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Immune thrombocytopenia (ITP) is an autoimmune disease
with the typical symptom of a low platelet count in blood. ITP
demonstrated age and sex biases in both occurrences and prog-
nosis, and adult ITP was mainly induced by the living environ-
ments. The current diagnosis guideline lacks the integration of
molecular heterogenicity. This study recruited the largest
cohort of platelet transcriptome samples. A comprehensive pro-
cedure of feature selection, feature engineering, and stacking
classificationwas carried out to detect the ITPbiomarkers using
RNA sequencing (RNA-seq) transcriptomes. The 40 detected
biomarkers were loaded to train the final ITP detection model,
with an overall accuracy 0.974. The biomarkers suggested that
ITP onset may be associated with various transcribed compo-
nents, including protein-coding genes, long intergenic non-
coding RNA (lincRNA) genes, and pseudogenes with
apparent transcriptions. The delivered ITP detection model
may also be utilized as a complementary ITP diagnosis tool.
The code and the example dataset is freely available on http://
www.healthinformaticslab.org/supp/resources.php
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INTRODUCTION
Immune thrombocytopenia (ITP), previously known as immune
thrombocytopenic purpura, is an acquired immune-mediated disease
characterized by a blood platelet count less than 100 � 109 per liter.1

ITPmay develop in both children and adults, and female young adults
are more prevalent among ITP patients.2,3 Pediatric ITP may be
fundamentally different from adult ITP since the rate of chronic
ITP in adults is much higher than that in children.4 Symptoms like
platelet aggregations in ITP patients may be partly treated by anti-
platelet glycoprotein VI phage antibodies,5,6 while the phages origi-
nated as bacterial virulence factors.7

ITP has three clinical phases.1 The first 3 months after the diagnosis is
the newly diagnosed phase. The second phase refers to persistent ITP
lasting between 3 and 12 months after diagnosis. The last phase is the
chronic ITP phase, in which the patient carries the symptoms beyond
Molecular T
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12months. The first phase is sometimes called acute ITP, and patients
may develop severe bleeding symptoms that require immediate inter-
ventions.8 Most adult ITP patients will progress into the chronic
phase.9 The heterogeneous causes of thrombocytopenia make ITP
diagnosis a major challenge in haematology.10

Different molecular biomarkers are observed to be associated with
ITP diagnosis and prognosis. Most of the transcriptomic biomarkers
are investigated in T cells. The interleukin (IL) genes IL-10 and IL-17
were differentially expressed in CD4+ T cells in the corticosteroid
refractory ITP.11 The C-X-C motif chemokine ligand 13 (CXCL13)
has elevated expression levels in the plasma of ITP children, and its
transcription regulation may be repressed by the CD4+ T cells with
miR-125-5p inhibitors.12 Serum proteins may also serve as good
indicators of ITP treatment responses. The protein level of
haptoglobin (Hp) in serums is measured by matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectrom-
eter (MS) technology and is observed to be positively correlated
with the platelet count after the invasive treatment splenectomy.13

This study presents the largest cohort of platelet ITP samples and
generates RNA sequencing (RNA-seq) transcriptomes for the
herapy: Nucleic Acids Vol. 28 June 2022 ª 2022 The Author(s). 477
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Table 1. Summary of the recruited cohort

ITP Control

Female Male Female Male

Samples 46 13 31 24

Averaged age 55.69565 62.84615 48.19355 47.375

There are two groups of participants: the ITP patients and the controls. Each group con-
sists of female and male samples. The numbers of samples are given in the row “Sam-
ples,” and the averaged ages of these sample groups are in the row “Averaged age.”

Figure 1. Evaluation of different classifiers on the ITP diagnosis problem

The five classifiers are evaluated, including LR, RF, SVM, KNN, and AdaBoost. The

horizontal axis lists the classification performance metrics, i.e., Sn, Sp, MCC, ROC,

and Acc. The vertical axis is the value of the performance metrics. Feature engineer-
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detection of ITP biomarkers. A procedure of feature selection, feature
engineering, and classification is comprehensively evaluated. The best
ITP detection model using only 40 transcriptome features is
delivered, and it achieves an overall accuracy 0.974. Some interesting
biological inferences are also discussed.
ing and step 5 optimizes the diagnosis model. All boxed text is functional module

names utilized in the pipeline.

RESULTS
Sample summarization

This study recruited a cohort of 59 ITP patients and 55 controls, as
shown in Table 1. There were 46 female and 13 male ITP patients.
The control group consists of 31 female and 24 male samples. The
control samples were recruited to match the age distribution of the
ITP patients, with the t test p value 0.4752 (>0.05).

