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Abstract: Despite increasing availability and more successful interventional approaches to restore
coronary reperfusion, myocardial ischemia-reperfusion injury is a substantial cause of morbidity and
mortality worldwide. During myocardial ischemia, the myocardium becomes profoundly hypoxic,
thus causing stabilization of hypoxia-inducible transcription factors (HIF). Stabilization of HIF leads to
a transcriptional program that promotes adaptation to hypoxia and cellular survival. Transcriptional
consequences of HIF stabilization include increases in extracellular production and signaling effects of
adenosine. Extracellular adenosine functions as a signaling molecule via the activation of adenosine
receptors. Several studies implicated adenosine signaling in cardioprotection, particularly through
the activation of the Adora2a and Adora2b receptors. Adenosine receptor activation can lead to
metabolic adaptation to enhance ischemia tolerance or dampen myocardial reperfusion injury via
signaling events on immune cells. Many studies highlight that clinical strategies to target the hypoxia-
adenosine link could be considered for clinical trials. This could be achieved by using pharmacologic
HIF activators or by directly enhancing extracellular adenosine production or signaling as a therapy
for patients with acute myocardial infarction, or undergoing cardiac surgery.
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1. Introduction

Myocardial ischemia-reperfusion injury is most commonly caused by a mechan-
ical obstruction of a coronary artery, for example by a plaque, thromboembolism or
vasospasm [1–3]. The subsequent restoration of coronary blood flow will cause inflamma-
tory cells to move into the ischemic myocardial tissues, which provides the immunologic
cause of cardiac reperfusion injury [4]. Despite the advancement of clinical strategies to
achieve earlier and more persistent reperfusion, myocardial ischemia-reperfusion injury
continues to be a leading cause of morbidity and mortality in the USA and worldwide [2,3].
In addition, cardioprotection from ischemia-reperfusion is also critical for patients who
are undergoing cardiac surgery, since those patients are at risk for myocardial ischemia-
reperfusion injury [5,6]. Novel pharmacologic approaches to render the myocardium more
resistant to ischemic tissue injury or dampen myocardial inflammation during reperfusion
would be highly desirable and are currently areas of intense research.

During myocardial ischemia, the occlusion of a coronary vessel causes profound
changes in metabolic supply and demand within the area that is perfused by the specific
artery (so-called “area at risk”). Due to the limited supply of metabolites and oxygen
from the bloodstream, the area of risk becomes profoundly hypoxic, thus leading to the
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stabilization of hypoxia-inducible transcription factors (HIF) [7–10]. Stabilization of HIF
activates a transcriptional program leading to the increased production of the extracellular
signaling molecule adenosine [11,12]. These transcriptional changes include enhanced
extracellular production of adenosine from precursor nucleotides [13–16], increased levels
and signaling events through extracellular adenosine receptors [17,18], attenuated uptake of
extracellular adenosine via adenosine transporters [19–21], and the attenuated metabolism
of adenosine [22]. Adenosine exerts its cardioprotective effects during ischemia-reperfusion
injury through multiple actions, such as vasodilation to increase blood flow and oxygen,
decreasing myocardial oxygen consumption, preserving endothelial cell function, and
attenuating inflammation. Taken together, studies on the interdependence of hypoxia
and adenosine identified an adaptive transcriptional program under the control of HIF
that is geared towards promoting extracellular adenosine signaling events on multiple
levels. In fact, this molecular link creates multiple opportunities for pharmacologic inter-
ventions, including HIF activators, enhancers of extracellular adenosine signaling events,
adenosine uptake or metabolism inhibitors, or the use of specific adenosine receptor ag-
onists. Therefore, we will review the mechanism of HIF stabilization during myocardial
ischemia-reperfusion injury, its impact on cardiac adenosine metabolism and signaling,
and eventually discuss therapeutic opportunities that present themselves through the
hypoxia-adenosine link for the treatment or prevention of cardiac injury.

