nursing and Allied Health Literature (CINAHL) databases. The University of Kansas Medical

Center Online Library system was used to access these databases in February, March, and June

2020. In this systematic review, we included peer-reviewed manuscripts written in English

from January 2010 to June 2020.

Key words used to search the databases included “high intensity interval training”, “HIIT”,

“high intensity interval exercise”, “HIIE” AND “cerebral blood flow”, “cerebral blood velocity”,

“dynamic autoregulation”. We believe these key words primarily reflect the high intensity

interval intervention and cerebrovascular function outcome measures. The main outcomes of

this systematic review were MCAv, an indirect measure of cerebral blood flow, and dCA, a

measure of cerebrovascular homeostasis during peripheral blood pressure changes [30, 44–

48]. MCAv supplies oxygen and nutrients to neurons while dCA maintains stable perfusion

[49]. However, additional cerebrovascular measures were also included such as oxygenated

hemoglobin [50–52], cerebrovascular reactivity [46, 53], cerebrovascular conductance index

and cerebrovascular resistance index [45, 54]. Oxygenated hemoglobin is an important mea-

sure of aerobic metabolism within cerebral tissue using near-infrared spectrometry [55]. Cere-

brovascular reactivity is a measure of cerebrovascular regulation [56] and shows the ability of

the vessels to vasodilate or vasoconstrict to a stimulus [57]. Cerebrovascular conductance

index is a measure of the conductance of peripheral blood pressure to cerebral blood velocity

and is calculated as MCAv/mean arterial pressure (MAP) [45]. Cerebrovascular resistance

index (MAP/MCAv) measures the resistance of cerebral perfusion pressure to cerebral blood

velocity [45].

The identified abstracts from PubMed and CINAHL were screened using the following

inclusion criteria: 1) experimental or quasi-experimental, 2) aerobic exercise identified as the

primary means of performing HIIE, 3) cerebrovascular measures were primary or secondary

outcomes and 4) human subjects across the lifespan with no current disease. After the removal

of duplicates, two researchers screened titles/abstracts for inclusion criteria (A.W. and M.A.).

The full texts were examined, and data extracted (A.W. and M.A.). If the authors were unable

to come to an agreement, a third author moderated incongruity (A.F.).

A quality review was performed for each article using the modified version of Sackett’s 1981

criteria [58]. We critically analyzed each article’s study design, population, HIIE protocols,

cerebrovascular outcomes and results. If an article did not report enough information to deter-

mine sufficient quality criteria a “No” rating was given. Articles were rated based on the level

of evidence including level I for large randomized control trials, level II for small randomized

trial, level III for nonrandomized design, Level IV for case series and Level V for case reports

[59].

Results

The search methods resulted in 67 articles. After removal of duplicates, 15 [45, 46, 50, 53, 60–

69] articles were identified in PubMed and 5 [47, 51, 70–72] new articles in CINAHL. During

the initial screening of titles/abstracts, 11 articles were excluded due to HIIE not being the pri-

mary experimental protocol performed (n = 6), studies not measuring cerebral arteries (n = 4)

and an animal study (n = 1). Studies that combined other interventions with HIIE were
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excluded due to the confounding variables that could affect cerebrovascular outcomes (see S1

Table). After the full text assessment, two articles were excluded due to not meeting experi-

mental or quasi experimental criteria (n = 2). See Fig 1 for flow diagram of article selection.

We included seven articles describing cerebrovascular outcomes following HIIE within this

review [44–47, 50, 51, 53]. The full texts are described in Table 1. Of the articles reviewed, six

were small, randomized trials and one nonrandomized cross-over trial. All the studies

Fig 1. Flow diagram of article selection.

https://doi.org/10.1371/journal.pone.0241248.g001
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Table 1. Summary of reviewed articles.

Study Design Level of

Evidence

Subjects Intervention Outcome measures Results

Burma

et al,

March

2020

Small Randomized

Cross-Over Trial

II 9 Young Adults (age

26 ± 5 years old)

3 cycling conditions:

• High intensity interval training

(HIIT, 1-min interval at 85–90%

predicted heart rate reserve with

1-min active recovery 15%

power output for 10 intervals)

• Moderate intensity continuous

exercise (MICT, 50–60%

predicted heart rate reserve for

45 min)

• No-exercise control

TCD measured: Average

Exercise MCAv

dCA via Transfer Function

Analysis during forced MAP

oscillations (repeated squat-

stand maneuver)

Significant increase in exercise MCAv

during MICT compared to HIIT

(p<0.05) and baseline (p<0.05).