The experimental protocol of this study was approved by the ethics
committee of the Yueyang Hospital. All participants in this study
signed the informed-consent forms. This study was approved by
the Ethical Committee of the Yueyang Hospital in accordance with
the 1964 Helsinki Declaration. Written informed consent was ob-
tained from all participants.
Comparison of different classification algorithms

Firstly, we fixed the feature-selection module with the following
parameter-value choices for the RNA-seq transcriptome data.
The transcriptome features were screened by the L1-regularization
algorithm least absolute shrinkage and selection operator (Lasso),
and only the features with non-zero weights were kept for further
analysis. Then, the pairwise evaluation of the inter-feature Pearson
correlation coefficient (PCC) was carried out. For a pair of features,
F(i) and F(j), F(j) was removed if PCC(F(i), F(j)) > threshold and
weight(i) > weight(j), where weight(i) and weight(j) were the Lasso
weights of these two features.

We used a stratified method to split the samples into a training set
(90%) and an independent test set (10%). Stratified k-fold cross
validation is a variation of the k-fold cross validation that returns
the stratified folds by preserving the same percentage of samples for
each class in each fold. On the training set, we utilize the stratified
5-fold cross validation (S5FCV) strategy to train and tune the
parameters and, finally, tested our model on the test set. As shown
in Figure 1, all five classifiers achieved at least 0.884 in comparison
of accuracy (ACC), suggesting that the biomarker-detection module
in this study works effectively. The classifiers Logistic Regression
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(LR) and Support-Vector Machine (SVM) achieved the best receiver
operating characteristic (ROC) (0.978) for the ITP diagnosis model,
while another classifier, Random Forest (RF), achieved the best
ACC (0.935). The classifier RF also performed the best in Sn
(0.915) and Sp (0.962). LR only achieved an Sn of 0.881, which may
not be a good choice with more mis-classified ITP patients (the pos-
itive samples). So, the following sections used RF as the default
classifier.

Comparison of different feature-selection algorithms

Different feature-selection algorithms were evaluated for the S5FCV
performances of the default classifier RF, as shown in Figure 2. The
framework SelectFromModel of the Python package sklearn with
default parameters was carried out to evaluate the six feature-selec-
tion algorithms in Figure 2, i.e., Ttest, Ftest, Ridge, Lasso, Variance
Threshold (VThresh), and Laplacian score (LS). Lasso and Ridge
achieved the best ACC (0.935) for the ITP diagnosis model, but
Ridge had the worst performance on Sp (0.925). Ttest and Ridge
performed similarly well in ACC and ROC. Ridge outperformed
Ttest in Sn, and Ttest outperformed Ridge in Sp. Ttest performed
the worst in Sn among the four supervised feature-selection algo-
rithms, and the data suggested that this popular statistical-evalua-
tion algorithm didn’t work well on selecting a subset of features
with the best classification performance. The performance of the
two unsupervised feature-selection algorithms was lower than that
of all the supervised learning feature-selection algorithms. Figure 3A
gives the Ttest ranks of the 50 Lasso-selected features. Only 11 fea-
tures are ranked as top 50 by Ttest, the last feature is ranked 23,696
out of the total 33,493 features, and 34 out of 50 (68.0%) Lasso-
selected features are ranked more than 100. Figure 3B demonstrates
that the performance of the prediction model keeps being improved
by adding the 50 Lasso-selected features one by one in their Ttest
ranks. This observation and Figure 2 suggest that Lasso may select
a feature subset with better prediction performances than Ttest,
Ftest, and Ridge.



Figure 2. Performances of different feature-selection algorithms on

detecting the ITP biomarkers

The four evaluated feature-selection algorithms are Ttest, Ftest, Ridge, Lasso,

VThresh, and LS. The horizontal axis lists the performance metrics Sn, Sp, MCC,

ROC, and Acc. The vertical axis is the value of these performance metrics.
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Evaluation of the contributions of LDA and SVD