2. Hypoxia-Inducible Transcription Factors (HIF) Are Stabilized during Myocardial
Ischemia and Provide Cardioprotection

During myocardial ischemia, the cardiac tissues become profoundly hypoxic. This is
caused by an attenuated supply of oxygen and metabolites to the area at risk by the oc-
cluded coronary artery. Several previous studies have shown that even very short episodes
of myocardial ischemia (as short as only 5 min) are associated with the stabilization of
HIF [23]. These transcription factors were discovered in the early 1990s in studies of the ery-
thropoietin promoter [24–26], a discovery that was subsequently awarded the Nobel Prize
in 2019 [27]. HIF are heterodimeric transcription factors with a constitutively expressed beta
unit (HIF1B) [28]. In contrast, the alpha unit (HIF1A or HIF2A) is substantially regulated on
the post-translational level [29–32]. During normal oxygen availability, HIF1A/HIF2A are
targeted for proteasomal degradation through a molecular pathway that involves oxygen-
sensing HIF prolyl hydroxylases (PHD1, PHD2, or PHD3) [33–36]. PHDs use oxygen as a
co-factor to promote hydroxylation of a conserved prolyl-residue with the HIF1A/HIF2A
subunit, which subsequently promotes binding of the Von-Hippel-Lindau gene product,
polyubiquitination, and proteasomal degradation [31,37–39]. However, if oxygen levels
fall, PHDs are functionally inactivated. In addition, other metabolic changes in the mi-
croenvironment [32,40,41], or oxygen-independent mechanisms of PHD inhibition, have
been demonstrated previously (e.g., elevations of succinate levels) [42,43]. These changes
in metabolic supply and demand lead to the stabilization of HIF1A or HIF2A, which form a
transcriptionally active complex with the HIF1B subunit [44]. This transcriptionally active
complex can bind to hypoxia-response elements (HREs) within the promoter region of
hypoxia-responsive genes, and promote changes in the transcription rate of the specific
gene products. Famous HIF target genes include, for example, erythropoietin or vascular
endothelial growth factor. However, studies in genetic models show that approximately
570 genes are transcriptionally altered by the activity of HIF, and most likely more than
that [45]. In many instances, HIF binding to HREs will cause transcriptional increases
for specific gene products [46,47], but, very frequently, this can also cause repression of a
specific gene product [21,45,48,49]. Repression of a specific gene product by HIF is often
related to the induction of HIF-dependent microRNAs (miRNAs), which promote the
subsequent repression of an indirect HIF target gene [50,51]. For example, a recent study
demonstrated that HIF-dependent induction of miRNA miR122 causes repression of PHD1
as an indirect HIF1A-target gene [51].
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Many studies on the consequences of HIF stabilization during acute myocardial
ischemia-reperfusion injury highlight the protective functions of HIF. These studies include
evidence that both HIF1A or HIF2A stabilization can have cardioprotective functions,
but most likely involve different tissue-compartments and different hypoxia-dependent
target genes [52–56]. Similarly, pharmacologic studies using small-molecular inhibitors of
PHDs (PHD inhibitors) demonstrate that pre-treatment approaches are associated with
attenuated myocardial ischemia-reperfusion injury [23]. Importantly, orally available HIF
activators have recently been used in phase 3 clinical trials for the treatment of renal anemia.
These studies showed that HIF activator treatment is at least equally potent to promote
hemoglobin levels through the induction of erythropoietin as compared to treatment with
recombinant erythropoietin [57–60]. These pharmacologic HIF activators have rarely been
explored in clinical trials for cardioprotection. However, there is strong experimental
evidence that those compounds (e.g., vadadustat or roxadustat) could potentially be used
to attenuate myocardial ischemia-reperfusion injury in patients with acute myocardial
infarction (MI) or for cardioprotection during cardiac surgery [31].

3. Role of HIF in Regulating Adenosine Signaling during Myocardial
Ischemia-Reperfusion Injury

Several previous studies have proposed linkages between hypoxia, HIF, and extra-
cellular adenosine signaling as a means to providing tissue-adaptation, or to dampen
hypoxia-driven inflammation [61–63]. In the extracellular compartment, adenosine is
generated from precursor nucleotides, such as ATP or ADP [64–67]. Once adenosine is
generated, it can signal through four distinct adenosine receptors, including the adenosine
A1 receptor (ADORA1), the adenosine A2A receptor (ADORA2A), the adenosine A2B
receptor (ADORA2B), and the adenosine A3 receptor (ADORA3) [68,69]. These G-protein
coupled receptors have all been implicated in cardio-adaptive responses [53]. For example,
the Adora1 is known to mediate the heart-rate slowing effects of intravenous adenosine,
used for the treatment of supraventricular tachycardia [70]. In particular, the Adora2a and
the Adora2b have been shown to dampen inflammatory responses [71–74]. For example,
Adora2a signaling has been discovered on polymorphonuclear neutrophils (PMNs) [75]
and contributes to attenuated inflammatory responses [76,77]. The subsequent uptake of
adenosine from the extracellular compartment [49,78], and metabolism to inosine [13,79–81]
or AMP is implicated in terminating extracellular adenosine signaling. In the next section,
we will discuss studies on how HIF-dependent alterations of gene transcription can alter
extracellular adenosine signaling during myocardial injury, and how these responses have
functional implications on cardioprotection during myocardial ischemia-reperfusion injury.

3.1. Impact of Hypoxia-Signaling on the Production of Extracellular Adenosine

During conditions of hypoxia, inflammation, or cellular stress, different cells release
nucleotides, particularly in the form of ATP or ADP. For example, ATP can be released
from inflammatory cells through specific molecular pathways [16,82–87]. The extracellular
release of ADP has been described extensively from platelets [68]. ATP or ADP can function
as precursor molecules for the extracellular production of adenosine. This process is a
two-step, enzymatically controlled pathway. As the first step, the ectonucleotidase CD39
converts extracellular ATP or ADP to AMP [88]. Studies in gene-targeted mice for cd39
(cd39−/− mice) [89] show that these mice experience larger myocardial infarct sizes in the
context of diminished levels of AMP and adenosine [90]. Moreover, cd39−/− mice are not
protected by ischemic preconditioning, where one or more preceding cycles of myocardial
ischemia are associated with the attenuated size of injury [90–92]. Importantly, several
studies demonstrate that the transcript and protein levels, and also the enzymatic function
of CD39 are increased during ischemia, inflammation, or hypoxia [15,90,93–96]. Studies
on the transcriptional mechanism controlling CD39 expression during limited oxygen
availability link the increased CD39 levels to transcriptional control of Sp1 [97,98].