No change in exercise MCAv during

HIIT compared to baseline (p>0.05).

Significantly higher systolic gain/phase

compared to diastolic/mean gain/phase

at 0.05 and 0.10 Hz during control

(p<0.05).

Decreased systolic phase in 0.05 Hz

immediately following HIIT (p>0.102)

and MICT until hour 4 (p>0.079).

Decreased systolic phase in 0.10 Hz

immediately following HIIT until hour 2

(p>.11) and immediately following

MICT until hour 4 (p>0.079).

No change in gain or coherence in 0.05

Hz or 0.10 Hz during HIIT or MICT.

Burma

et al, June

2020

Secondary Analysis of

the above Small

Randomized Cross-

Over Trial

II Same as above Same as above TCD measured:

Cerebrovascular reactivity to

hypercapnia

Cerebrovascular reactivity to

hypocapnia

Significantly decreased absolute and

relative MCA reactivity to hypercapnia

immediately following HIIT up to hour 2

(p<0.018) compared to MICT and

control (p<0.022).

Significantly decreased relative MCA

reactivity to hypercapnia immediately

following MICT up to hour 1 (p<0.024).

No significant differences in MCA

reactivity to hypocapnia between

conditions (p>0.31).

Coetsee

et al, 2017

Small Randomized

Controlled Trial

II 67 Inactive Adults

HIIT (age 64.5 ± 6.3

years old)

MCT (age 61.6 ± 5.8

years old)

CON (age 62.5 ± 5.6

years old)

16-week intervention

Treadmill 30 min, 3x/week

4 groups:

• High intensity Interval training

(HIIT, 4 min interval at 90–95%

HRmax with 3 min active

recovery 70% HRmax)

• Moderate continuous training

(MCT, 70–75% HRmax)

• No-exercise control (CON).

Near-Infrared Spectroscopy

measured during Cognitive

Stroop test:

• Oxygenated Hemoglobin

• Deoxygenated

Hemoglobin

• Total Hemoglobin Index

No significant differences in oxygenated

(effect size = .45, p = .3), deoxygenated

(effect size = 0.67, p = .14), or total

hemoglobin (effect size < .6, p>.18) after

HIIT.

Significant decrease in deoxygenated

hemoglobin (effect size = 1.14, p = .01)

and total hemoglobin index (effect

size = 1.49, p < .01) after MCT.

Significant increase in oxygenated

hemoglobin in CON (effect size = .76, p

= .03).

Drapeau

et al, 2019

Small Randomized

Clinical Trial

II 17 Endurance

Trained Males

HIIT85 (age 26 ± 6

years old)

HIIT115 (age 28± 6

years old)

6-week intervention.Cycled until

exhaustion, 3x/week2 groups:

• HIIT85 (1–7 min interval at

85% of maximal aerobic power,

with active recovery of 50% of

maximal aerobic power)

• HIIT115 (30sec– 1min interval

at 115% of maximal aerobic

power, with active recovery of

50% of maximal aerobic power).

TCD measured: Resting

MCAv

Resting CVCi

Resting CVRi

dCA via Transfer Function

Analysis during forced MAP

oscillations (repeated squat-

stand maneuver)

Significant decrease in phase at 0.10 Hz

in HIIT85 and HIIT115 (p = .048) with no

differences between intensity groups.

No significant difference in power

spectral density (p > .39), gain (p > .05),

or coherence (p>.05) between time or

intensity.

No significant differences in MCAv (p =

.4), CVCi (p = .87), or CVRi (p = .87).

Northey

et al, 2019

Small Randomized

Controlled Trial

II 17 Female Breast

Cancer Survivors

HIIT (age 60.3 ± 8.1

years old)

MOD (age 67.8 ± 7.0

years old)

CON (61.5 ±7.8 years

old)

12-week intervention

Cycled 20–30 min 3x/week

3 groups:

• High intensity interval training

(HIIT, 30 sec intervals at ~90%

maximal heart rate or ~105%

peak power with 2 min active

recovery)

• Moderate intensity continuous

exercise (MOD, 55–65% peak

power)

• No-exercise control (CON)

TCD measured: Resting

MCAv,

Cerebrovascular Reactivity to

CO2

No significant differences in resting

MCAv (p = .24) or cerebrovascular

reactivity (p = .54) after HIIT compared

to MOD.