The 50 Lasso-selected transcriptome features (denoted as Lasso50)
were further refined by two feature-engineering algorithms, linear
discriminant analysis (LDA) and singular value decomposition
(SVD), as shown in Figure 4. SVD calculated the first two components
as the engineered features, while for the LDA, the number of compo-
nents needs to be less than the number of the class minus one; there-
fore, we get one component for LDA. LDA + SVD denotes the union
of the one LDA component and the two SVD components. The
Lasso50-based prediction model achieved an ACC of 0.929. LDA
achieved the same score to the Lasso50 in ACC, and LDA + SVD
improved the LDA model by 0.017 in Sn. The engineered component
features of LDA + SVD performed better (0.008 in Sn) than the
Lasso50-based model, but both LDA (0.002) and LDA + SVD
(0.019) models outperformed the Lasso50-based model in Matthews
correlation coefficient (MCC).We looked into the detailed percentage
of variance explained by each SVD component, as shown in Figure 4B.
The data suggested that the first SVD component alone explained
38% of the total sample variances, and the first two components ex-
plained almost half of the sample variances, so it is reasonable to
observe that only the first two components of LDA and SVD may
simultaneously improve model performance and reduce feature
dimensions.

Dot plots were generated to demonstrate the discriminative powers of
the SVD components and the raw transcriptome features, as shown in
Figure 5. Figure 5A gives an intuitive illustration that the first two
SVD components separate well the two groups of samples, while
the top-two Ttest-ranked features generate some mis-classifications,
as shown in Figure 5B. It is interesting to see that both of the top-
two Ttest-ranked features are from mitochondrion. The first ranked
feature ENSG00000210082 encodes a ribosomal RNA gene MT-
RNR2, and the second ranked feature ENSG00000198888 encodes
the protein-coding geneMT-ND1. This observation supports the pre-
vious observation that ITP patients demonstrated various platelet
mitochondrial abnormalities,15,16 but the Ttest-ranked features may
be further improved by more sophisticated feature selections and
engineering algorithms for their ITP prediction performances.

Optimization the parameters of the prediction model

The pipeline in this study was further refined by evaluating different
value choices for the following three parameters, as shown in Figures 6
and S1. All prediction-performance metrics were calculated using the
S5FCV strategy. The parameter nFeatures is the number of features
with the largest weights assigned and selected by Lasso. There are
five values, {30, 40, 50, 60, 70}, for this parameter. The second
parameter, nComponents, is the number of the first few components
calculated by both LDA and SVD, and its value choices are {1, 2, 3, 4,
5}. The third parameter, nEstimators, is the number of decision trees
used in the classifier RF. The five values {100, 200, 300, 400, 500} are
evaluated for nEstimators. A grid-search strategy was carried out for
all value combinations of these three parameters. Due to the limited
space in this work, the detailed data are illustrated in Figures 6 and S1.

Figure 6 illustrates the value choice nFeatures = 40 when the best
accuracy, ACC = 0.956, was achieved. This best model chose nFea-
tures = 40, nComponents = 2, and nEstimators = 100 and achieved
Sn = 0.932, Sp = 0.982, and MCC = 0.914.

The five classifiers were stacked as a better classifier

A stacking prediction strategy was utilized to build a better ITP
prediction model, and its prediction performance was compared
with the previous best model in Figure 7. The prediction results of
all the five classifiers LR/SVM/K-nearest neighbor (KNN)/adaptive
boost (AdaBoost) were loaded as the input to an additional classifier
to generate the final prediction result. The additional classifier was
also selected in LR/SVM/KNN/AdaBoost/RF. The samples were
randomly split into a training dataset (80%) and a test dataset
(20%). Each classifier was exerted on the training dataset for 20
random runs, and its prediction result was averaged over the 20
runs. Overall, the final stacked RF model achieved ACC = 0.974.
Figure 7 demonstrated that the stacking model (StackingModel) out-
performed the best model in the above sections (PrevBestModel) on
four out of five metrics (0.051 in Sn, 0.054 in MCC, 0.06 in ROC, and
0.039 in ACC).

In this study, in order to better verify the ability of the stacking model,
except for the above-mentioned five machine-learning models, we
used five additional machine-learning models, including Linear
Regression (LiR),17 Extremely Randomized Trees (ET),18 Gaussian
Process Classifier (GP),19 Gradient Boosting Classifier (GB),20 and
Naive Bayes (NB).19 We found that the prediction model only
achieved 0.962 in ACC, which is lower than the previous best
ACC = 0.974. The experimental results suggested that more meta-
learners may not deliver better results.

Biological inferences from the detected biomarkers

The final model used 40 RNA-seq transcriptome features of which
19 features are annotated as protein-coding genes and 3 are as long
intergenic non-coding RNAs (lincRNAs), as shown in Table 2. It is
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 479
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Figure 3. Ttest evaluation of the 50 Lasso-selected

features

(A) The Ttest ranks of the 50 features selected by Lasso.