Biomedicines 2022, 10, 1939 4 of 23

The second step for the extracellular production of adenosine is under the control of
the ecto-5′-nucleotidase CD73 [99]. This enzyme promotes the extracellular conversion of
AMP to adenosine and can be considered as a “pace-maker” for extracellular adenosine
generation. Similar to cd39−/− mice, gene-targeted mice for cd73 [100] experience increased
myocardial injury and are not protected by ischemic preconditioning [101]. As would be
expected based on its enzymatic function, cd73−/− mice experience attenuated concentra-
tions of cardiac adenosine in conjunction with elevated cardiac AMP concentrations during
myocardial injury [101]. Moreover, transcript, protein, and functional levels of CD73 are
increased under hypoxia [101]. Several studies link these increases to a transcriptional
program under the control of HIF1A. Studies with transcription factor binding assays
and promoter constructs had demonstrated that CD73 is a classic HIF target gene and
implicate HIF-dependent induction of CD73 in hypoxia-adaptive responses [93,94,100].
When exposed to myocardial ischemia-reperfusion, cd73−/− mice experience larger infarct
sizes and higher elevations of cardiac injury markers (troponin I) compared to control
animals [101]. Subsequent studies during myocardial injury demonstrate that the protec-
tive effects of pharmacologic HIF activator treatment is attenuated in cd73−/− mice [23],
thereby directly implicating HIF-dependent CD73 regulation in cardioprotection. Together,
these studies indicate that during myocardial ischemia, hypoxia signaling through Sp1
and HIF1A coordinate the transcriptional induction of CD39 and CD73, which leads to
the increased production of extracellular adenosine and thereby contributes to attenuated
myocardial infarct sizes (Figure 1).
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Figure 1. Hypoxia increases extracellular adenosine during myocardial ischemia. In the context of
hypoxia, different cell types such as inflammatory cells and platelets release large amounts of adenine
nucleotides (particularly ATP or ADP). The ectonucleotidases CD39 and CD73 convert ADP/ATP
to AMP and AMP to adenosine, respectively. Therefore, the level of extracellular adenosine during
hypoxia or inflammation critically depends on the expression level and enzymatic activity of CD39
and CD73. Hypoxia promotes the induction of CD39 expression through SP1 signaling, and of
CD73 expression through binding of the transcription factor hypoxia-inducible factor HIF1A to a
hypoxia-response element (HRE) within the CD73 promoter. ATP: adenosine triphosphate; ADP:
adenosine diphosphate; AMP: adenosine monophosphate.
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3.2. Role of HIF in Coordinating Extracellular Adenosine Signaling during Myocardial
Ischemia-Reperfusion Injury

As described above, myocardial ischemia-reperfusion injury is associated with in-
creased production of extracellular adenosine. Adenosine acts on four different receptor
subtypes, including Adora1, Adora2a, Adora2b, and Adora3. All these receptors have been
implicated in providing cardioprotection [101–104]. However, only the Adora2a and the
Adora2b are transcriptionally regulated by HIF. They are highly expressed on a variety of
different cellular sources, for example on cells of the innate immune system [96,105,106],
erythrocytes [18,20], cardiac myocytes [56], stromal or epithelial cells [107–110], regulatory
T-cells [111–113], and other immune cells [114]. Several previous studies have shown
that the Adora2b promoter contains an HRE and can be directly induced by HIF1A dur-
ing conditions of hypoxia [115], inflammation [108,116], or during myocardial ischemia-
reperfusion injury [23,56]. Similarly, the Adora2a has been previously identified as a
target for hypoxia-signaling through the HIF2A isoform [117]. Studies in murine models
of myocardial ischemia-reperfusion injury implicate both Adora2a and Adora2b in car-
dioprotection from ischemia-reperfusion. For example, murine studies demonstrate that
infarct size-reducing effects of treatment with an Adora2a agonist are linked to Adora2a
signaling on bone-marrow-derived T or B lymphocytes [118], which were subsequently
identified to be most likely CD4+ T cells [119]. Similar to the Adora2a, several studies
implicate the Adora2b in cardioprotection from ischemia-reperfusion injury. For example,
Adora2b−/− mice are not protected by ischemic preconditioning and exhibit larger my-
ocardial infarct sizes [101]. Moreover, treatment with a specific agonist for the Adora2b
is associated with a significant reduction in infarct sizes in murine [101] or rat [120] mod-
els of myocardial ischemia-reperfusion injury. Studies using treatment approaches with
the pharmacologic HIF activator dimethyloxalylglycine (DMOG) demonstrate abolished
cardioprotection by this treatment in Adora2b−/− mice, thereby directly linking HIF1A
and Adora2b signaling during cardioprotection [23]. Studies on the cellular source of the
Adora2b receptor implicate myeloid-dependent Adora2b signaling in cardioprotection
from ischemia-reperfusion injury [121,122]. Other studies suggest that Adora2b signaling
on cardiac myocytes or inflammatory cells can interface with the stabilization of circadian
rhythm signaling molecules, thereby contributing to the circadian oscillation of myocardial
injury [53,56,123–125]. In addition, a recent study demonstrated a regulatory function
for Adora2b signaling in promoting epicardial stromal cells′ HIF stabilization after my-
ocardial infarction as an additional crosstalk between Adora2b and HIF implicated in
cardioprotection after myocardial infarction [109]. Taken together, these findings demon-
strate HIF-dependent control of adenosine receptor expression and signaling in attenuating
myocardial injury during ischemia-reperfusion (Figure 2).

