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Single-cell transcriptomics reveals regulators underlying
immune cell diversity and immune subtypes associated with
prognosis in nasopharyngeal carcinoma
Yu-Pei Chen1, Jian-Hua Yin2, Wen-Fei Li1, Han-Jie Li3, Dong-Ping Chen1,4, Cui-Juan Zhang2, Jia-Wei Lv1, Ya-Qin Wang1, Xiao-Min Li1,
Jun-Yan Li1, Pan-Pan Zhang 1, Ying-Qin Li1, Qing-Mei He1, Xiao-Jing Yang1, Yuan Lei1, Ling-Long Tang1, Guan-Qun Zhou1,
Yan-Ping Mao1, Chen Wei2, Ke-Xu Xiong2, Hong-Bo Zhang5, Shi-Da Zhu2, Yong Hou2, Ying Sun1, Michael Dean 6, Ido Amit 7,
Kui Wu2, Dong-Ming Kuang 1,4, Gui-Bo Li 2,8, Na Liu 1 and Jun Ma 1

Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with extremely skewed ethnic and geographic distributions.
Increasing evidence indicates that targeting the tumor microenvironment (TME) represents a promising therapeutic approach in
NPC, highlighting an urgent need to deepen the understanding of the complex NPC TME. Here, we generated single-cell
transcriptome profiles for 7581 malignant cells and 40,285 immune cells from fifteen primary NPC tumors and one normal sample.
We revealed malignant signatures capturing intratumoral transcriptional heterogeneity and predicting aggressiveness of malignant
cells. Diverse immune cell subtypes were identified, including novel subtypes such as CLEC9A+ dendritic cells (DCs). We further
revealed transcriptional regulators underlying immune cell diversity, and cell–cell interaction analyses highlighted promising
immunotherapeutic targets in NPC. Moreover, we established the immune subtype-specific signatures, and demonstrated that the
signatures of macrophages, plasmacytoid dendritic cells (pDCs), CLEC9A+ DCs, natural killer (NK) cells, and plasma cells were
significantly associated with improved survival outcomes in NPC. Taken together, our findings represent a unique resource
providing in-depth insights into the cellular heterogeneity of NPC TME and highlight potential biomarkers for anticancer treatment
and risk stratification, laying a new foundation for precision therapies in NPC.
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INTRODUCTION
Nasopharyngeal carcinoma (NPC) is a unique subtype of head and
neck cancers with an extremely unbalanced endemic distribution;
it is highly prevalent in East and Southeast Asia, especially
southern China, and North and East Africa.1 Etiologically, NPC is
highly correlated with Epstein–Barr virus (EBV) infection and is
pathologically characterized by heavy infiltration of immune cells
around and within tumor lesions,2,3 suggesting the existence of a
remarkably complex tumor microenvironment (TME) in NPC.
These specific features of the TME indicate the potential

benefits of immunotherapy in NPC. Indeed, the inhibition of the
immune checkpoint axis programmed cell death protein 1 (PD-1)/
PD-ligand 1 (PD-L1) has achieved clinical benefit in NPC patients;
nevertheless, the response rate to anti-PD-1 therapies in NPC
patients is only 20%–30%.4–6 This highlights an unmet clinical

need to deepen the understanding of the TME in NPC to identify
therapeutic targets and reliable biomarkers for risk stratification.
However, current strategies for genomic/transcriptomic analyses
of NPC are primarily based on bulk samples from these often
small-sized tumors,7–10 and these approaches therefore lack the
resolution and accuracy to depict the complex heterogeneity of
the TME.
Recent advances in single-cell RNA sequencing (scRNA-seq) are

opening a new way for evaluating transcriptional features with
cellular resolution in various types of cancers.11–14 This study
represents a comprehensive and unique resource revealing the
cellular heterogeneity of NPC TME at single-cell resolution. We
uncovered malignant signatures capturing intratumoral hetero-
geneity. We also identified transcriptional regulators underlying
immune cell diversity and established immune subtype-specific
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signatures associated with prognosis, thereby providing in-depth
insights into the multicellular ecosystem of NPC.

RESULTS
Single-cell expression atlas and cell typing of the TME in NPC
We generated scRNA-seq profiles for primary tumors from 15
patients with treatment-naïve NPC; normal nasopharyngeal
epithelial tissue from one patient with chronic nasopharyngitis
was also collected (Fig. 1a; Supplementary information, Fig. S1 and
Table S1). The fresh biopsies, which were collected during
endoscopy, were rapidly digested into single-cell suspensions
and analyzed using droplet-based single-cell transcriptome
profiles (10× Genomics Chromium system). We also obtained
whole-exome sequencing (WES) and bulk RNA-seq data from 12 of
the 15 NPC primary tumors (Supplementary information,
Table S1).
After quality filtering and doublet removal (see Materials and

methods), we profiled a total of 48,584 single cells from the NPC
tumor samples and normal tissue sample (Supplementary
information, Table S2). Following gene expression normalization,
we applied principal component analysis to evaluate variably
expressed genes and subsequently used a graph-based clustering
method15,16 to classify the cells into coherent transcriptional
clusters. Then, we annotated the cell clusters by the average
expression of curated gene sets and identified immune cells (i.e.,
myeloid, T/natural killer (NK), and B cells) and cancer-associated
fibroblasts (CAFs) in addition to epithelial cells (including
malignant and non-malignant cells) (Fig. 1b). No pronounced
effects of cell dissociation on gene expression17 were noted
(Supplementary information, Fig. S2a, b), and the bulk RNA-seq
data correlated well with the scRNA-seq data (r= 0.71; Supple-
mentary information, Fig. S2c).
We then distinguished malignant from non-malignant cells

within the epithelial clusters in two steps. First, as NPC arises from
the nasopharyngeal epithelium, we extracted all the epithelial
cells based on the initial clustering and cell-type identification
described. Second, we inferred large-scale chromosomal copy-
number variations (CNVs) in each epithelial cell.18–20 These
inferred CNVs, which were consistent with the WES data (Fig. 1c),
were used to separate the malignant cells from the non-malignant
cells with normal karyotypes. We then performed hierarchical
clustering of the CNV profiles of the epithelial cells from the
normal sample and each of the 15 tumor samples separately21; the
non-malignant cells of each tumor sample were identified as
those in the cluster that predominantly contained cells from the
normal sample, while the cells with deletions and amplifications of
entire chromosomes in the other cluster were identified as
malignant cells. Overall, 7581 malignant cells from 11 tumor
samples containing at least 50 malignant cells were identified and
retained for further analyses.
Then, we performed normalization, dimensionality reduction

and clustering within each major cell type (i.e., malignant, myeloid,
T/NK, and B cells) to identify subclusters (see Materials and
methods); CAFs were removed from analyses as fewer than 100
cells were detected. This approach revealed a complex TME,
containing 13 malignant cell subclusters and 23 different immune
cell subclusters (Fig. 1d, e); subsequently we identified signature
genes for each of the immune subclusters, successfully developing
17 immune subtype-specific signatures (Supplementary informa-
tion, Table S3). The high abundance of major immune cell
subtypes in NPC was then confirmed by multiplex immunofluor-
escence analysis (Supplementary information, Fig. S3), especially
for the T/NK cells, and the mean percentages of CD4+ T, CD8+ T,
and CD57+ NK cells in all cells were 19%, 15% and 2%,
respectively. Furthermore, we revealed the disparities in distribu-
tions of these cell subtypes within tumors (Supplementary
information, Fig. S3c, d). Generally, the immune cells were more

enriched in the tumor stroma compared to the tumor epithelial
nests, in particular for the CD20+ B cells, CD57+ NK cells and
IL3RA+ plasmacytoid dendritic cells (pDCs). Notably, the infiltra-
tion of CD8+ T cells in tumor epithelial nests was relatively higher
than that of other immune cell types, suggesting spatial
heterogeneity of different immune cell subtypes within the
tumors. It should be noted that few CAFs and endothelial cells
were detected in the scRNA-seq, while the mean percentages of
these cell types detected by immunofluorescence staining were
4% and 3%, respectively (Supplementary information, Fig. S3b).
The differences reflect the well-known disparities in single-cell
dissociation efficiency that influence the recovery of individual cell
types,22 especially for fibroblasts and endothelial cells, which are
more deeply embedded in the extracellular matrix and basement
membrane than immune cells, and hence are more difficult to
dissociate.13,22