No significant differences in resting

MCAv (p = .86) or cerebrovascular

reactivity (p = .72) after HIIT compared

to CON.

(Continued)

PLOS ONE High intensity interval exercise and cerebrovascular function

PLOS ONE | https://doi.org/10.1371/journal.pone.0241248 October 29, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0241248


involved healthy individuals, although some studies only included men (n = 1) [45], women

(n = 1) [46], or children (n = 1) [47]. Prior activity levels of participants ranged from inactive

[50], recreationally active [51] and endurance trained [45].

High intensity interval protocols

Methods of prescribing HIIE varied greatly and made comparisons between studies difficult.

HIIE protocols included 6- to 16-week exercise interventions (n = 3) [45, 46, 50] or one single

bout of exercise(n = 4) [44, 47, 51, 53]. By examining 6- to 16-weeks of HIIE, the long-term or

chronic effects of this intervention were studied. By examining a single bout of HIIE, the

immediate or acute effects of the exercise were reported. In addition to the duration variability,

we found that the mode of HIIE also differed across the included studies. One study used a

treadmill as the mode of exercise with 4-minute intervals of 90–95% maximal heart rate for 30

minutes [50]. The remaining six studies used cycling as the mode of exercise but differed in

parameters ranging from 30 seconds [46, 51] to 7-minute intervals [45] at 85% to 115% of

maximal watts [45, 47, 51] or ~ 85% to 90% maximal heart rate [44, 46, 50, 53]. A constant

between all studies included an active (rather than passive) recovery interval between sprints.

However, the intensity and duration of recovery intervals differed greatly.

Table 1. (Continued)

Study Design Level of

Evidence

Subjects Intervention Outcome measures Results

Tallon

et al,

2019

Small Randomized

Cross-over Trial

II 8 Prepubertal

Children (age

10 ± 1.9 years old)

2 Cycling conditions:

• High intensity interval

exercise (HIIE, 1 min

interval at 90%max watt

with 1 min active recovery at

20%max watt for 6 intervals)

• Moderate-intensity steady-

state exercise (MISS, 15 min

at 44%max watt)

TCD measured: Exercise

MCAv during each

interval

Immediate post-exercise

MCAv

30-minutes post-exercise

MCAv

Significant decrease in exercise

MCAv during the 6th interval of

HIIE compared to baseline (10.7%,

p = .004).

Significant decrease in exercise

MCAv during the 3rd and 4th

intervals of HIIE compared to MISS

(p = .001).

Significant decrease in MCAv

immediately post-exercise following

HIIE and MISS (p < .001).

No significant difference in MCAv

at 30-minutes post-exercise

following HIIE and MISS compared

to baseline (p>.05).

Significant increase in exercise

MCAv during the 2nd minute of

MISS compared to baseline (5.8%, p

= .004).

Monroe

et al,

2016

Nonrandomized

Cross-Over Trial

III 15 Recreationally

Active Adults (age

21.3 ± 2.4 years

old)

2 cycling conditions:

• Sprint Interval Cycling (SIC,

30 second all-out sprint

interval with 4 min active

recovery for 4 intervals)

• Constant Resistance Cycling

(CRC, 18 min at 70rpm with

resistance set by matching total

work performed during SIC)

Near-Infrared

Spectroscopy measured:

Oxygenated Hemoglobin

(HbO2)

Deoxygenated

Hemoglobin (HHb)

Significant increase in average

HbO2(effect size = .536, p = .001),

minimum HbO2 during recovery

(effect size = .392, p < .001) and

maximum HbO2 during recovery

(effect size = .588, p = .001) in SIC

compared to CRC.

Significant increase in average HHb

during SIC compared to CRC

(effect size = .386, p = .003).

MCAv = middle cerebral artery blood velocity, dCA = dynamic cerebral autoregulation, min = minute, HRmax = maximum heart rate, CVCi = cerebrovascular

conductance index, CVRi = cerebrovascular resistance index, CO2 = carbon dioxide.

https://doi.org/10.1371/journal.pone.0241248.t001
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Cerebrovascular outcome measures

The results of this review can be operationalized based on the outcome variables measured

during HIIE such as MCAv (n = 4) [44–47], dCA (n = 2) [44, 45], cerebral de/oxygenated

hemoglobin (n = 2) [50, 51], cerebrovascular reactivity to CO2 (n = 2) [46, 53] and cerebrovas-

cular conductance/resistance index (n = 1) [45]. Table 2 describes whether HIIE increased,

decreased or had no influence on the operationalized cerebrovascular measures. A meta-analy-

sis was not performed due to low number of studies (� 2) reporting each operationalized cere-

brovascular measure.