3.3. HIF-Dependent Promotion of Alternative Adenosine Receptor Activation

Several studies implicate the neuronal guidance molecule netrin-1 [126] in alterna-
tive mechanisms of adenosine receptor activation, particularly for the Adora2b [127,128].
Netrin-1 was discovered as a neuronal guidance molecule. Its function was originally
described as netrin-1 secreted from cells of the floor plate of the mammalian embryonic
neural tube [129–131]. Its secretion sets up a circumferential gradient of netrin-1, which in
some instances attracts or in other instances repels other axons to the ventral midline [126].
Receptors for secreted netrin-1 include, for example, the receptor DCC (deleted in colorectal
cancer) [132] and the UNC5 homologs (UNC5A, B, C, and D) [133] and neogenin-1 [134].
Importantly, the profound ability of the netrin-1 in guiding the repulse or outgrowth of
neuronal cells makes it an ideal candidate molecule for the coordination of inflammatory
cell migration [135].
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Figure 2. HIF protects against myocardial ischemia-reperfusion injury through the modulation of
adenosine receptor signaling events. Adenosine receptors belong to the G protein-coupled receptor
family and are composed of different subunits: the Gs alpha subunits (Gαs) and the beta-gamma
subunit complex (Gβ/γ). The adenosine receptors Adora2a and Adora2b have been identified as
target genes of HIF. Under hypoxic conditions, Adora2a and Adora2b are transcriptionally induced
by HIF2A and HIF1A, respectively. Activation of these receptors with their specific agonists showed
reduced infarct size in murine models of myocardial ischemia-reperfusion injury, suggesting their
role in mediating the cardioprotective effects of HIF. The cardioprotection provided is associated
with the activation of Adora2a signaling on lymphocytes and Adora2b signaling on myeloid cells
and cardiomyocytes. The red arrowhead denotes upregulation. A2A: Adenosine A2a Receptor.
A2B: Adenosine A2b Receptor.

Studies utilizing a two-hybrid screen of a human brain cDNA library discovered a
previously unreported interaction of netrin-1 with the Adora2b adenosine receptor [136].
Several studies using genetic and pharmacologic approaches demonstrate that netrin-1
can function to promote Adora2b signaling during inflammatory conditions outside of the
brain, including acute lung injury [47,128,137,138], inflammatory peritonitis [127], intestinal
inflammation [139,140], inflammatory kidney disease [141], corneal wound healing [142],
and also myocardial ischemia-reperfusion injury [143]. However, one study found incon-
sistent results by showing that the Adora2b is actually not expressed in neurons, and is
functionally not required for commissural axon guidance in the context of netrin-1 sig-
naling [144]. At present, it is not well understood how netrin-1 and the Adora2b interact,
including the possibility that netrin-1 could directly bind to Adora2b as its ligand, a role
of netrin-1-dependent enhancement of extracellular adenosine levels, or indirect effects
of netrin-1 by binding to a classic netrin-1 receptor and enhancing intracellular signaling
cascades under the control of the Adora2b. A recent study found that netrin-1 levels were
up-regulated in samples of patients who experienced myocardial ischemia-reperfusion
injury [143]. Subsequent studies in mice with deletion of netrin-1 in the myeloid lineage
(Ntn1loxp/loxp LyzM Cre+ mice) revealed selectively larger infarct sizes and higher troponin
levels, while other mouse lines with conditional deletion of netrin-1 in other tissues didn’t
experience a similar phenotype. Importantly, treatment studies with recombinant netrin-1
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demonstrated that the interaction of netrin-1 with myeloid-dependent Adora2b signaling is
critical in this pathway, suggesting an autocrine signaling pathway [143]. Previous studies
have found that the promoter of netrin-1 contains an HRE and that HIF1A binding to the
netrin-1 promoter dramatically increases netrin-1 expression of transcript and protein lev-
els [145]. Subsequent studies in myeloid cells confirmed that finding [146], including recent
studies showing that Hif1a-deficient myeloid cells fail to induce netrin during injury [47]. In
conjunction with these studies, it is conceivable that hypoxia-signaling coordinates netrin-1
and Adora2b signaling in an autocrine loop where neutrophil-derived netrin-1 attenuates
myocardial injury through signaling events on Adora2b receptors expressed on myeloid
cells of the innate immune system (Figure 3).

3.4. Impact of HIF Signaling on Extracellular Adenosine Uptake and Metabolism

Previous studies have implicated HIF in modulating extracellular adenosine uptake
and metabolism. In this context, the consequences of HIF transcriptional activity func-
tion towards attenuating extracellular adenosine uptake and intracellular metabolism,
thereby enhancing extracellular adenosine signaling events. Adenosine signaling is ter-
minated through equilibrative nucleoside transporters (ENTs), particularly ENT1 and
ENT2 [21,78,147]. Those are channels that allow the bidirectional flow of adenosine across
the cell membrane following its gradient. Extracellular production of adenosine is dramati-
cally increased and the gradient for adenosine is directed from the extracellular compart-
ment towards the intracellular side during ischemia-reperfusion injury. Therefore, deletion
or inhibition of adenosine transporters with an ENT inhibitor such as dipyridamole will
result in increased extracellular adenosine levels. Due to its function as an ENT inhibitor,
dipyridamole treatment has been used clinically for many decades during pharmacologic
stress echocardiography, where it increases coronary adenosine levels, and can unmask
coronary artery stenosis [148,149]. Importantly, for the hypoxia-adenosine link during
myocardial injury, previous studies have shown that HIF functions to repress both ENT1
and ENT2 during conditions of hypoxia or inflammation, and thereby functions to increase
extracellular adenosine levels [17,19–21,108,150]. Interestingly, mice with global deletion
of Ent1 experience elevated plasma levels of adenosine, which can contribute to cardio-
protection [151]. However, the individual contributions of ENT1 versus ENT2 during
myocardial ischemia-reperfusion injury have not been addressed, for example by using
genetic murine models. Nevertheless, global inhibition of ENTs with dipyridamole has
been implicated in cardioprotection from ischemia-reperfusion injury [152,153]. Taken
together, these studies highlight the likelihood that HIF-dependent repression of ENTs
contributes to cardioprotection from ischemia-reperfusion injury. However, it would be
important to define the individual contributions of ENT1 versus ENT2, as well as their
tissue-specific functions and adenosine receptor signaling events in experimental studies of
myocardial ischemia-reperfusion injury (Figure 4).
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Figure 3. HIF coordinates alternative adenosine receptor signaling via increasing netrin-1 expression
and signaling through Adora2b. During myocardial reperfusion injury, different types of inflam-
matory cells, such as neutrophils, monocytes, etc. infiltrate into the myocardial tissue. This further
exacerbates tissue hypoxia and tissue damage. During reperfusion, the transcript and protein levels
of Netrin-1 are robustly increased in patients with myocardial ischemia and in mice with myocardial
IR injury. The increased expression of netrin-1 is mediated by HIF1A activity, which can bind to
an HRE within the Netrin-1 promoter. The increased release of netrin-1 enhances Adora2b signal-
ing by interacting with myeloid Adora2b in an autocrine manner, dampens the accumulation of
inflammatory cells, and ultimately mediates cardioprotection against IR injury. The red arrowhead
denotes increase, and the dark blue arrowhead denotes decrease. A2B: Adenosine A2b Receptor.
NTN1: Netrin-1.