Identification of signatures reflecting the intratumoral
transcriptional heterogeneity of malignant cells
Clustering of malignant cells revealed tumor-specific clusters,
suggesting a high degree of intertumoral heterogeneity (Fig. 2a).
Over 700 genes were preferentially expressed in the individual
tumors (Fig. 2b). Differentially expressed genes were enriched
within pathways that varied across the tumors, showing significant
phenotypic diversity (Supplementary information, Fig. S4). We
then applied dimension reduction analyses, specifically non-
negative matrix factorization (NMF), and identified a total of 44
metagenes that were preferentially co-expressed by subpopula-
tions of malignant cells across tumors (Supplementary informa-
tion, Table S4). Then, hierarchical clustering was used to
characterize these 44 metagenes into gene expression signatures,
and high concordance was shown among five signatures (Fig. 2c;
Supplementary information, Table S5).
Of these signatures, the three epithelial differentiation signa-

tures consisted primarily of epithelial genes, such as cytokeratins
(e.g., KRT6), and small proline-rich proteins (e.g., SPRR2 and SPRR3)
(Supplementary information, Table S5). The fourth signature was
related to cell cycling, consisting of cell cycle-related genes, and
the final signature was enriched for genes associated with cell
secretion (Supplementary information, Table S5). The scores for
the malignant signatures varied across the malignant cells from
different tumors (Fig. 2d). Intriguingly, the signatures were
preferentially, but not exclusively, co-expressed by subpopulations
of malignant cells (Supplementary information, Fig. S5a). When
clustering using only genes from the malignant signatures, the
malignant cells were separated into different clusters correspond-
ing mainly to the malignant signatures (Supplementary informa-
tion, Fig. S5b, c). These results indicated that the malignant
signatures we established capture common patterns of intratu-
moral transcriptional heterogeneity across nasopharyngeal
tumors.

Correlations of malignant signatures with tumor characteristics
and survival
Then, we analyzed the correlations between the malignant
signatures and clinicopathological features in two independent
cohorts with bulk gene expression data: NPC Cohort A (n= 113),
which was previously described by Zhang and colleagues,10 and
NPC Cohort B (n= 128), which was profiled by an Affymetrix HTA
2.0 microarray at Sun Yat-sen University Cancer Center. Signifi-
cantly higher Epi-differ 2 scores were observed in EBV-positive
tumors than in EBV-negative tumors (Fig. 2e). We then identified
genes whose expression was strongly associated with the
expression of Epi-differ 2 signature (Supplementary information,
Table S6).23 Intriguingly, genes related to viral entry into host cell
(i.e., TMPRSS2, PVRL4, CTSB, and SLC20A2) were revealed to be
highly associated with the Epi-differ 2 signature, suggesting their
potential roles in promoting epithelial differentiation by
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regulating EBV infection in NPC. Stromal tumor-infiltrating
lymphocytes (TILs) were positively associated with the cell
secretion signature (Fig. 2f), suggesting that high expression of
the cell secretion signature may promote lymphocyte recruitment
to the TME in NPC. In contrast, the negative correlation between

the intratumoral TILs and the cell cycling signature may reflect an
artifact of the tumor–immune interaction (Fig. 2f), with reduced
infiltration of intratumoral TILs hampering the recognition and
destruction of mutant tumor cells, in which mutations of G1/S cell
cycle transition genes are commonly observed in NPC.7
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Correlations between the malignant signatures and smoking
history and T (tumor) category are also shown (Supplementary
information, Fig. S6a). Of note, the Epi-differ 3 signature was
positively associated with smoking history as well as the
expression of MALAT1 (r= 0.46; P < 0.001), which has been
reported to mediate lung carcinogenesis induced by cigarette
smoke extract.24 This observation suggests the potential role of
Epi-differ 3-related genes in smoking-mediated epithelial differ-
entiation in NPC.
Furthermore, survival analyses revealed that high cell cycling

scores significantly predicted poor survival in NPC Cohort A
(Fig. 2g, h). This association with survival were validated in NPC
Cohort B (Supplementary information, Fig. S7a), suggesting that
the cell cycling signature predicts the aggressiveness of malignant
cells in NPC. Additionally, to assess the prognostic role of the cell
cycling signature in a different subtype of head and neck cancers,
we analyzed the expression of the corresponding signature genes
in a head and neck squamous cell carcinoma (HNSCC) cohort
using a dataset from The Cancer Genome Atlas (TCGA HNSCC
cohort), which comprises 366 HNSCC samples and no NPC
samples25 (Supplementary information, Table S7). Intriguingly,
the cell cycling signature did not predict survival in HNSCC
(Supplementary information, Fig. S7b), indicating that this may not
be the critical expression program in malignant cells that decides
the aggressiveness of HNSCC.

Novel myeloid cell subtypes and regulators underlying monocyte-
macrophage differentiation in NPC
In total, 5191 myeloid cells were clustered into six separate
subsets (Fig. 3a): macrophages, monocytes, pDCs, CLEC9A+ DCs
(DC1), CD1C+ DCs (DC2), and CCR7+ DCs (DC3) (Fig. 3b). Notably,
DC1 expressed many of the classic markers of conventional type 1
DCs (cDC1), including CLEC9A, IRF8, and IDO1 (Fig. 3c).26 cDC1
constitute the key DC subtype responsible for cross-priming
antitumor CD8+ T cells and are critical in antitumor immunity.27

DC3 expressed markers, such as CCR7, LAMP3, FSCN1, and CCL19,
that have been associated with DC activation. Of these markers,
CCL19 is known to attract naïve T cells as well as other DCs by
interacting with CCR7 (Fig. 3c).28,29 DC2 preferentially expressed a
series of classic marker genes of conventional type 2 DCs (cDC2),
including CD1E, FCER1A and CLEC10A (Fig. 3c). Immunofluores-
cence confirmed the presence of distinct populations of DC1 and
DC3 cells in NPC tissue samples (Supplementary information,
Fig. S8). GZMB, which encodes the pro-apoptotic enzyme
granzyme B, was highly expressed in pDCs (Fig. 3c), suggesting
that the cells in this population may exhibit GZMB-dependent
cytotoxicity.30 Interestingly, a relatively high proportion of pDCs
was observed in our scRNA-seq data (2% in all cells, and 16% in
myeloid cells) compared to other cancer types (1%, 3%, and 10%
in myeloid cells for lung cancer,13 breast cancer,31 and HNSCC,32

respectively). This observation was validated by immunofluores-
cence analysis showing a mean percentage of 3% in all cells for
pDCs, with a highly notable aggregation in the tumor stroma
(Supplementary information, Fig. S3d).

We further characterized the functions of different myeloid cell
subtypes by comparing pathway activities. Although macro-
phages and monocytes exhibited some common activated
pathways, pathways involved in interferon (IFN)-α and IFN-γ
responses were relatively upregulated in the macrophages,
whereas angiogenesis-, NF-κB-mediated TNF-α signaling-, and
hypoxia-related pathways were upregulated in the monocytes
(Fig. 3d). These results indicate the potential tumor-promoting
features of monocytes in NPC,33 consistent with their high
expression of S100A8 and S100A9 (Fig. 3c).34 We then applied
Single-Cell Regulatory Network Inference And Clustering (SCENIC)
analysis35 to correlate transcription factors (TFs) with gene
expression differences among cell types. This analysis identified
a set of TFs implicated in the biology of different myeloid cell
subtypes in NPC (Fig. 3e). Interestingly, macrophages and
monocytes shared similar expression patterns for many TFs
(Fig. 3e), suggesting that the macrophages may be derived from
monocytes recruited to the NPC TME.36 Of note, the expression of
genes regulated by BACH1 and RUNX1 was specifically upregu-
lated in monocytes, whereas expression of NR1H3 and TFEC was
prominent in macrophages (Fig. 3e). Next, we stimulated primary
human monocytes with M-CSF to obtain macrophages, and
observed significantly decreased expression of BACH1 and RUNX1,
and increased expression of NR1H3 and TFEC in the monocyte-
derived macrophages (Fig. 3f, g). Though previous reports have
suggested the function of BACH1 and RUNX1 in promoting
monocyte development,37,38 the roles of NR1H3 and TFEC remain
unknown in the monocyte-to-macrophage differentiation process.
To investigate the function of NR1H3 and TFEC, we subsequently
transfected primary human monocytes with negative control (NC)
or NR1H3/TFEC-specific siRNAs (Fig. 3h). After being triggered by
M-CSF, the expression of CD14 was significantly higher in siNR1H3
(Fig. 3i) or siTFEC (Fig. 3l) cells than in siNC cells; the induction of
CD86 and HLA-DR was also impaired in siNR1H3 or siTFEC cells
(Fig. 3j, m). These results support that NR1H3 and TFEC facilitate
the differentiation and maturation of monocyte-derived macro-
phages, suggesting that these regulators may promote antitumor
immunity in NPC. Interestingly, further survival analyses revealed
the association between high expression levels of NR1H3 and TFEC
and improved outcomes in NPC patients (Fig. 3k, n). Our data
provide a resource for further investigation of regulators under-
lying myeloid diversity in NPC.