MCAv. Of the studies reporting MCAv outcomes, resting MCAv (n = 2) [45, 46], exercise

MCAv (n = 2) [44, 47] and MCAv immediately post exercise (n = 1) [47] were used. No signifi-

cant differences were found for resting MCAv after 6- or 12-weeks of HIIE when compared to

moderate continuous exercise or control [45, 46]. During an acute bout of HIIE, exercise

MCAv was significantly decreased compared to moderate continuous exercise [44, 47]. Con-

flicting results were found between two studies comparing exercise MCAv to rest. Burma et al.

[44] reported no significant difference between average exercise MCAv and rest in adults.

However, rather than reporting average exercise MCAv of the entire HIIE bout, Tallon et al.

[47] reported exercise MCAv for each 1-minute sprint interval of HIIE. During the 6th sprint

interval of HIIE, Tallon et al. [47] reported significantly decreased exercise MCAv compared

to rest which remained immediately following exercise [47].

dCA. Transfer function analysis of dCA was reported in the very low and low frequency

bands (n = 2) [44, 45]. Drapeau et al. [45] conducted a 6-week intervention of HIIE and

reported a significant decrease in phase compared to rest with no significant change in coher-

ence or gain. Burma et al. [44] conducted a single bout of HIIE and reported decreased MCAv

systolic phase immediately following exercise that extended up to four hours later.

De/oxygenated hemoglobin. Oxygenated and deoxygenated hemoglobin were reported

during a single bout of HIIE (n = 1) [51] and during a 16-week HIIE intervention (n = 1) [50].

Monroe et al. [51] conducted a single bout of HIIE and reported an increase in oxygenated

Table 2. Summary of the effects of HIIE on operationalized cerebrovascular measures.

Resting

MCAv

Exercise

MCAv

Post-

Exercise

MCAv

dCA

phase

dCA

Gain

dCA

Coherence

De/Oxygenated

Hemoglobin

Cerebrovascular

Conductance Resistance

Index

Cerebrovascular

Reactivity to CO2

Burma et al,

March 2020

#

To moderate

# # #

Burma et al,

June 2020

#

To moderate and

control

Coetsee et al,

2017

#

During cortical

activation

Drapeau et al,

2019

# # # # #

Northey et al,

2019

# #

Tallon et al,

2019

#

To moderate

and rest

#

To rest

Monroe et al,

2016

"

During HIIE

# = Decreased effect, " = Increased effect, # = no effect

https://doi.org/10.1371/journal.pone.0241248.t002
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and deoxygenated hemoglobin during HIIE compared to moderate continuous exercise. Coet-

see et al. [50] conducted a 16-week intervention of HIIE and reported no significant lasting

changes in oxygenated or deoxygenated hemoglobin during cortical activation.

Cerebrovascular reactivity. Cerebrovascular reactivity to CO2 were reported during a

single bout of HIIE (n = 1) [53] and during a 12-week HIIE intervention (n = 1) [46]. After a

single bout of HIIE, cerebrovascular reactivity to higher CO2, or hypercapnia, was significantly

decreased by 37% and remained an hour later [53]. The reduced cerebrovascular reactivity to

hypercapnia was also significantly different than moderate intensity and control. Cerebrovas-

cular reactivity to lower CO2, or hypocapnia, was not significantly different following a single

bout of HIIE [53]. Cerebrovascular reactivity to CO2 was also not significantly different follow-

ing 12 weeks of HIIE [46].

Cerebrovascular conductance and resistance. Cerebrovascular conductance index and

cerebrovascular resistance index were only reported in a single study [45]. A 6-week HIIE

intervention reported no significant changes in cerebrovascular conductance index or cerebro-

vascular resistance index [45].

Quality review

The quality review of each study is presented in Table 3. Out of seven total quality criteria, 2

studies reported five quality criteria [44, 53], one study reported four quality criteria [45] and

the remaining four studies reported three quality criteria [46, 47, 50, 51]. Therefore, the overall

quality criteria results were moderately poor. All studies accounted for subjects and monitored

the HIIE protocol parameters. No studies reported avoidance of contamination or co-inter-

vention. No studies reported blinding of the outcome assessments. Only Burma et al. [44, 53]

and Monroe et al. [51] reported their reliability via coefficient of reproducibility and intraclass

coefficients of their measures. And only Burma et al. [44, 53] and Drapeau et al. [45] reported

validity of their respective cerebrovascular outcomes.