In addition to the repression of ENT1 and ENT2, HIF1A has also been shown to
repress a key metabolic process in intracellular adenosine metabolism. Adenosine can
be metabolized intracellularly to AMP by the adenosine kinase (AK). Studies on hypoxia
responses of AK demonstrate that hypoxia is associated with attenuated transcript and
protein levels of AK. Moreover, studies in genetic models directly implicate HIF1A in its
repression and demonstrate increased adenosine responses with AK repression [22]. Several
studies implicate this pathway in cardioprotection. For example, experimental studies in
rats treated with the AK inhibitor iodotubercidin demonstrate attenuated myocardial infarct
sizes [154]. Together, these studies indicate the likelihood that HIF1A-dependent repression
of AK contributes to adenosine-dependent cardio- protection from ischemia-reperfusion
injury (Figure 4).
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Figure 4. HIF contributes to attenuated adenosine uptake, reduced adenosine metabolism and con-
comitant cardioprotection during myocardial ischemia-reperfusion injury. Equilibrative nucleoside
transporters (ENTs) regulate the uptake of adenosine from the extracellular towards the intracellular
compartment where the major routes of adenosine removal is based on phosphorylation to AMP via
adenosine kinase, thereby modulating adenosine levels. During myocardial ischemia-reperfusion injury,
HIF transcriptionally represses ENT1, ENT2 and adenosine kinase, leading to elevated extracellular
adenosine levels. The inhibition of ENTs in mice with dipyridamole or global deletion of Ent1 showed
decreased intracellular adenosine uptake and increased extracellular adenosine levels, ultimately exert-
ing cardioprotective effects. These indicate the contribution of HIF-dependent repression of ENTs to
adenosine-mediated cardioprotection. ENT: equilibrative nucleoside transporter; AK: adenosine kinase.

4. HIF-Dependent Cardioprotection beyond Purinergic Signaling Events

In addition to the cardioprotective functions of HIF1A, several studies revealed that
HIF2A also contributes to cardioprotection from ischemia-reperfusion injury. A head-
to-head comparison of mice with genetic deletion of Hif1a or Hif2a in cardiac myocytes
revealed larger infarct sizes in Hif2aloxp/loxp Myosin Cre+ mice compared to Myosin Cre+
controls, whereas there was essentially no difference in infarct sizes between Hif1aloxp/loxp

Myosin Cre+ mice and controls [52]. A subsequent microarray screen for HIF2A targets
revealed the epidermal growth hormone amphiregulin (AREG) as the most differentially
regulated gene [52]. The epidermal growth factor receptor (EGFR or ErbB1) ligand AREG
has been identified to induce activation of the survival kinases Akt in the myocardium
to protect against ischemia-reperfusion injury [52]. Previous studies had shown that
AREG can be induced by hypoxia, independent of HIF1A [155–157]. Indeed, mice with
global deletion of Areg or mice with myocyte-specific deletion of the Areg-receptor ErbB1
(ErbB1loxp/loxp Myosin Cre+) demonstrated increased susceptibility to myocardial ischemia-
reperfusion injury [52,54]. Genetic studies in mice with Hif2a deletion confirmed the
regulatory function for HIF2A for the transcriptional induction of Areg. Interestingly,
HIF2A was also found to be critical for the induction of the AREG receptor ERBB1; however,
this was independent of a transcriptional role of HIF2A [54]. Together, those findings
demonstrate the cardioprotective functions of HIF2A expressed in cardiac myocytes by
coordinating the induction of AREG and signaling through the ERBB1 receptor (Figure 5),
independent of purinergic signaling events.