T/NK cell phenotypes suggest regulators modulating antitumor
immune response in NPC
T/NK cells (n= 17,741) represented the most prevalent cell type in
NPC. Reclustering revealed 10 clusters: CD8+ T-1, CD8+ T-2, CD8+

T-3, dysfunctional T (CD8+ Tdysfunctional) cells, conventional CD4
+ T

(CD4+ Tconv)-1, CD4
+ Tconv-2, CD4

+ Tconv-3 cells, regulatory T cells
(Tregs)-1, Tregs-2, and NK cells (Fig. 4a, b). Next, we compared the
expression levels of selected T cell function-associated genes
among the different T cell subtypes (Fig. 4c). Among the CD8+ T-1,
CD8+ T-2 and CD8+ T-3 subtypes, high expression of cytokines
and effector molecules was exhibited in CD8+ T-1, followed by

Fig. 1 Dissection of the tumor microenvironment in NPC with scRNA-seq. a Workflow diagram showing the collection and processing of
fresh biopsy samples from 15 primary NPC tumors and one normal tissue for scRNA-seq. b t-SNE plots of cells from the 16 samples profiled in
this study, with each cell color coded to indicate the associated cell types. The panels on the right show the expression of curated gene sets in
the cell types defined in the left panel. c Chromosomal landscape of inferred large-scale CNVs distinguishing malignant epithelial cells from
non-malignant epithelial cells. The P03 tumor is shown with individual cells (y-axis) and chromosomal regions (x-axis). Amplifications (red) or
deletions (blue) were inferred by averaging expression over 100-gene stretches on the indicated chromosomes. Inferred CNVs are concordant
with the calls from WES (bottom). The inferred CNV pattern of the normal epithelial cells from N01 is also shown (top). d t-SNE plots showing
the subclusters of malignant cells, myeloid cells, T cells, and B cells. e Data of the 13 malignant cell subclusters and the 23 immune cell
subclusters of 47,866 cells from 16 samples (from left to right): the fraction of cells originating from each patient, the number of cells, and box
plots of the number of UMIs and genes (with the box plot center, box, whiskers, and points corresponding to the median, interquartile range,
1.5× interquartile range, and outliers, respectively).
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CD8+ T-2 and CD8+ T-3 (Fig. 4c), suggesting that CD8+ T-1
represented the main cytotoxic population in NPC. CD4+ Tconv-2
represented naïve T cells, while exhaustion markers such as PDCD1
and TIGIT were highly expressed in CD4+ Tconv-3 (Fig. 4c). Monocle
trajectory analysis of CD4+ T cells inferred a differentiation
trajectory that mainly began with the CD4+ Tconv-2 naïve cluster
and bifurcated into either the CD4+ Tconv-1 activation cluster or
the CD4+ Tconv-3 dysfunctional/terminal differentiation cluster

(Fig. 4d, e). For conventional CD8+ T cells, the differentiation
trajectory also exhibited a branched structure, starting with CD8+

T-3 and T-2 that bifurcated into either a cytotoxic/activation
lineage (mainly CD8+ T-1) or a dysfunctional lineage (mainly CD8+

Tdysfunctional) (Fig. 4f, g). Notably, we observed high expression of
immune checkpoint molecules, except CTLA4, in the CD8+

Tdysfunctional cells, and LAG-3 and HAVCR2 were the most
prominently expressed molecules (Fig. 4c, h). Of note, the
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expression levels of these immune checkpoint molecules were
generally comparable in CD8+ Tdysfunctional cells in HNSCC12 (data
not shown), suggesting distinctive features of dysfunctional T cells
in NPC TME compared to those in other head and neck cancers.
Intriguingly, exhaustion gene expression was highly associated
with the expression of cytotoxicity markers (Fig. 4c), as LAG3 and
HAVCR2 were found to be correlated with T cell activity, which was
measured by the mean expression of granzymes (GZMA, GZMB
and GZMH) (Fig. 4h). The expression of LAG3 and HAVCR2 also
exhibited significant positive associations with intratumoral TILs
(Supplementary information, Fig. S9a), and immunofluorescence
analysis confirmed the higher percentage of LAG-3+ and
HAVCR2+ CD8+ T cells in the total CD8+ T cells in tumor epithelial
nests compared with those in the tumor stroma (Supplementary
information, Fig. S9b). A trend of better survival was also shown
for higher expression of LAG3 and HAVCR2 (Supplementary
information, Fig. S9c). These results reflected an activation-
dependent exhaustion expression program13,14 especially for
LAG-3 and HAVCR2 in NPC, which represent potentially appealing
checkpoint molecules for therapy.
SCENIC analysis revealed potential TFs underlying the regula-

tion across subtypes (Fig. 4i). For example, NFATC1 was identified
as a candidate TF underlying the gene expression differences in
CD4+ Tconv-3 (Fig. 4i). NFATC1 is reported to regulate PD-1
expression following T cell activation,39 which is consistent with
the upregulated PD-1 expression observed in CD4+ Tconv-3 and
implicates NFATC1 as a potential regulator of CD4+ Tconv cells in
their way to become dysfunctional in NPC. Interestingly, NK cells
shared upregulated expression patterns of TFs such as EOMES,
RUNX3, and XBP1 with cytotoxic CD8+ T cell subtypes (Fig. 4i),
indicating the potential roles of these TFs in regulating the
cytotoxic activity of both CD8+ T and NK cells in NPC. Previous
studies have suggested that EOMES and RUNX3 contribute to the
development and homeostasis of effector and memory T cells as
well as NK cell differentiation.40–42 Nevertheless, the role of XBP1
in regulating cytotoxic lymphocytes is less well understood,43–45

and the effects of these regulators in immune responses have not
been addressed in NPC. To validate the SCENIC results, we isolated
CD8+ T cells and NK cells from the NPC tissue samples by flow
cytometry (FACS), and identified a significantly higher percentage
of cytotoxic GZMB+ or perforin+ phenotypes in the EOMES+,
RUNX3+, and XBP1+ CD8+ T cells and NK cells (Supplementary
information, Fig. S10a, b). Furthermore, reducing the expression of
EOMES, RUNX3, and XBP1 in primary human CD8+ T cells and NK
cells by transfection with corresponding siRNAs also down-
regulated the expression of GZMB or perforin compared with
siNC cells (Fig. 4j–l), suggesting their function in regulating
immune cytolytic activity. These data reveal compelling TFs
enhancing the cytotoxicity of both CD8+ T cells and NK cells
in NPC.

Diverse B cell subtypes identified in NPC
We detected 17,353 B cells that could be divided into seven
clusters (Fig. 5a, b). Of these clusters, one consisted of rarely
reported FCRL4+ memory B cells, in which elevated CCR1
expression supports the homing of these cells to inflamed
tissues.46 One cluster comprised germinal center (GC) B cells,
whereas another comprised plasma cells; it has been reported that
GC B cells with relatively high affinity could be directed to become
plasma cells.47

Then, we analyzed all B cells to infer the potential develop-
mental trajectory. The results showed that plasma cells con-
gregated at the furthest terminus of the antigen secretion
components, whereas FCRL4+ B cell/B cell-3/B cell-4 clusters were
enriched at the end of the proliferation components, suggesting
trajectories of functional divergence among these cell types
(Fig. 5c, d). Differences in pathway activities and TFs among the
different B cell subtypes are shown in Fig. 5e, f, respectively. GC B
cells exhibited an activation of the pyruvate metabolism and MYC
pathways, while the glycolysis pathway was upregulated in
plasma cells (Fig. 5e). In addition, high activities of macrophage
chemotaxis pathways were also detected in plasma cells,
suggesting the potential roles of these pathways in promoting
macrophage recruitment to the TME in NPC (Fig. 5e). Notably, the
expression of genes regulated by TFs such as BCL6 and ATF4 was
specifically upregulated in GC B cells and plasma cells, respectively
(Fig. 5f, g). BCL6, which has been reported to be critical for GC B
cell development, reactivates the B cell transcriptional program to
enhance responses to external stimuli,48 whereas ATF4 plays a role
in immunoglobulin production.49 These transcriptional pheno-
types were confirmed in the NPC tissue samples by FACS (Fig. 5h,
i). These results identified candidate regulators underlying the
gene expression differences between GC B cells and plasma cells
in NPC.