Discussion

This review met the objective of reporting the results of various HIIE studies and the effects on

operationalized cerebrovascular function in healthy individuals. This review is the first to

report the effects HIIE on cerebrovascular function compared to moderate continuous

Table 3. Summary of quality review.

Avoided Contam-

ination and Co-

Intervention

Random

Assignment to

Conditions

Blinded

Assessment

Monitored

Intervention

Accounted for

All Subjects

Reported

Reliability of

Measures Used

Reported

Validity of

Measures Used

Total Number

of Criteria

Met

Burma et al,

March 2020

No Yes No Yes Yes Yes Yes 5

Burma et al,

June 2020

No Yes No Yes Yes Yes Yes 5

Coetsee et al,

2017

No Yes No Yes Yes No No 3

Drapeau

et al, 2019

No Yes No Yes Yes No Yes 4

Northey

et al, 2019

No Yes No Yes Yes No No 3

Tallon et al,

2019

No Yes No Yes Yes No No 3

Monroe

et al, 2016

No No No Yes Yes Yes No 3

https://doi.org/10.1371/journal.pone.0241248.t003
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exercise and rest in healthy individuals. In general, we found that the acute and chronic effects

of HIIE on cerebrovascular function vary largely depending on the methods and outcomes

measured.

MCAv

In these studies, 6- to 12-week HIIE interventions had no effect on resting MCAv in healthy

individuals. No significant change in resting MCAv may be due to the HIIE intervention dura-

tion being too short. Also a ceiling effect may be observed for young, healthy individuals and

could explain no changes in resting MCAv [19]. During a single bout of HIIE, hyperventilation

and downstream arteriole vasoconstriction may explain the acute decreases in exercise MCAv

compared to moderate continuous exercise [15, 31, 73, 74]. Vasoconstriction may play a pro-

tective role during HIIE due to heightened peripheral blood pressure potentially causing

hyper-perfusion [75] or damage to the blood brain barrier [36]. During a single bout of HIIE,

there is contradictory evidence comparing exercise MCAv to rest. One study reported no

change in average exercise MCAv compared to resting [44]. Another study reported decreased

exercise MCAv after six sprint intervals of HIIE and remained decreased compared to rest

immediately following HIIE [47]. The differences reported in exercise MCAv compared to rest

could be due to age [19] (adults versus prepubertal children) or due to the analysis of MCAv

during HIIE (average over entire exercise versus separate sprint intervals). Decreases in exer-

cise MCAv compared to rest may only occur in the late intervals of HIIE, during hyperventila-

tion [76]. Therefore, exercise MCAv should be reported for each interval of HIIE rather than

an average of the entire exercise bout.

dCA

After a 6-week intervention and single bout of HIIE, dCA phase was decreased compared to

rest. The chronic effects of HIIE on dCA phase may be due to elevated cardiorespiratory fitness

in endurance trained individuals being associated with attenuated dCA [45, 48]. In healthy

individuals, increased frequency within MCAv and MAP waveforms (that can occur with

HIIE) may cause a reduction in phase due to dCA being a high-pass filter [77, 78]. Burma et al.

[44] also suggests that systolic phase may reveal greater changes in dCA than both diastolic

and mean phase. After a single bout of HIIE, reduction in systolic phase extended up to 4

hours and therefore the common approach of abstaining from exercise 12 hours before

research studies [79–81] may be too conservative [44].

Although not included in this review due to the observational study design, contradictory

evidence of sustained dCA during HIIE has been reported [63]. Differences in exercise param-

eters between HIIE may be the cause to contradictory findings due to exhaustive exercise

showing decreased dCA [34, 82]. More studies are needed to confirm the acute and chronic

decreases in dCA following HIIE.

De/oxygenated hemoglobin

After a 16-week HIIE intervention, oxygenated and deoxygenated hemoglobin during cortical

activation did not change [50]. However, the 16-week HIIE intervention decreased reaction

time during cortical activation and therefore may have increased efficiency of cortical oxygen

use [50]. During a single bout of HIIE oxygenated and deoxygenated hemoglobin increased

compared to moderate continuous exercise [51]. As suggested by Coetsee et al, increased oxy-

genated hemoglobin during neuronal activation may suggest engaging additional regions of

the brain [50]; while decreased oxygenated hemoglobin may indicate reduced neuronal activ-

ity due to task-efficiency [50]. The acute and chronic effects of HIIE on oxygenated and
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deoxygenated hemoglobin still needs further investigation due to each only being reported in a

single study.