In contrast, the cardioprotective effects of HIF1A signaling have been suggested in
other tissue compartments than myocytes, for example in vascular endothelial cells. Mice
with Hif1a deletion specifically in vascular endothelial cells were not protected from is-
chemic preconditioning [158,159]. Moreover, previous studies have implicated HIF1A in
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mediating the effects of remote ischemic preconditioning [160]. This is an experimental
strategy where short repetitive episodes of ischemia to an arm or a leg provide organ protec-
tion to the heart or the kidneys from a subsequent ischemic injury [161,162] and have been
applied successfully in randomized trials of patients undergoing major surgery [163,164].
Experimental studies demonstrate that remote ischemic preconditioning leads to the stabi-
lization of HIF1A, and subsequent induction of IL-10 as HIF target genes. Cardiac IL-10
signaling is subsequently responsible for the observed cardioprotection [160]. Together,
these studies demonstrate that there are multiple functions of HIF1A and HIF2A to or-
chestrate cardioprotection. While HIF-dependent enhancement of extracellular adenosine
signaling is central to its role in cardioprotection, there have also been pathways described
that highlight HIF-dependent cardioprotection outside of purinergic signaling events.
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Figure 5. HIF2A induces AREG signaling in cardiac myocytes to provide cardioprotection. HIF2A
contributes to cardioprotection during myocardial IR injury. The epithelial growth factor amphireg-
ulin (AREG) has been identified as one of the target genes of HIF2A, which is significantly induced at
both mRNA and protein levels in cardiomyocytes during hypoxia. HIF2A was also found to increase
the expression of AREG receptor ERBB1 at the post-transcriptional level. These findings indicate
HIF2A protects against myocardial IR injury through AREG signaling. ERBB: Epidermal growth
factor receptor.
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5. Potential Therapeutic Approaches

Various drugs targeting the different steps of the HIF-adenosine link have been devel-
oped for myocardial protection. A summary of some of the published clinical trials and
ongoing clinical trials on these medications are presented in Tables 1 and 2.

5.1. HIF Activators

Since the advent of a new generation of HIF activators, such as PHD inhibitors, many
of them have finished phase 3 clinical trials and are currently applying for FDA approval
for the treatment of anemia in patients with chronic kidney disease. For example, in phase
III studies, roxadustat has been shown to increase hemoglobin levels and reduce cholesterol
levels in chronic kidney disease patients with or without dialysis [59,60]. Vadadustat also
underwent phase III clinical trials, showing an improved iron metabolism and anemia in
patients undergoing dialysis [57,165]. Two other orally available PHD inhibitors, dapro-
dustat and molidustat, have also completed phase III clinical trials for the treatment of
anemia associated with chronic kidney disease [166–168]. Although most previous clinical
research on these drugs has mainly focused on treating kidney disease, animal studies
have also demonstrated myocardial protection after PHD inhibitor treatment in rodent
models of myocardial ischemia-reperfusion injury or heart failure [169–173]. In addition,
PHD inhibitors are orally available and have shown favorable short-term safety profiles
that would make them ideal for the treatment of myocardial ischemia-reperfusion injury
for prophylactic treatments of patients undergoing cardiac surgery. For example, a phase II
clinical trial (ROXAMI, NCT04803864) on the efficacy and safety of roxadustat in the treat-
ment of patients with acute myocardial infarction is currently in the stage of recruitment.
Our anticipation is that more of these compounds will soon be trialed for cardioprotection
in patients.

5.2. Adenosine

Adenosine plays an important role in ischemia-reperfusion injury by improving post-
ischemic ventricular function, reducing neutrophil activity, and limiting myocardial necro-
sis and apoptosis [174]. Moreover, adenosine is crucial for ischemic preconditioning-
mediated cardiac protection in animal models by decreasing myocytes apoptosis after the
reperfusion [175]. Large-scale clinical trials have proven the efficacy of adenosine infusion
in reducing myocardial infarction size in patients experiencing acute MI [176–180]. The
Acute Myocardial Infarction Study with Adenosine (AMISTAD) trial found that adeno-
sine treatment resulted in a 33% relative reduction in infarct size, with a more profound
beneficial effect in patients with anterior wall infarction, although no reduction in the
composite endpoint (e.g., death, reinfarction, shock, congestive heart failure or stroke) was
observed [176]. The AMISTAD-II trial, which was designed as a follow-up trial of the
AMISTAD-I trial to focus on anterior wall ST-elevated patients, did not find adenosine
infusion to improve clinical outcomes. However, high-dose adenosine infusion significantly
reduced infarct size (infarct size: 11% in the high-dose group and 27% in the placebo group;
p = 0.023) [177]. In post-doc analysis of the AMISTAD-II trial, early adenosine infusion
with reperfusion therapy improved survival and the six-month composite outcome [178]
(Table 1). The Attenuation by Adenosine of Cardiac Complications (ATTACC) trial did not
demonstrate that low-dose adenosine improved left ventricular function at discharge in
patients with acute myocardial infarction receiving thrombolysis, but suggested a potential
benefit on long-term survival [179] (Table 1).
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In addition to patients with acute myocardial infarction, adenosine has also been
evaluated in patients undergoing cardiac surgery. It was used either as an adjunct to
intermittent blood cardioplegia or as an intra-aortic infusion before the release of aortic
cross-clamp [181–184], and has been shown to be cardioprotective in some clinical studies
(Table 1). Despite favorable trial results, the clinical utility of systemic adenosine is limited
by its ultra-short intravascular half-life (<1 s) and its undesirable peripheral hemodynamic
side effects such as bradycardia and hypotension. Therefore, a more selective adenosine
activator will be highly valuable in providing myocardial protection and avoiding side
effects of adenosine at the same time.