Complex intercellular communication networks in the NPC TME
Next, we used CellPhoneDB50 to identify ligand–receptor pairs and
molecular interactions among the major cell types (Fig. 6a).
Broadcast ligands for which cognate receptors were detected
demonstrated extensive communication between tumor and
immune cells (Fig. 6a, b).
Notably, tumor cells expressed relatively high levels of

chemokines (e.g., CCL20, CCL19, and CXCL10), while the corre-
sponding receptors were widely expressed in immune cells,
suggesting that these chemokines play significant roles in
enhancing immune cell infiltration into NPC tumor tissue (Fig. 6c).
Inhibitory interactions between tumor cells and T cells were
commonly observed. In addition to CD274–PDCD1, other
receptor–ligand pairs that have rarely been reported in NPC
(e.g., NECTIN1–CD96, NECTIN2–TIGIT, PVR–CD96 and
LGALS9–HAVCR2) were also identified (Fig. 6c, d). Specifically,

Fig. 2 Malignant cell clusters and common malignant signatures revealed in NPC. a t-SNE plot of 7581 malignant cells from 11 patients
(indicated by colors) reveals tumor-specific clusters. b A heatmap shows genes (rows) that are differentially expressed across 11 individual
primary tumors (columns). Red: high expression; blue: low expression. Selected genes are highlighted. c A heatmap depicts the pairwise
correlations of 44 metagenes derived from 11 tumors. Clustering identified five coherent malignant gene expression signatures across the
tumors. d Each panel (from top to bottom) shows violin plots that depict the scores for one of the five malignant signatures for malignant cells
from the 11 tumors. e Changes in gene expression for the five malignant signatures in response to different EBV infection statuses (95 positive
vs 14 negative, detected by in situ hydridization with the EBV-encoded small RNAs) in NPC Cohort A are shown (P values were based on the
Wilcoxon rank-sum test). The box plot center corresponds to the median, with the box and whiskers corresponding to the interquartile range
and 1.5× interquartile range, respectively. f A bar plot shows the direction and statistical significance (P values were based on the Spearman
correlation test) of the associations between each of the malignant signatures and stromal/intratumoral TILs in NPC Cohort A. g Kaplan–Meier
curves for progression-free survival in the 88 patients in NPC Cohort A stratified according to high vs low expression of the cell cycling
signature. Cox regression HR and 95% CI obtained after correcting for age, sex, smoking history and disease stage are shown; the
corresponding Cox regression P value is also shown. h Prognostic values of the malignant signatures in the 88 patients in NPC Cohort A. Forest
plots show HRs (blue/red squares) and CIs (horizontal ranges) derived from Cox regression survival analyses for progression-free survival in
multivariable analyses adjusted for age, sex, smoking history and disease stage; the corresponding Cox regression P values are also shown.
Significant results are indicated with red squares.
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we evaluated the interactions of LAG-3 and its ligands between
T cells and tumor cells (Supplementary information, Fig. S11a). The
previously reported FGL1–LAG-3 interaction51 was not obvious in
NPC, primarily due to the low expression of FGL1 in the tumor cells
(Supplementary information, Fig. S11b); MHC-II was predomi-
nantly responsible for the inhibitory function of LAG-3 induced by

the interaction between dysfunctional T cells and tumor cells. We
also identified putative communications between tumor cells and
macrophages, such as the inhibitory or stimulatory interactions
produced by CD47–SIRPA and CSF1–CSF1R (Fig. 6c, e).52

In addition, we identified specific ligand–receptor complexes
predicted to regulate multiple immunomodulatory pathways
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coordinated by diverse subtypes of immune cells (Fig. 6d–f). High
chemokine expression was detected in macrophages, DC1, DC2
and DC3, especially in macrophages and DC3, indicating their
important roles in recruiting diverse types of immune cells (Fig. 6f).
Interestingly, inhibitory communications between DC3 and T cells
were also widespread (Fig. 6f), corresponding to the recent study
suggesting this DC phenotype to be the most active immune-
regulators of lymphocytes.53 Of note, DC1 expressed relatively
high levels of XCR1, and the ligands of XCR1 (XCL1 and XCL2) were
overexpressed by NK cells (Fig. 6f), suggesting the presence of
functional interactions between NK cells and DC1. NK cells
mediated the recruitment of DC1 to the TME of NPC, which is
consistent with previous reports in a mouse model.54

Correlations of immune subtype-specific signatures with survival
Finally, we correlated the 17 immune subtype-specific signatures
(Supplementary information, Table S3) derived from the 23
immune cell subtypes with clinicopathological features of NPC
patients. Five immune signatures (i.e., pDC, DC1, NK cells, and
FCRL4+ and plasma B cells) were associated with EBV infection,
with all showing significantly lower scores in EBV-positive tumors
than in EBV-negative tumors (Fig. 7a). We further explored their
correlations with plasma EBV DNA concentrations. CLEC9A+

DC1 showed a significantly negative correlation with the EBV
DNA level (r=−0.38; P < 0.001), suggesting that DC1 may be
affected by active EBV replication (Fig. 7b). CLEC9A is reported to
induce antitumor responses55,56 and modulate cytotoxic T
lymphocyte responses to virus infection in mice57,58; however,
the mechanisms underlying the influence of EBV infection on the
CLEC9A+ DC-related immune response in NPC remain to be
elucidated. Although DC1, FCRL4+ B, GC B and plasma cells were
significantly associated with a relatively high number of muta-
tions, most immune cell subtypes generally correlated poorly with
mutational load (Fig. 7c), probably due to the overall low rate of
non-synonymous mutations in NPC.7,9 With respect to tumor
staging, a general reduction in many immune signatures was
shown in patients with relatively high T and N categories and
clinical stages (Supplementary information, Fig. S6b).
Subsequently, we explored the prognostic roles of these

immune signatures in NPC. Generally, a consistent association
between high scores for different immune signatures and
improved survival was observed in NPC (Fig. 7d, e; Supplementary
information, Fig. S7a). Importantly, positive associations were
significant between survival and the signatures of macrophages,
pDCs, DC1, NK cells, and plasma cells in NPC Cohort A (Fig. 7d, e).
Furthermore, these associations were also evident in NPC Cohort B
(Supplementary information, Fig. S7a), validating their reliability as
prognostic biomarkers in NPC. Next, we assessed the prognostic

value of these five immune signatures (Supplementary informa-
tion, Table S7) in the TCGA HNSCC cohort. As CLEC9A+ DC1 was
not identified in HNSCC studies, the NPC DC1 signature was used
instead to infer its prognostic value in HNSCC. No credible
prognostic values were identified for the immune signatures in
HNSCC (Supplementary information, Fig. S7b), reflecting a
difference in the prognostic value of these signatures between
NPC and HNSCC.

DISCUSSION
Through revealing the cellular heterogeneity of the TME, we
established the intratumoral and immune subtype-specific signa-
tures in NPC. High scores for the cell cycling signature were
associated with poor survival, suggesting that this signature may
reflect a highly proliferative and aggressive status in malignant
cells. Importantly, high expression of the signatures of macro-
phages, pDCs, DC1, NK cells, and plasma cells significantly
predicted a favorable prognosis in NPC. In this study, we observed
high expression of CXC chemokine ligands, such as CXCL9 and
CXCL10, that recruit CXCR3+ NK and CD8+ T cells into the TME,
and upregulated activity of the IFN-α and IFN-γ response
pathways in macrophages, suggesting potential antitumor capa-
city of these macrophages in NPC.59 The role of pDCs in immune
regulation has been extensively debated as they tend to be
tolerogenic and are associated with worse clinical outcomes in
certain types of cancer, while they also participate in the priming
of immunogenic adaptive responses.60 The favorable prognostic
value of pDCs in NPC suggests the potential role of these cells in
inducing antitumor immune responses in this disease. Of note, the
signatures did not show a pronounced prognostic value in HNSCC
patients. The differences in the TME between NPC and other head
and neck cancers may account for the differences in the
prognostic value of the signatures. In HNSCC, for example, the
approximate proportions of DCs and B cells in immune cells are
~3% and ~10%, respectively,12,32 but their proportions in NPC
according to our study are ~7% and ~40%, respectively. It should
be noted that CLEC9A+ DC1 have not been reported previously in
HNSCC, although the specificity of this population in NPC over
other HNSCC merits further exploration. As immune cells are
distributed unevenly within tumors, future studies with emerging
technologies, such as spatial transcriptomics, are warranted to
comprehensively elucidate the spatial heterogeneity of NPC TME.
The distinctive features of the TME may provide a foundation

for the design of therapies targetting NPC. For instance, analyses
of myeloid cells revealed compelling TFs regulating the monocyte-
to-macrophage differentiation. Similarly, SCENIC analysis in CD8+