The vertical axis is the Ttest rank of each of the 50 Lasso-

selected features.

(B) The S5FCV prediction performances of the Incre-

mental Feature Selection (IFS)14 strategy of the 50 Lasso-

selected features. The vertical axis gives the value of the

prediction-performance metrics. The horizontal axis lists

the 50 Lasso-selected features by their Ttest ranks in

ascending order for both subfigures.
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interesting to observe that 15 biomarkers are annotated as pseudo-
genes, but their expressions contribute to the ITP classification.

Firstly, we evaluated the enriched Gene Ontology (GO) categories of
the 40 detected biomarkers using the online systemDAVID.21 The sta-
tistical significance p value was corrected by the Bonferroni method.22

The biological processes GO: 0010729 (positive regulation of
hydrogen peroxide biosynthetic process), 0042773 (ATP synthesis
coupled electron transport), and 1900118 (negative regulation of
execution phase of apoptosis) were enriched in the 40 biomarkers
with the Bonferroni-corrected p values 8.63 � 10-4, 1.21 � 10-3, and
1.08 � 10-2, respectively. ITP was known to be associated with the
platelet apoptosis23 but remained to be confirmed for its connections
with hydrogen-peroxide synthesis and ATP synthesis. It is also inter-
esting to observe that the molecular function GO: 0048019 (receptor
antagonist activity) was also enriched in the 40 biomarkers, as
confirmed by the elevated plasma levels of IL-1 receptor antagonist
(Ra) in acute pediatric24 and adult ITP patients.25

T cell dysfunctionmay stimulate auto-antibody productions in ITP.26,27

The biomarker gene AANAT (aralkylamine N-acetyltransferase;
transcriptome featureEnsembl: ENSG00000129673) is located on chro-
mosome 17 and showed rhythmic expressions on the expression levels
and phosphorylation levels in T cells of the bone marrow and spleen.28

Another biomarker gene, TNFSF14 (tumor necrosis factor superfamily
member 14; transcriptome feature Ensembl: ENSG00000125735), facil-
itates the increased production of CD8 central memory t cells in vivo.29

Manresa et al. observed that the increased production of TNFSF14 by
T cells induced the transcription of inflammatory genes in the esopha-
geal fibroblasts in eosinophilic esophagitis.30
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One of the symptoms of ITP is low platelet pro-
duction in the blood, and ITP is mainly diag-
nosed by a low platelet count in a blood
test.31,32 The detected biomarker gene MAOB
(monoamine oxidase; transcriptome feature En-
sembl: ENSG00000069535) was not observed to
be associated with ITP, but its low activities in
platelets are associated with various impulsive
behaviors33 and alcoholism.34 A case study
demonstrated the connection between the gene
monoamine oxidase inhibitor (MAOI) and the
resolving of non-ITP.35 So, the aberrant expres-
sion of MAOB in platelets of ITP patients may be worth further
experimental validation.

The altered methylation of the biomarker mitochondrial gene
MT-CO2 (mitochondrially encoded cytochrome-C-oxidase II;
transcriptome feature Ensembl: ENSG00000198712) in platelets
is associated with the prognosis of various complex diseases, e.g.,
cardiovascular disease 36,37 and Parkinson’s disease.38 This study
demonstrated that the expression level of MT-CO2 is significantly
associated with ITP by p = 6.78 � 10-26. MT-CO2 may serve
as a candidate diagnosis biomarker of ITP on the transcriptome
level.

Enriched functions in the close neighbors of the biomarkers

We further investigated the direct neighbors to the 40 detected
biomarkers based on the STRING database.39 There were 5,296 genes
interacting with the 40 detected biomarkers. We assumed that these
direct neighbors were closely associated with these ITP biomarkers
and the functions enriched in these neighbors together with the bio-
markers. DAVID does not allow for the analysis of more than 3,000
genes, so this section used the tool ShinyGO 40 to detect the enriched
functions within these 5,296 + 40 = 5,336 genes. There were 79
molecular functions enriched (Bonferroni-corrected p value < 0.05)
in the gene list, as shown in the Table S1. It is interesting to obsere
that the molecular function GO: 0009055 (electron transfer activity)
was enriched with the Bonferroni-corrected p value = 1.18 � 10-26.
The top-ranked GO terms included binding capabilities to small
molecule (GO: 0036094, corrected p = 2.91 � 10-33), RNA (GO:
0003723, corrected p = 1.47 � 10-25) and nucleoside phosphage
(GO: 1901265, corrected p = 7.88 � 10-24), etc.