5.3. Adenosine Receptor Agonists

Neladenoson bialanate is a partial adenosine A1 receptor agonist. Preclinical studies
have found that this medication could provide potential cardioprotection by improving mi-
tochondrial function, preventing ventricular remodeling, and reducing fibrosis, thereby pre-
venting ischemic injury [185]. There are two randomized, double-blind, placebo-controlled,
dose-finding Phase 2b trials investigating the effects of short-term neladenoson treatment
on cardiac structure, function or exercise capacity in patients with heart failure. However,
no significant beneficial effects were found [186,187] (Table 1).

Selective A2A receptor agonists are also investigated as a therapeutic approach for car-
diovascular diseases. The adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas
Pharma Inc., Deerfield, Illinois, U.S.) is a commonly used agent for myocardial perfusion
imaging studies. The clinical utilization of this medication for myocardial protection has
not been validated.

Methotrexate, originally used as an anti-inflammatory drug for the treatment of
rheumatoid arthritis, has received attention in recent years for its anti-atherosclerotic effects
by increasing adenosine release and activating A2A receptors [188]. The cardiovascular
beneficial effect of methotrexate was initially found through several large retrospective
studies. Micha et al. [189], in a meta-analysis of 66,334 patients, found that methotrexate
at a median dose of 13–15 mg/week improved cardiovascular outcomes in patients with
systemic inflammation. Another meta-analysis by Roubille et al. [190] found that patients
with rheumatoid arthritis, psoriasis, or psoriatic arthritis on anti-rheumatic drugs treated
with methotrexate have a reduced risk of cardiovascular events. The additional study
indicated that methotrexate reduces cardiovascular related death mortality in patients with
rheumatoid arthritis [191]. Despite these promising findings, in a phase III clinical trial in
patients with stable coronary artery disease and Type 2 diabetes or metabolic syndrome
(CIRT), low-dose methotrexate failed to reduce the incidence of cardiovascular events
to meet the primary endpoint [192]. However, this trial was stopped early because low-
dose methotrexate failed to reduce levels of inflammatory mediators and the incidence of
cardiovascular events was similar to the placebo group (Table 1). Whether a higher dose
of methotrexate could provide myocardial protection in prospective RCT still needs to
be determined.

5.4. Adenosine Reuptake (ENT) Inhibitor

Equilibrative nucleoside transporter (ENT) inhibitors could serve as potential thera-
peutics for heart protection by potentiating the protective effects of adenosine. However,
currently, there are no clinical trials designed to investigate ENT inhibitors in myocardial
infarction. Only one study has attempted to assess the diagnostic and prognostic value
of serum Netrin-1 levels in patients undergoing coronary angiography for acute coronary
syndromes (Table 2). Future trials focusing on myocardial protection of ENT inhibitors will
hopefully shed some light on this promising therapy.
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Table 1. Summary of the cardiovascular outcomes in selected clinical trials of drugs targeting different steps of the adenosine pathway.

Studied Drug Published
Year Author Trial Name Patient Population Sample Size Intervention Assignments Outcome

Adenosine

1999 Mahhafey et al. [176]
Acute Myocardial Infarction

Study of Adenosine
(AMISTAD I)

Patient with AMI undergoing
thrombolytic therapy 236

Adenosine or placebo (saline) infusion
at 70 µg/kg/min for 3 h within 6 h of

MI onset.

Adenosine infusion resulted in a 33% less
infarct size compared with placebo.

2005 Ross et al. [177] AMISTAD-II
Patients with acute anterior

STEMI receiving thrombolysis
or primary angioplasty

2118

Infusion of adenosine at 50 or
70 µg/kg/min or placebo for 3 h
within 6 h of MI, starting within

15 min before fibrinolysis or
percutaneous intervention.

High-dose (70 µg/kg/min) adenosine
infusion significantly reduced infarct size

(placebo group vs. high-dose group:
27% vs. 11%).

2006 Kloner et al. [178] Post-hoc analysis of
AMISTAD-II

Patients with acute anterior
STEMI 2118 Infusion of adenosine at 50 or

70 µg/kg/min or placebo for 3 h.

In patients receiving early reperfusion
therapy (within 3.17 h after MI onset),

adenosine infusion significantly reduced
1-month and 6-month mortality and

incidence of composite clinical endpoints
(death, new onset CHF and re-hospitalization

for heart failure) at 6 months.

2003 Quintana et al. [179]
Attenuation by Adenosine of

Cardiac Complications
(ATTACC) study

Patients with acute STEMI
receiving thrombolysis 608

Adenosine or placebo (saline)
infusions at 10 µg/kg/min for 6 h at

the start of thrombolysis.

Adenosine infusion did not significantly
improve measurements of left ventricular

function when assessed by echocardiography
before hospital discharge. However, after

12 months of follow-up, adenosine treatment
appeared to be associated with a lower risk of
all-cause and cardiovascular mortality (about

4% reduction).

2014 Garcia-Dorado et al.
[180]

Myocardial Protection with
Adenosine During Primary

Percutaneous Coronary
Intervention in Pts With

STEMI (PROMISE)

Patients with STEMI receiving
percutaneous coronary

intervention (PCI) within 6 h of
symptom onset

201
Intracoronary infusion of 10mL saline

with or without 4.5 mg adenosine
immediately prior to PCI.

Adenosine treatment before PCI did not show
a beneficial effect on infarct size limitation.

However, it might benefit patients receiving
early PCI after symptom onset (less than

200 min) by reducing infarct size and
improving recovery of LVEF after MI.

1999 Mentzer et al. [181] N/A Patients undergoing
CABG surgery 253

Cold blood cardioplegia, or
cardioplegia containing 500 µM or

2 mM adenosine.