T cells and NK cells identified regulators that can enhance their

Fig. 3 Myeloid cell clusters in NPC. a t-SNE plot of 5191 myeloid cells color-coded by their associated clusters. b t-SNE plot, color coding for
the expression of the marker genes (gray to red) for the indicated cell subtype. c Heatmap of genes with differential expression (rows) among
the myeloid cell subtypes. d Differences in pathway activities scored per cell by GSVA among the different myeloid cell subtypes. The scores of
pathways are normalized. e Heatmap showing the activity of TFs in each myeloid cell subtypes. The TF activity is scored using AUCell.
f Expression of BACH1 and RUNX1 in primary human monocytes and monocyte-derived macrophages. Data are presented as the means ± SEM
of three independent experiments (n= 4). g Expression of NR1H3 and TFEC in primary human monocytes and monocyte-derived
macrophages. Data represent the means ± SEM of two independent experiments (n= 4). h Primary human monocytes were transfected with
negative control (NC), NR1H3-specific, or TFEC-specific siRNAs, followed by immunoblot analysis to determine protein expression of NR1H3 or
TFEC. β-actin is the loading control. The experiments were repeated independently for three times with similar results. i, l Left, representative
histograms of CD14 expression levels in siNC and siNR1H3 (n= 6 donors, n= 4 independent experiments) (i), and siTFEC (n= 6 donors, n= 4
independent experiments) (l) monocytes stimulated by M-CSF. Right, expression levels of CD14 in siNC and siNR1H3 (n= 6) (i), and siTFEC
(n= 6) (l) monocytes stimulated by M-CSF, which was determined by FACS (MFI, mean fluorescent intensity). j, m Left, representative
histograms of CD86 and HLA-DR expression levels in siNC and siNR1H3 (n= 6 donors, n= 4 independent experiments) (j), and siTFEC (n= 6
donors, n= 4 independent experiments) (m) monocytes stimulated by M-CSF. Right, expression levels of CD86 and HLA-DR in siNC and
siNR1H3 (n= 6) (j), and siTFEC (n= 6) (m) monocytes stimulated by M-CSF, which was determined by FACS (MFI). k, n Kaplan–Meier curves
showing progression-free survival in the 88 patients in NPC Cohort A stratified according to high vs low expression of NR1H3 (k) and TFEC (n).
Cox regression HRs and 95% CIs obtained after correcting for age, sex, smoking history and disease stage are shown; the corresponding Cox
regression P values are also shown. *P < 0.05, **P < 0.01 (paired Student’s t-test).
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cytotoxicity in NPC. This resource would help deepen our
understanding of immune cell diversity and provide directions
for future exploration of the transcriptional regulators in immune
cell biology. Our data also suggest potential immunotherapeutic
targets that may be used in combination with PD-1/PD-L1

blockade to further improve response rates in NPC.61,62 LAG-3
and HAVCR2, which have rarely been studied in NPC to date, were
highlighted as the most prominent immune checkpoint molecules
in CD8+ Tdysfunctional in NPC. Moreover, the cell–cell interactions
suggest that tumor cells communicate extensively with immune
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cells and that inflammatory and adaptive immune responses are
mediated by various immunomodulatory molecules (e.g., TIGIT,
CD96, CD47, CSF1R, and XCL1/2-XCR1) that have rarely been
studied before in NPC.
In summary, to the best of our knowledge, this work represents

a unique resource providing a comprehensive single-cell tran-
scriptome atlas of the multicellular ecosystem of NPC TME. This
study lays a new foundation for the development of precision
therapies in NPC.

MATERIALS AND METHODS
Patient samples
Fifteen patients who were pathologically diagnosed with non-
keratinizing or keratinizing NPC were enrolled in this study;
normal nasopharyngeal epithelial tissue from one patient with
chronic nasopharyngitis was also collected as a control (Fig. 1a).
All patients were treatment naïve, and their clinical characteristics
are summarized in Supplementary information, Table S1. For 12 of
the 15 NPC samples, bulk WES and RNA-seq data were also
obtained; matched peripheral blood was collected. Fresh sterile
tumor biopsies were collected from the primary site by endoscopy
and were initially divided into three segments for the 12 NPC
samples, of which two small fragments were immediately
transferred into RNA-protect (Qiagen, Hilden, Germany) for bulk
RNA and DNA isolation, and the third fragment was fresh-
processed for scRNA-seq. The remaining 3 samples were not
divided; they were all fresh-processed for scRNA-seq. All clinical
samples were collected at Sun Yat-sen University Cancer Center.
Written informed consent was obtained from all participants, and
ethical approval was obtained from the Institutional Review Board
of Sun Yat-sen University Cancer Center (B2016-048-01), in
accordance with the Declaration of Helsinki.

Preparation of single-cell suspensions
The samples for scRNA-seq were washed with phosphate-buffered
saline (PBS; Thermo Fisher Scientific, Waltham, MA, USA), placed
on ice, cut into small pieces (< 1mm3) and transferred to 5mL
Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher
Scientific) containing collagenase IV (1 μg/mL) (Thermo Fisher
Scientific). The samples were incubated for 40 min at 37 °C with
manual shaking every 10 min and then filtered twice using a

40-µm nylon mesh (Thermo Fisher Scientific). Following centrifu-
gation (500 × g, 4 °C, and 5min), the supernatant was decanted
and discarded before the cell pellet was resuspended in 1mL fetal
bovine serum (FBS; containing 10% DMSO) and transferred to
cryogenic vials. Following a 5-min incubation at room tempera-
ture, the samples were centrifuged (120 × g, 4 °C, 5 min) using a
swing-out rotor. The samples were then resuspended in PBS
containing 0.08% bovine serum albumin (BSA; Sigma) and
filtered through 40-µm cell strainers (BD) using wide-bore 1-mL
low-retention filter tips (Axygen). Next, the cells were counted
and assessed for viability using Trypan blue staining with a
haemocytometer. During the dissociation procedure, the cells
were kept on ice whenever possible, and the entire procedure was
completed in < 90min (generally ~70min) to avoid the
dissociation-associated artifacts recently described.17 A positive
signal for a dissociation signature17 that reflects dissociation-
associated changes in gene expression was obtained in < 1% of
the cells (Supplementary information, Fig. S2a, b).

Droplet-based scRNA-seq
A chromium single-cell 3′-library was constructed using the
Chromium Single-cell 3′-Library, Gel Bead & Multiplex Kit and
Chip Kit (10× Genomics, Pleasanton, CA, USA) according to the
manufacturer’s instructions. Cell suspensions were loaded onto a
chromium single-cell chip along with reverse transcription (RT)
master mix and single-cell 3′-gel beads, aiming for
2000–8000 single cells per reaction. The samples were processed
using 10× Genomics V2 barcoding chemistry kits (Supplementary
information, Table S2). Following cell lysis, first-strand cDNA
synthesis and amplification were carried out according to the
manufacturer’s instructions with cDNA amplification set for 12
cycles. Libraries were sequenced on an Illumina HiSeq X Ten
system, and mapped to the human reference genome (build
hg19) and EBV B95–8 reference genome (NC_007605.1) using
CellRanger (10× Genomics).

WES and data analysis
DNA was extracted with the DNeasy Tissue and Blood Kit (Qiagen,
Venlo, The Netherlands). Fragments (200–250 base pairs (bp) in
length) were generated from the genomic DNA sample by Covaris
(Covaris, Woburn, MA, USA) and end-repaired by the addition of
an extra A base to the 3′ end. Illumina adapters (Illumina, San

Fig. 4 T/NK cell clusters in NPC. a t-SNE plot showing 10 clusters of 17,263 T/NK cells (indicated by colors). b t-SNE plot, color coding for the
expression of the marker genes (gray to red) for the indicated cell subtypes. c Average expression of selected T cell function-associated genes
of naïve markers, inhibitory receptors, cytokines and effector molecules, co-stimulatory molecules, and Treg markers in each cell cluster.
d Potential developmental trajectory of CD4+ T cells (n= 5694) inferred by analysis with Monocle 2. Arrows show the increasing directions of
certain CD4+ T cell properties annotated with the signatures shown in e. e Traceplots of (left) CD4+ T cell activation signature along activation
component and (right) terminal differentiation signature along terminal differentiation component for the CD4+ T cells. Cells are projected
along the component, with the blue line indicating the moving average of the expression of signatures (a sliding window of length equal to
5% of the total number of CD4+ T cells was used), and the shaded area displaying SEM. Signatures used are presented in Supplementary
information, Table S9. f Potential developmental trajectory of CD8+ T cells (n= 6975) inferred by analysis with Monocle 2. Arrows show the
increasing directions of certain CD8+ T cell properties annotated with the signatures shown in g. g Traceplots (as in e) of (left) CD8+ T cell
activation signature along activation component and (right) terminal differentiation signature along terminal differentiation component for
the CD8+ T cells. Signatures used are presented in Supplementary information, Table S9. h Spearman correlation between the activity of CD8+