Figure 4. Prediction performances of the feature-engineering algorithms LDA and SVD

(A) The horizontal axis lists the prediction performance metrics Sn, Sp, MCC, ROC, and ACC. The vertical axis is the value of these performance metrics.

(B) The percentage of variance explained by each of the first 20 SVD components.
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DISCUSSION
This study screened ITP biomarkers using RNA-seq platelet tran-
scriptomes. A series of comprehensive machine-learning algorithms
were utilized to find the best subset of biomarkers. The final ITP pre-
diction model was based on 40 transcriptome features and two clin-
ical variables (age and sex) and achieved an overall accuracy of 0.974.
It is of interest to observe that both protein-coding genes and
lincRNA genes contribute to the ITP prediction model. Some of the
biomarker genes are closely associated with the two major symptoms
of ITPs, i.e., T cell dysfunctions and aberrant platelet activities.

The gene-expression patterns of all 40 biomarker genes across
different human tissues were obtained from the GTEx database,41

as shown in Figure S2. Many biomarkers showed highly tissue-spe-
cific expression patterns, e.g., the genes DNAH7 and AANAT
were only highly expressed in the testis, while the gene KLHDC8A
was highly expressed only in the ovary. Multiple genes showed high
expressions in different brain regions, including DNAH10OS,
NORAD, MT-ATP8, HNRNPUL2, MT-RNR2, and MT-CO2, but
most of the 40 biomarkers were expressed at relatively low levels in
the whole blood. Combined with their ITP-specific expression pat-
terns, the data suggested that the abnormal expressions of these tis-
sue-specific expressed genes might have contributed to ITP’s onset
and progression, and it is important to investigate ITP’s molecular
mechanisms using the platelet cells.
As far as we know, this study presents the largest cohort of ITP RNA-
seq platelet transcriptomes. This dataset and these experimental data
may facilitate a better understanding of ITP onset and developmental
mechanisms.

MATERIALS AND METHODS
Ethics approval and consent to participate

This study was approved by the Ethical Committee of the Yueyang
Hospital in accordance with the 1964 Helsinki Declaration. Written
informed consent was obtained from all participants.

Clinical sample collection

This cohort of ITP patients and healthy controls was recruited
between August 10, 2017, and February 21, 2019, at the Shanghai
Yueyang Integrated Traditional Chinese Medicine and Western
Medicine Hospital (abbreviated as Yueyang Hospital), affiliated
with the Shanghai University of Traditional Chinese Medicine.
This study was approved by the Ethical Committee of the
Yueyang Hospital in accordance with the 1964 Helsinki
Declaration. Written informed consent was obtained from all
participants.

The disease ITP was diagnosed based on the criteria of the American
Society of Hematology.42 Thrombocytopenia was defined as a platelet
count <100 � 109 platelets per liter. All ITP patients enrolled in this
Figure 5. Dot-plot visualization of SVD and Ttest

(A) Dot plot of the first two components calculated by SVD.

The horizontal and vertical axes are the first and second

components calculated by SVD.

(B) Dot plot of the top two features ranked by Ttest. The

horizontal and vertical axes are the top-ranked first and

second features by Ttest. Dots represent the ITP samples

and controls in red and blue, respectively.
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Figure 6. Optimizing the parameters of nComponents and nEstimators when nFeatures = 40

The matrices of the different parameter choices are colored in the grayscale background. A darker background suggests a better value of that metric.
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study either had no treatment history or had not received glucocorti-
coids for at least 3 months. Patients were excluded from this cohort if
they carried these complications, i.e., diabetes, hypertension, cardio-
vascular diseases, pregnancy, active infection, or autoimmune dis-
eases other than ITP.
Platelet isolation and RNA extraction

Peripheral whole-blood samples of all recruited participants were
drawn and kept in tubes with ethylenediamine tetraacetic acid
(EDTA) at the Yueyang Hospital. To maintain platelet RNA quantity
and quality, the samples were collected and processed for platelets
within 24 h. The platelet-rich plasma was processed by a 20-min,
1-kilo RPM (kRPM) centrifugation at 4�C for platelet isolation. To
avoid hemocyte contamination in the platelets, only 9/10th platelet-
rich plasma was transferred to the 1.5-mL tubes. Then, the platelet
samples were pelleted by a 20-min, 3-kRPM centrifugation. The
platelets were then white precipitated by removing the supernatant.
The platelets were washed with PBS and extracted with 15-min
Figure 7. Performance of the stacking model

The horizontal axis lists the prediction-performance metrics. The vertical axis is the

value of these performance metrics. The two series of histograms are for the

stacking model (StackingModel) and the best prediction model in the above sec-

tions (PrevBestModel).
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3-kRPM centrifugation. The PBS was removed by a 10-mL pipette.
The Thermo Scientific’s stabilizer RNAlater was used to resuspend
the precipitated platelets. The extracts were frozen at -20�C. A hema-
tology analyzer was used to quantitatively measure the hemocyte
contamination in the samples.