Cerebrovascular reactivity

A 12-week HIIE intervention did not significantly change cerebrovascular reactivity which

could be due to vascular desensitization from chronic exposure to CO2 during HIIE [36, 83].

Following a single bout of HIIE, cerebrovascular reactivity to hypercapnia was decreased

showing the inability of the cerebrovascular system to maximally vasodilate. The maximal

capacity for vasodilation after HIIE may be reduced following HIIE due to prolonged cerebro-

vascular vasoconstriction that occurs with hyperventilation during HIIE [36, 53]. Cerebrovas-

cular reactivity to hypocapnia was not changed following a single bout of HIIE due to the

ability of the vessels to vasoconstrict remaining intact [53]. The reduction in cerebrovascular

reactivity to higher CO2 remains an hour after HIIE. Therefore, the authors conclude again

that the common approach of abstaining from exercise 12 hours before research studies [54,

80, 84] may be too conservative [53].

Cerebrovascular conductance and resistance

Cerebrovascular conductance and resistance were not significantly changed following a

6-week HIIE intervention. While a 6-week HIIE intervention significantly improved periph-

eral arterial conductance and resistance [4], this change in the peripheral arteries may not be

demonstrated in the cerebrovascular arterial conductance or resistance [41, 45]. However, due

to the cerebrovascular conductance or resistance index being reported in only a single study,

no conclusive effects of HIIE can be determined.

Future research

We recommend future research on the effects of HIIE on cerebrovascular function should

include: 1) examining the cerebrovascular response during HIIE before and after an interven-

tion of HIIE, 2) analyzing cerebrovascular outcomes during each separate interval of HIIE

rather than an average of the entire bout, 3) simultaneously measuring MCAv, blood pressure,

heart rate, and CO2 during HIIE, 4) measuring cerebrovascular outcomes during HIIE, imme-

diately following HIIE and at a follow up 30 minutes to 4 hours post exercise.

Limitations

The authors acknowledge a risk of publication bias by only including peer-reviewed articles

written in English and did not include grey literature. The cerebrovascular function measures

included within this review vary greatly and have vast heterogeneity. The overall quality of

studies is moderately poor due to the lack of avoiding contamination, not blinding the assess-

ment, and scarce reporting of the reliability and validity of the outcomes measured. These

studies report the effects of HIIE on cerebrovascular function in healthy young individuals

which limits generalizability and cannot be translated to clinical populations with altered cere-

brovascular function at baseline, such as stroke [37, 39, 85, 86].

While HIIE is not a new mode of exercise, studying cerebrovascular measures during HIIE

is novel. There are potential limitations to using TCD during HIIE and MCAv may be under-

estimated [87]. Cerebral oxygenation may also be underestimated due to the two-channel near

infrared spectrometer not measuring the motor, occipital, or parietal cortex [50, 51]. Authors

could only identify seven small studies with the oldest article dating back to 2015. The primary

outcome of MCAv (n = 4) and dCA (n = 2) were reported in few studies with low power.
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Therefore, a meta-analysis could not be performed due to insufficient mathematical

combination.

Conclusion

This review has provided preliminary information studying the effects of HIIE on cerebrovas-

cular function. Currently, there are a sparse number of research studies with moderately poor

quality criteria that have reported the acute and chronic effects of HIIE on cerebrovascular

function. An increased amount of studies and greater quality of research avoiding contamina-

tion, blinding the assessments, and reporting reliability and validity is needed. Randomized

controlled trials with large sample sizes are needed to conduct a meta-analysis to combine and

statistically analyze the summary results of HIIE on cerebrovascular function. Additionally,

more studies are needed to determine the optimal interval parameters of HIIE to provide a

consistent exercise dose between studies.

With increased interest in healthy brain aging and implementing interventions to maintain

or improve brain health [88], studying the effects of HIIE interventions are critically needed

[41, 42]. While this review only included healthy individuals, we provide an early reference to

understanding “normal” physiological effects of HIIE on cerebrovascular function and the

need to compare to clinical populations. Researchers should make further efforts to investigate

and report the effects of HIIE on diverse measures of cerebrovascular function. To do so, it is

imperative that researchers implement high quality criteria within the planning of future

studies.
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