T cells (n= 6975), as measured by average granzyme expression (GZMA, GZMB and GZMH), and the expression of CD8+ T cell-specific genes.
Genes encoding known immune checkpoint molecules are highlighted in blue. CD4+ Tconv, conventional CD4+ T cell; CD8+ Tdys,
dysfunctional CD8+ T cell; NK, natural killer. i Heatmap showing the activity of TFs in each T/NK cell subtype. The TF activity is scored using
AUCell. j Peripheral CD8+ T cells and NK cells were transfected with negative control (NC), EOMES-specific, RUNX3-specific, or XBP1-specific
siRNAs, followed by immunoblot analysis to determine protein expression of Eomes, Runx3, or XBP1. β-actin is the loading control. The
experiments were repeated independently for three times with similar results. k Left, representative histograms depicting the expression of
GZMB and perforin on peripheral CD8+ T cells transfected with NC and EOMES-specific (n= 6 donors, n= 5 independent experiments),
RUNX3-specific (n= 6 donors, n= 6 independent experiments), and XBP1-specific siRNAs (n= 6 donors, n= 5 independent experiments).
Right, percentage of GZMB+ or perforin+ cells in siNC and siEOMES (n= 6), siRUNX3 (n= 6), and siXBP1 (n= 6) CD8+ T cells.
l Left, representative histograms depicting the expression of GZMB and perforin on peripheral NK cells transfected with NC and EOMES-
specific (n= 6 donors, n= 5 independent experiments), RUNX3-specific (n= 6 donors, n= 5 independent experiments), and XBP1-specific
siRNAs (n= 6 donors, n= 5 independent experiments). Right, percentage of GZMB+ or perforin+ cells in siNC and siEOMES (n= 6), siRUNX3
(n= 6), and siXBP1 (n= 6) NK cells. *P < 0.05, **P < 0.01 (paired Student’s t-test).
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Diego, CA, USA) were ligated to both ends of the resulting
fragments and amplified by PCR. After each step, the Agilent
SureSelect Human All Exon V6 Kit (Agilent Technologies, Santa
Clara, CA, USA) was used for whole-exome capture according to
the manufacturer’s protocol. The final library was evaluated in two
ways: determination of the average molecule length using an
Agilent 2100 bioanalyser instrument (Agilent DNA 1000 Reagents)
and quantification of the library by qRT-PCR (TaqMan Probe;

Thermo Fisher Scientific). The resulting libraries were then
sequenced using a HiSeq X Ten platform (Illumina). Sequencing
reads were discarded if they contained adapter reads, low-quality
reads, too many nitrogen atoms (> 10%), or low-quality bases
(> 50% bases with quality < 5). High quality paired-end reads were
then subjected to gapped alignment to a UCSC human reference
genome (hg19) using BWA-MEM (v0.7.15). Picard (v1.84; http://
broadinstitute.github.io/picard/) was used to sort and mark
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duplicate reads caused by PCR amplification. Local realignment
and base quality score recalibration of the BWA-aligned reads
were then conducted using the Genome Analysis Toolkit (GATK;
v3.4, http://www.broadinstitute.org/gatk).63

Bulk RNA-seq and data analysis
Total RNA was isolated from tissue samples using TRIzol reagent
(Life Technologies, Carlsbad, USA). For RNA-seq, cDNA libraries
were generated using a TruSeq RNA Sample Preparation kit
(Illumina) according to the manufacturer’s protocol. After quality
control of the cDNA libraries was performed, paired-end sequen-
cing was carried out via HiSeq X Ten at BGI (Shenzhen). Paired-end
reads were then mapped to the UCSC hg19 human transcriptome
using Bowtie2. The expression levels of genes were quantified as
fragments per kilobase of exon model per million mapped
fragments (FPKM) calculated using RSEM (version 3.0.0) in the
paired-end mode.

Single-cell gene expression quantification
We used CellRanger (version 1.3.1) to generate a raw gene
expression matrix for each scRNA-seq sample and used Single-Cell
Remover of Doublets (Scrublet) (see below) to infer and remove
cell doublets in each sample individually. Then the gene
expression matrices for all tumor and normal samples were
combined in R (version 3.4.1) and converted to a Seurat object
using the Seurat R package (version 3.0.2).15 Quality filtering was
performed to remove cells with < 201 or > 9000 expressed genes
or > 20% unique molecular identifiers (UMIs) derived from the
mitochondrial genome. In the remaining cells, gene expression
matrices were log normalized to total cellular read-counts and
mitochondrial read-counts by linear regression implemented
using the ScaleData function of the Seurat package.

Identification of the major cell types and their subtypes
We selected the 6000 most variably expressed genes to identify
major cell types. To reduce dimensionality, principal component
analysis was used to summarize the resulting variably expressed
genes, and then the t-SNE dimensionality reduction (RunTSNE
function) was used to further summarize the principal compo-
nents. The number of principal components used was dataset
dependent; they were estimated by an Elbow plot, in combination
with exploration of the top genes from each principal component.
The graph-based clustering approach implemented in the
FindClusters function of the Seurat package was used for data
clustering, with a K parameter of 30 and default parameters used
otherwise. In brief, this method applies a shared nearest neighbor
(SNN) modularity optimization-based clustering algorithm to
identify cell clusters.15,16

We then annotated the clusters by the average expression of
curated gene sets of the following major cell types: epithelial cells
(EPCAM, KRT19, KRT18, KRT5, and KRT15), myeloid cells (LYZ, CD68,

MS4A6A, CD1E, IL3RA, and LAMP3), T cells (CD2 and CD3D/E/G), B
cells (CD79A/B, CD19, and MS4A1), and CAFs (COL1A1, COL3A1, and
DCN).
Then, we performed cluster-based doublet exclusion (see

below). After doublet removal, we repeated the abovementioned
steps (normalization, dimensionality reduction, and clustering) to
identify the major cell types among the remaining cells. To
identify subclusters within each major cell type, the cells
belonging to each cell type were reanalyzed separately; we
performed normalization, dimensionality reduction, and clustering
as described above for each of the major cell types. Then, the
subclusters were annotated to cell subtypes by the average
expression of corresponding curated gene sets (Figs. 3b, 4b and
5b).

Doublet removal
We applied Scrublet64 to computationally infer and remove
doublets in each sample individually, with an expected doublet
rate of 0.06 and default parameters used otherwise. The doublet
score threshold was set by visual inspection of the histogram in
combination with automatic detection. In addition to the analysis
with Scrublet, we performed cluster-based doublet removal65,66;
13% of cells were excluded after doublet removal. Following the
initial clustering, we performed clustering separately for each
major cell type (i.e., epithelial, myeloid, T and B cells), removed the
subclusters enriched in potential doublets, and then repeated the
clustering of each major cell type. Thus, this was an iterative
process alternating between removing doublets and clustering.
Doublets were identified through annotation of subclusters using
curated gene sets for the major cell types as described above.

Comparison with bulk RNA-seq data
Comparisons of bulk RNA-seq data were performed with the 12
tumor samples with available bulk RNA-seq data. To compare the
consistency of the bulk RNA-seq data with that of the scRNA-seq
data, we compared read-counts per gene of bulk RNA-seq data
normalized to gene length and total read-count directly to the
sum of UMIs per gene for the corresponding tumor sample.
Density dot plots and Pearson’s correlation (r) of the expression
were generated.