This study used Eppendorf tubes.

Sample purity

The sampling quality-control method was utilized to process
sequencing samples. Quality control was performed on 10 separated
platelet samples, and the average purity obtained by the test was
93.7%.

Library construction and mRNA sequencing

The cDNA library construction and mRNA sequencing were carried
out following the procedures described in the previous study.43

Sequencing data processing and differential analysis

The software FASTP was used to preprocess raw sequencing data in
the format fastq through quality control and adapter/primer re-
movals.44 Clean data were aligned to human Ensembl v.91.

FASTP was used to purify raw data of fastq format through removal
of adapters, PCR primers, and low-quality reads. Clean data were
aligned to human Ensembl 91 using the software STAR v.2.4.2a.45

The generated alignment files in the format BAM were loaded to
the software HTSeq v.0.6.1 to estimate the gene-expression levels.46

Differential expression analysis was performed by the R Bioconductor
package DESeq2.47 The parameters of DESeq2 were set to base mean
>100, |log2(fold change)| (|log2(FC)|) >1, and false discovery rate
(FDR) <0.05.



Table 2. Gene annotations of the 40 detected biomarkers

ENSG_code Chr Gene Gene type

ENSG00000259834 1 AL365361.1 lincRNA

ENSG00000213026 1 CFL1P4 processed_pseudogene

ENSG00000162873 1 KLHDC8A protein_coding

ENSG00000229344 1 MTCO2P12 unprocessed_pseudogene

ENSG00000213110 2 AC019178.1 processed_pseudogene

ENSG00000226247 2 SUPT4H1P1 processed_pseudogene

ENSG00000229758 2 DYNLT3P2 processed_pseudogene

ENSG00000118997 2 DNAH7 protein_coding

ENSG00000269028 3 MTRNR2L12 protein_coding

ENSG00000248360 4 LINC00504 lincRNA

ENSG00000223908 5 AC068657.1 processed_pseudogene

ENSG00000271043 5 MTRNR2L2 processed_pseudogene

ENSG00000164576 5 SAP30L protein_coding

ENSG00000196821 6 C6orf106 protein_coding

ENSG00000146587 7 RBAK protein_coding

ENSG00000253276 7 CCDC71L protein_coding

ENSG00000226824 7 AC006001.2 sense_intronic

ENSG00000229897 9 SEPT7P7 processed_pseudogene

ENSG00000175787 9 ZNF169 protein_coding

ENSG00000213260 10 YWHAZP5 processed_pseudogene

ENSG00000254616 11 AP001775.1 processed_pseudogene

ENSG00000188997 11 KCTD21 protein_coding

ENSG00000214753 11 HNRNPUL2 protein_coding

ENSG00000258359 12 PCNPP1 processed_pseudogene

ENSG00000250091 12 DNAH10OS protein_coding

ENSG00000205240 13 OR7E36P unprocessed_pseudogene

ENSG00000140254 15 DUOXA1 protein_coding

ENSG00000263177 16 MTND1P8 processed_pseudogene

ENSG00000235554 17 AC005822.1 processed_pseudogene

ENSG00000129673 17 AANAT protein_coding

ENSG00000185262 17 UBALD2 protein_coding

ENSG00000267541 18 MTCO2P2 processed_pseudogene

ENSG00000125735 19 TNFSF14 protein_coding

ENSG00000260032 20 NORAD lincRNA

ENSG00000210082 MT MT-RNR2 Mt_rRNA

ENSG00000210049 MT MT-TF Mt_tRNA

ENSG00000198712 MT MT-CO2 protein_coding

ENSG00000198786 MT MT-ND5 protein_coding

ENSG00000228253 MT MT-ATP8 protein_coding

ENSG00000069535 X MAOB protein_coding

The column “ENSG_code” lists the ensemble IDs of features generated in the RNA-seq
transcriptome processing. The columns “Chr” and “Gene” give the chromosome this
gene locates and the gene symbol. The column “Gene type” is which category this
gene belongs to.

www.moleculartherapy.org
Feature-selection algorithms

Feature-selection algorithms were utilized to find a set of biomarkers
with the best discrimination power of ITP samples from the con-
trols.48 The so-called Occam’s Razor principle suggests that a simpler
model is preferred over a complicated one if these two models
perform similarly.49,50 A feature-selection algorithm may signifi-
cantly reduce the dimensionality of the transcriptome datasets for a
binary disease diagnosis model.51–54 It is also anticipated that the
training and prediction times of a disease diagnosis model will be
shortened by selecting a subset of features from the transcriptome
dataset. This study evaluated the following feature-selection
algorithms.