High-dose adenosine treatment was
associated with a lower rate of perioperative

myocardial infarction and adverse cardiac
events, and showed a trend toward lower

dopamine doses.

2018 Ammar et al. [184] N/A Patients undergoing
CABG surgery 60

Adenosine infusion (150 µg/kg/min)
for 10 min into the aortic root, starting

10 min before aortic
cross-clamp removal.

Adenosine postconditioning group showed
better cardiac function indices, lower cardiac
enzyme levels, lower incidence of arrhythmia,
less inotropic drug consumption, and shorter

ventilation time and ICU stay.
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Table 1. Cont.

Studied Drug Published
Year Author Trial Name Patient Population Sample Size Intervention Assignments Outcome

Neladenoson
bialanate (partial

adenosine
A1-receptor

agonist)

2019 Voors et al. [186]

A Trial to Study Neladenoson
Bialanate Over 20 Weeks in
Patients with Chronic Heart

Failure with Reduced
Ejection Fraction
(PANTHEON)

Patients with chronic heart
failure with reduced ejection

fraction (HFrEF)
427

Neladenoson bialanate (5, 10, 20, 30,
and 40 mg per day) or placebo over

20 weeks.

In patients with chronic HFrEF, neladenoson
bialanate did not show a dose-dependent
beneficial effect on cardiac structure and
function, cardiac biomarkers, or major

adverse cardiac events (cardiovascular death,
hospitalization or emergency visits for HF).

However, a dose-dependent decrease in renal
function was observed.

2019 Shah et al. [187]

A Trial to Study Neladenoson
Bialanate Over 20 Weeks in
Patients with Chronic Heart

Failure with Preserved
Ejection Fraction

(PANACHE)

Patients with heart failure with
preserved ejection fraction

(HFpEF)
305

Neladenoson bialanate (5, 10, 20, 30,
and 40 mg per day) or placebo over

20 weeks.

Neladenoson did not show a dose-dependent
improvement in exercise capacity (changes in

6-min walk test results) in patients with
chronic HFpEF.

Methotrexate

2019 Ridker et al. [192] Cardiovascular Inflammation
Reduction Trial (CIRT)

Patients with stable coronary
artery disease (MI or

multivessel coronary disease)
and Type 2 diabetes or
metabolic syndrome

4786 Low-dose methotrexate (15 to
20 mg/week) or placebo.

Low-dose methotrexate did not reduce
inflammatory markers levels and

cardiovascular events compared with
placebo.

2009 Moreira et al. [193]

Methotrexate Therapy on the
Physical Capacity of Patients
with Ischemic Heart Failure

(METIS Trial)

Patients with ischemic chronic
heart failure 50

Methotrexate (7.5 mg/week) or
placebo, plus folic acid (5 mg/week),

for 12 weeks.

For patients receiving methotrexate, their
NYHA score showed an improving trend, but

no significant change in 6-min walk test
results.

CABG: coronary artery bypass grafting; AMI: acute myocardial infarction; MI: myocardial infarction; STEMI: ST-elevation myocardial infarction; CHF: congestive heart failure;
PCI: percutaneous coronary intervention; LVEF: left ventricular ejection fraction; N/A: not available, NYHA score: New York Heart Association score.
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Table 2. Ongoing clinical trials targeting the Adenosine pathway for myocardial protection.

Studied Drug Trial Name Clinical Trials. Gov
Identifier Patient Population Purpose of Study

Adenosine

The Effect of
Adenosine on

Myocardial Protection
in Intermittent Warm
Blood Cardioplegia

NCT02681913
Patients presenting

for mini-invasive mitral
valve surgery

To investigate the
cardioprotective effects of

adenosine enriched cardioplegia
in patients

undergoing minimally invasive
mitral valve surgery.

Adenosine’s Effect on
STunning Resolution in

Acute Myocardial
Infarction

NCT05014061 Patients with acute
STEMI

To assess the effect of 6-h
adenosine infusion started

before revascularization on the
recovery of myocardial akinesia
and cardiac function at 48 h in

patients with STEMI.

Netrin-1

The Role of Netrin-1 in
Acute Coronary

Syndrome
(ACS-NETRİN-1)

NCT04027127

Patients diagnosed with
acute coronary syndrome

(ACS) and received
coronary angiography

To determine the effect of serum
Netrin-1 levels on diagnosis and
prognosis in patients presenting

to emergency department
with ACS.

STEMI: ST-elevation myocardial infarction; ACS: acute coronary syndrome.

6. Summary and Future Perspectives

Purinergic signaling events through the activation of extracellular adenosine receptors
have long been implicated in cardioprotection from ischemia-reperfusion injury [152,194–197].
More recent studies using mice with the genetic deletion of adenosine receptors globally,
or in individual tissue compartments, have provided additional insight into mechanisms
of adenosine-dependent cardioprotection. Moreover, many of these studies were able to
link purine metabolism and signaling with the activity of hypoxia-signaling and highlight
regulatory functions of HIF in coordinating adenosine-mediated cardioprotection. We are
now at a stage where multiple pharmacologic tools are available to modulate the hypoxia-
adenosine link for the treatment or prevention of myocardial ischemia-reperfusion injury.
These strategies include the use of orally available HIF activators, adenosine receptor
agonists, or adenosine transport inhibitors. We anticipated that clinical trials in patients
with myocardial infarction or in patients undergoing cardiac surgery will help to bring
those pharmacologic interventions from the research laboratory to the patient’s bedside.
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