CNV analysis and identification of malignant epithelial cells
To separate malignant and non-malignant epithelial cells, we
calculated CNVs in epithelial cells based on our scRNA-seq data
using inferCNV (version 0.1) as described previously.11,20 Epithelial
cells were identified by removing cells annotated as doublets after
the initial process of major cell-type subclustering. Our data were
transformed into log2(TPM+ 1), where transcripts per million
(TPM) was calculated as the proportion of UMIs of a gene within
each cell multiplied by 1,000,000. CNV scores were computed on a
moving average window equal to 101. The CNV scores of the

Fig. 5 B cell clusters in NPC. a t-SNE plot showing 10 clusters of 17,353 B cells (indicated by colors). b t-SNE plot, color coding for the
expression of the marker genes (gray to red) for the indicated cell subtypes. c Potential developmental trajectory of B cells (n= 17,353)
inferred by analysis with Monocle 2. Arrows show the increasing directions of certain B cell properties annotated with the signatures shown in
d. d Traceplots of (left) B cell proliferation signature along proliferation component and (right) antigen secretion signature along antigen
secretion component for the B cells. Cells are projected along the component, with the blue line indicating the moving average of the
expression of signatures (a sliding window of length equal to 5% of the total number of B cells was used), and the shaded area displaying
SEM. Signatures used are presented in Supplementary information, Table S9. e Comparison of pathway activities (calculated based on GSVA)
among different B cell subtypes. The scores of pathways are normalized. f Heatmap showing the activity of TFs in each B cell subtypes. The TF
activity is scored using AUCell. g t-SNE plots of B cells color coded according to the expression of BCL6 and ATF4 or the AUC of the estimated
regulon activity of these transcription factors, which corresponded to the degree of expression regulation of their target genes. h Left, FACS
analysis of BCL6 expression in GC and other B cells from tumor tissues. The results represent five independent experiments (n= 6 donors).
Right, association between GC B cells and BCL6+ B cells (n= 6) from tumor tissues. **P < 0.01 (paired Student’s t-test). Error bars, SEM. i Left,
FACS analysis of ATF4 expression in plasma cells and non-plasma B cells from tumor tissues. The results represent four independent
experiments (n= 5 donors). Right, association between plasma cells and ATF4+ B cells (n= 5) from tumor tissues. *P < 0.05 (paired Student’s
t-test). Error bars, SEM.
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epithelial cells from the normal sample were also calculated as a
CNV control. We normalized the CNV profiles by subtracting the
average expression profiles of the normal sample from the entire
CNV dataset. The scores were restricted to the range −1 to 1 by
replacing all values > 1 with 1 and all values < −1 with −1; any

score between −0.3 and 0.3 was set to 0. We then performed
hierarchical clustering of the CNV profiles of epithelial cells from
the normal sample and each of the 15 tumor samples separately21;
the non-malignant cells of the tumor samples were identified as
those in the cluster that predominantly contained cells from the
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normal sample, while the cells with deletions and amplifications of
entire chromosomes in the other cluster were identified as
malignant cells.
To ensure that the CNV profiles we inferred using this method

matched those that would have been found by direct measure-
ment of DNA by WES, we additionally isolated DNA from bulk
tumor tissue samples from each of the patients and generated
DNA libraries directly.

Identification of gene expression signatures reflecting the
intratumoral transcriptional heterogeneity of malignant cells
Focusing on 7581 malignant cells from the 11 tumors from which
the largest numbers of malignant cell transcriptomes were
acquired, NMF was used to identify variably expressed metagenes.
Unsupervised NMF was performed using the NMF R package
(version 0.20.6).67 We selected k= 4 as the number of factors
because it yielded a high cophenetic correlation coefficient68 and
effectively decomposed the dataset of each tumor. A total of 44
metagenes were identified across the 11 tumors, and we listed the
top-ranked genes according to their loadings of the NMF factor, as
shown in Supplementary information, Table S4. The 44 metagenes
were then compared by hierarchical clustering, using one minus
the Pearson correlation coefficient over all gene scores as a
distance metric. Five clusters of signatures were identified
manually (Fig. 2c; Supplementary information, Table S5). For each
signature, we then combined the top 100 genes of each
metagene and calculated the average loadings for each gene.
We summarized the total loadings for repetitive genes, retained
the original loadings for exclusive genes, and divided the loadings
of each gene by the number of metagenes within the signature.
Finally, the top 30 genes with the highest loading were defined as
the marker genes for the signature.

Identification of the marker gene signatures of immune cell
subclusters
To identify a marker gene signature for each of the 23 immune
subclusters within the three cell types (i.e., myeloid, T and B cells),
the FindMarkers function of Seurat was used to compare cells
within the studied subcluster with all other cells of this cell type.
Marker genes of subcluster were defined as having an average
expression > 2.5-fold higher in the studied subcluster than in the
other subclusters containing the same cell type, with detectable
expression in > 25% of the cells in that subcluster. In addition,
marker genes were required to have the highest mean expression
in the studied subcluster compared to all others containing the
same cell type. These parameters yielded marker genes for
17 subclusters (Supplementary information, Table S3); we failed to
identify marker genes for 6 subclusters. The marker genes of each
subcluster form the corresponding gene expression signature.

Correlation and survival analyses with the gene expression
signatures
We assessed the associations of the malignant and immune
signatures with clinicopathological features and survival in two

independent NPC cohorts, NPC Cohorts A (n= 113) and B (n=
128). NPC Cohort A, which was described by Zhang and
colleagues10 (GSE102349), consisted of 113 NPC samples profiled
by RNA-seq. The RNA-seq data were represented as FPKM, log2-
transformed, and filtered to include only genes expressed in at
least 50% of the samples. In addition, we retrospectively collected
128 stage II–IV, non-metastatic, pretreatment, formalin-fixed,
paraffin-embedded (FFPE) samples between February 2010 and
December 2015 at Sun Yat-sen University Cancer Center (NPC
Cohort B) (Supplementary information, Table S8). Total RNA was
extracted using a QIAGEN FFPE RNeasy kit (QIAGEN GmbH,
Germany) and hybridized to an Affymetrix HTA 2.0 microarray
according to the manufacturer’s instructions. The experimental
procedures were described in our previous study.69 Disease-free
survival was used as the endpoint and was available for 88 and
128 patients in NPC Cohorts A and B, respectively. Additionally, we
included the TCGA HNSCC cohort to assess the prognostic values
of these malignant and immune signatures derived from NPC in
other head and neck cancers; no NPC samples were included in
the HNSCC data from TCGA.25 The TCGA HNSCC cohort comprised
366 HNSCC samples with complete data for age, sex, smoking
history, disease stage, and disease-free survival; level 3 data were
obtained from the TCGA data portal (https://tcga-data.nci.nih.gov/
tcga/). Gene expression values were represented as RNA-Seq by
Expectation Maximization (RSEM; normalized within each sample
to the upper quartile of total reads); only genes expressed in at
least 50% of the samples were retained for analyses.
For correlation and survival analyses, the expression of each

gene signature was evaluated using single-sample gene set
enrichment analysis (ssGSEA; GenePattern module70). The ssGSEA
scores were subsequently correlated with clinicopathological
features (age, sex, smoking history, EBV infection status, T (tumor)
and N (nodal) categories, and clinical stage) using the Wilcoxon
rank-sum test and correlated with intratumoral and stromal TILs
and mutational burden using the Spearman correlation test. To
assess the prognostic values of the gene expression signatures,
patients in cohorts were allocated into high and low expression
groups according to the median value of the ssGSEA score for
each signature gene set. Kaplan–Meier survival curves were
plotted with the R Survival package to show differences in
survival time. Hazard ratios (HRs) and adjusted P values were
derived using a Cox proportional hazards model implemented in
the R Survival package that included age, sex, smoking history (yes
vs no) and tumor stage (III–IV vs I–II) in addition to the high and
low expression groups of each signature; the pretreatment EBV
DNA copy number (> 4000 vs ≤ 4000 copies/mL) was also included
for NPC Cohort B.

Trajectory analysis
Trajectory analysis was performed separately for the CD8+ T cells,
CD4+ Tconv cells, and B cells using Monocle 2 (version 2.6.4).71 We
then conducted differential gene expression analysis of the
studied cells using the differentialGeneTest function to identify
significant genes (BH-corrected P < 0.01), and cell ordering was

Fig. 6 The dense network and multiple regulatory immune responses in the TME of NPC. a Capacity for intercellular communication
between malignant cells and immune cells. Each line color indicates the ligands expressed by the cell population represented in the same
color (labeled). The lines connect to the cell types that express the cognate receptors. The line thickness is proportional to the number of
ligands when cognate receptors are present in the recipient cell type. The loops indicate autocrine circuits. The map quantifies potential
communication but does not account for the anatomical locations or boundaries of the cell types. b Detailed view of the ligands expressed by
each major cell type and the cells expressing the cognate receptors primed to receive the signal. Numbers indicate the quantity of
ligand–receptor pairs for each intercellular link. c–f Overview of selected ligand–receptor interactions of tumor cells (c), dysfunctional CD8+

T cells (d), macrophages (e), and the three types of DCs (f, DC1, DC2, and DC3). P values are indicated by circle size, with the scale to the right
(permutation test). The means of the average expression levels of interacting molecule 1 in cluster 1 and interacting molecule 2 in cluster 2 are
indicated by color. Assays were carried out at the mRNA level but were used to extrapolate protein interactions. CD4Tconv, conventional CD4

+

T cell; CD8T, CD8+ T cell; CD8Tdys, dysfunctional CD8
+ T cell; DC, dendritic cell; GCB, germinal center B cell; MAC, macrophage; MON,

monocyte.
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performed on these genes in an unsupervised fashion. Trajectory
construction was then performed after dimensionality reduction
and cell ordering with default parameters. The gene
signatures31,72 used to annotate Monocle components are listed
in Supplementary information, Table S9.