The analysis of variance (ANOVA) algorithm measures the difference
between the means of two groups of samples.55 ANOVA uses F-test
to calculate the statistical significance of rejecting the null hypothesis
of the mean equality. The F-test assumes that the data follow the
F-distribution.56

T test (Ttest) is a popular statistical test when a feature has different
values in two groups of samples with the null hypothesis that the two
variables have the same normal distribution.57,58 The statistical
p value measures how probable it is that the two variables will
follow the same normal distribution. Ttest has been widely used in
many different data types, including electrocardiograms (ECGs),58

RNA-seq,59 and metaproteomics.60

Ridge (Ridge) is a regression model that assigns balanced weights to
the features,61 and the features are ranked in descending order by
their weights, while the Lasso algorithm exerts both regularization
and feature selection.62,63 Lasso assigns very sparse weights to the fea-
tures, and only the features with non-zero weights are selected for the
regression model. The features with non-zero weights are ranked in
descending order by their weights.

The above feature-selection algorithms are all based on
supervised learning. To avoid the bias of supervised signals, we
also evaluated two unsupervised feature-selection algorithms.
VThresh is an unsupervised feature-selection algorithm that removes
all low-variance features. LS64 utilizes the observation that
samples from the same class are often similar to each other. It evalu-
ates the power of locality preserved within the candidate feature
subsets.

Binary-classification algorithms

The binary-classification problem was investigated between ITP
patients and the control samples. The following binary classifiers
are utilized for this task.

The statistical classifier LR uses the logistic function to describe the
binary-classification task.65,66 The logistic function evaluates the exis-
tence probability of ITP disease.
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SVM is another popular binary classifier.67 SVM attempts to maxi-
mize the margins of a hyperplane between the control samples and
the patients. SVMmay be used on various data types, e.g., one-hot en-
coded data,68 imaging data,69 etc.

KNN is another simple and effective supervised learner.70,71 KNN
evaluates the distances of the query samples against all training sam-
ples and collects the top k-closest neighbors to make the prediction.
The query sample is assigned to the most frequently appearing class
label of these top k-closest neighbors.

RF is a tree-based ensemble-learning algorithm.72 This classifier
RF assembles the predictions of multiple decision tree classifiers,
and the final result of RF is determined by themajority voting strategy.

Another ensemble-classification framework, AdaBoost, is also evalu-
ated for its prediction performance on the investigated ITP diagnosis
problem. AdaBoost may be used with many supervised-learning algo-
rithms, and this study chose the decision tree to work with AdaBoost.
AdaBoost iteratively tunes the weight of multiple weakly boosted clas-
sifiers and may perform less susceptibility to the overfitting
challenge.73

Feature-engineering algorithms

The final step of the experimental procedures is to calculate new
features with enriched discrimination information from the original
features.74–77 Some datasets may be very sparse, and the individual
features may not contribute significant discrimination powers to
the final prediction models. This study hypothesizes that the
feature-decomposition technique may generate new features with en-
riched discrimination powers.

Firstly, this study uses truncated SVD.78,79 SVD calculates the
singular value decomposition without centering the data matrix
and performs very well with sparse data. Also, SVD may efficiently
calculate the user-defined number of singular values.

The second feature-engineering algorithm is the LDA.80 LDA doesn’t
calculate the overall covariance matrix and may calculate the singular
values for large datasets.

Both SVD and LDA may be used to calculate new features, and the
feature dimension may be reduced by choosing the first few engi-
neered features.81

Deep learning has become a research hotspot in recent years for its
powerful representation-learning capability. Representation-learning-
based disease diagnosis models are also gaining increased attention in
the literature. Su et al.82 proposed the Siamese response deep factoriza-
tionmachine (SRDFM) algorithm, based on a Siamese network, to learn
a feature vector of the drug property and gene expression for personal-
ized anti-cancer drug recommendations. Peng et al.83 proposed a novel
subnetwork representation-learningmethod to uncover disease-disease
relationships. Lv et al.84 used deep-representation-learning features for
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the identification of sub-Golgi protein localization. It is also worth
mentioning that deep-learning-based representation-learning models
are often poor in the interpretability of learned features.

Performance evaluation metrics

A binary-classification model is usually evaluated by the following
variables and performance metrics.65,85,86 ITP patients are defined
as positive samples, and their number is defined as P. The controls
are negative samples, and their number is N. ITP patients are true pos-
itives (TPs) if they are predicted as the ITP class; otherwise, they are the
false negatives (FNs). The control samples are defined as true negatives
(TNs) if they are correctly predicted as controls; otherwise, they are
defined as false positives (FP). The numbers of samples in these groups
of samples are also denoted as TPs, FNs, TNs, and FPs.

A binary classifier is evaluated by its specificity, sensitivity, and accu-
racy. Specificity is the rate of correctly predicted controls, i.e., Sp =
TN/(TN + FP). Sensitivity is defined as the rate of correctly predicted
ITP patients, i.e., Sn = TP/(TP + FN). The overall prediction accuracy
is defined as ACC=(TN + TP)/(FP + TN+ FN + TP). All three metrics
are between 0 and 1. A better prediction model has larger values for
Sp, Sn, and ACC.

The ROC curve is a 2-dimensional plot between Sn and (1-Sp).87 The
area under the ROC curve is defined as the area under the curve
(AUC) value for a binary-classification model. The metric AUC is
widely used to measure a binary-classification model independent
of model thresholds.

Stacking weak classifiers

Stacking is an effective classification and regression model used in
machine learning.88 It builds multiple base models (meta-learner)
in multiple layers so that the output of the previous model can be
used as the input of the model of the later layer. In recent years, ma-
chine-learning models based on stacking technology have also been
widely used in disease modeling. StackTADB is a stacking model
for predicting the boundaries of topologically associating domains
(TADs) accurately. Wu et al.89 and Khoei et al.90 propose a stack-
ing-based ensemble-learning model with a genetic algorithm for de-
tecting early stages of Alzheimer’s disease. Rahman et al.91 propose
a coronavirus disease 2019 (COVID-19) detection system based on
a stacking model. The main difference between our model and theirs
is that feature selection is integrated into the model building process
and forms an end-to-end learning process.

The overall pipeline of diagnosis model of ITP

This study processed two clinical features separately from the RNA-
seq transcriptomes. The RNA-seq transcriptomes and the feature age
were normalized by standardization. The feature sex was a category
variable and was formatted by the one-hot encoding strategy.92

Due to the high dimensionality of the RNA-seq transcriptomes, an
additional processing of feature selection was carried out on the tran-
scriptomes. The RNA-seq transcriptome has 33,493 features, and



Figure 8. Workflow of ITP diagnosis modeling in this

study

Step 1 normalizes the data, step 2 selects the best fea-

tures, step 3 fuses the transcriptome feature with age and

sex, step 4 features engineering, and step 5 optimizes the

diagnosis model. All boxed text is the functional module

names utilized in the pipeline.
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there are only 114 samples in total. Most of these transcribed features
are involved in various biological processes that are not associated
with ITP, so the L1-regularization algorithm Lasso was used to re-
move those features with zero weights in the regression model with
the class label. The redundant features were removed according to
the inter-feature PCCs. Then, the normalized feature age and the en-
coded feature sex were integrated with the selected RNA-seq tran-
scriptome features. The feature-engineering algorithms SVD and
LDA were used to further enrich the information into fewer singular
values.

An ensembled classifier, RF, was used to build the final ITP diagnosis
model by integrating the results of multiple first-line classification
models. Our experimental data suggest that the ensembled classifier
demonstrated a better performance than the first-line classifiers.
The workflow of the ITP diagnosis modeling in this study can been
seen in Figure 8.
Availability of data and material

Detailed information on optimizing the parameters of nFeatures,
nComponents, and nEstimators can been found in Figure S1. The da-
taset used in this study was archived in the NCBI SRA database. The
full dataset of the platelet RNA-seq next-generation sequencing
(NGS) data for the 59 ITP patients was archived in the NCBI SRA
database with the project accession NCBI: PRJNA664615. The
RNA-seq NGS data of the 55 health controls is available as the project
accession NCBI: PRJNA668820. Researchers of interest may explore
their scientific hypothesis in this dataset after the embargo period.
The source code is released at the web site http://www.
healthinformaticslab.org/supp/. Any future collaborations are
welcome.
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