Gene set variation analysis
Predominantly, pathway analyses were carried out to evaluate
activation of hallmark pathways and metabolic pathways, which
were described in the molecular signature database73 and the
curated dataset,74 respectively. Then, we applied Gene set
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variation analysis (GSVA)75 in the GSVA package (version 1.26.0) to
assign pathway activity estimates to individual cells.

SCENIC analysis
SCENIC analysis was conducted as described previously.35 We
used the pySCENIC package (version 0.9.9), a lightning-fast python
implementation of the SCENIC pipeline. Two gene-motif rankings
(10 kb around the transcription start site (TSS) or 500 bp upstream
of the TSS) were used to determine the search space around the
TSS, and the 20-thousand motif database was used for RcisTarget
and GENIE3.

Cell–cell communication analysis
To investigate potential interactions across different cell types in
the NPC TME, cell–cell communication analysis was performed
using CellPhoneDB, which is a publicly available repository of
curated receptors and ligands and their interactions.50 CellPho-
neDB analysis was performed using the CellPhoneDB Python
package (1.1.0).50 Single-cell transcriptomic data of cells annotated
as tumor cells, macrophages, DC1, DC2, DC3, pDCs, monocytes,
CD4+ Tconv cells, CD4

+ Tregs, CD8+ T cells, CD8+ Tdysfunctional, NK
cells, B cells, GC B cells, and plasma cells were input into
CellPhoneDB for cell–cell interaction analysis. Enriched
receptor–ligand interactions between two cell types were derived
based on the expression of a receptor by one cell type and the
expression of the corresponding ligand by another cell type. Then,
we identified the most relevant cell type-specific interactions
between ligands and receptors, and only receptors and ligands
expressed in more than 10% of the cells in the corresponding
subclusters were considered.
Pairwise comparisons were performed between the included

cell types. We first randomly permuted the cluster labels of all cells
1000 times to determine the mean of the average receptor and
ligand expression levels of the interacting clusters. This generated
a null distribution for each receptor–ligand pair. By calculating the
proportion of the means that were higher than the actual mean, a
P value for the likelihood of the cell type specificity of the
corresponding receptor–ligand complex was obtained. We then
selected interactions that were biologically relevant.

Immunofluorescence analysis
Multiplex staining was performed using the PANO 7-plex IHC kit
(Panovue, Beijing, China) according to the manufacturer’s instruc-
tions. Briefly, sections (4-μm thickness) obtained from paraffin-
embedded samples were dewaxed, rehydrated, and subjected to
high-temperature antigen retrieval. The tissues were incubated
with blocking antibody diluent at room temperature for 10 min,
and then incubated overnight at 4 °C with the following primary
antibodies: anti-ACTA2 (mouse, A5228, dilution 1:10,000; Sigma),
anti-CD31 (mouse, ZM-0044, dilution 1:300; OriGene), anti-EPCAM
(rabbit, 14452S, dilution 1:150; Cell Signaling Technology), anti-

CD4 (mouse, ZM-0418, dilution 1:100; OriGene), anti-CD8 (rabbit,
ZA-0508, dilution 1:200; OriGene), anti-CD20 (rabbit, HPA014341,
dilution 1:3000; Sigma), anti-IL3RA (mouse, ZM-0423, dilution 1:50;
OriGene), anti-CD57 (mouse, ZM-0058, dilution 1:100; OriGene),
anti-LAG-3 (rabbit, ab180187 dilution 1:500; Abcam), and anti-
HAVCR2 (rabbit, 45208S, dilution 1:1000; Cell Signaling Technol-
ogy). The slides were then incubated with the secondary antibody
(HRP polymer, anti-mouse/Rabbit IgG) at room temperature for 10
min. Subsequently, fluorophore (tyramide signal amplification, TSA
plus working solution) was applied to the tissues. The slides were
microwave heat-treated after each TSA operation treatment and
the primary antibodies were applied sequentially, followed by
incubation with the secondary antibody and TSA treatment. Nuclei
were stained with 4′-6′-diamidino-2-phenylindole (DAPI, Sigma-
Aldrich) after all the antigens had been labeled. To obtain
multispectral images, five randomly selected fields were scanned
for each of the stained slides using the Mantra System
(PerkinElmer, Waltham, MA, USA) at 200× magnification. The
spectrum of autofluorescence of tissues and each fluorescein
signal were extracted using images of unstained and single-
stained sections. The extracted images were then used to
establish a spectral library using inForm image analysis software
(PerkinElmer), and reconstructed images of sections with the
autofluorescence removed were obtained. The area of the nuclei
was defined by detecting circular signals in the DAPI channel, and
the percentages of certain cell subtypes were evaluated by
dividing the colocalized signals for DAPI and the corresponding
cell subtype marker by the DAPI-positive signal for each sample.
Within the tumors, the area of tumor epithelial nests was
determined morphologically by detecting aggregates of
EPCAM+ cells.
For immunofluorescence confirmation of DC1 and DC3, the

4-μm paraffin-embedded sections were deparaffinized, rehy-
drated, subjected to blockade of endogenous peroxidase activity
and high-temperature antigen retrieval, permeabilized in PBS with
0.5% Triton X-100, and incubated overnight at 4 °C with the
following primary detection antibodies: anti-CD11c (mouse,
ab11029, dilution 1:150; Abcam), anti-CLEC9A (rabbit, ab222794,
dilution 1:100; Abcam), and anti-CCR7 (rabbit, ab32527, dilution
1:100; Abcam). The sections were incubated with Alexa Fluor 488-
conjugated rabbit IgG and Alexa Fluor 594-conjugated mouse IgG
secondary antibodies (1:1000; Life Technologies, Carlsbad, CA,
USA; A-11008 or A-11001). Nuclei were counterstained with
Hoechst 33342 (H3570, 2 μg/mL, Invitrogen, Grand Island, NY,
USA). Images were captured using a confocal laser-scanning
microscope (Olympus FV1000, Japan).

Isolation of mononuclear cells from blood and tissues
Peripheral mononuclear cells were isolated from the peripheral
blood of healthy donors collected at the Guangzhou Blood Center
by Ficoll density gradient centrifugation. Specifically, monocytes

Fig. 7 Correlations of immune subtype-specific signatures with clinicopathological features and survival in NPC. a Changes in gene
expression for the indicated five immune signatures (pDC, DC1, NK, FCRL4+ B and plasma cells) with significant associations with the EBV
infection status (95 positive vs 14 negative, detected by in situ hydridization with the EBV-encoded small RNAs) in NPC Cohort A. The box plot
center corresponds to the median, with the box and whiskers corresponding to the interquartile range and 1.5× interquartile range,
respectively. P values were based on the Wilcoxon rank-sum test. b Density dot plot and Pearson’s correlation analysis (r) of the gene
expression for the DC1 signature and EBV DNA level in the NPC Cohort B (n= 128). c Bar plot showing the direction and statistical significance
(P values were based on the Spearman correlation test) of the association between each of the immune cell subtypes and the number of
mutations in NPC Cohort A. Significant associations are shown for the immune signatures DC1 and FCRL4+ B, GC B and plasma cells, which
were positively correlated with the mutational burden. d Kaplan–Meier survival curves for progression-free survival in the 88 patients in NPC
Cohort A stratified according to high vs low expression of six immune signatures (macrophage, pDC, DC1, NK cell, and plasma cell). Cox
regression HRs and 95% CIs obtained after correcting for age, sex, smoking history and disease stage are shown; the corresponding Cox
regression P values are also shown. e Prognostic values of immune signatures in the 88 patients in NPC Cohort A. Forest plots show HRs (blue/
red squares) and CIs (horizontal ranges) derived from Cox regression survival analyses for progression-free survival in multivariable analyses
adjusted for age, sex, smoking history and disease stage; the corresponding Cox regression P values are also shown. Significant results are
indicated by red squares.
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were purified by a CD14+ cell isolation kit (Miltenyi Biotec), and
left untreated or transfected with 300 nM negative control (NC)
siRNA, or NR1H3/TFEC-specific siRNAs (EA-100) using P3 primary
cell 4D-Nucleofector X kit (V4XP-3024, Lonza). Macrophages were
obtained by exposing the monocytes to M-CSF (40 ng/mL, R&D) for
6 days with DMEM medium supplemented with 10% serum
(Thermo Fisher Scientific). The CD8+ T cells and NK cells were
purified by a CD8+ T cell isolation kit and a NK cell isolation kit,
respectively (Miltenyi Biotec), and then left untreated or transfected
with 300 nM NC siRNA, or Eomes/Runx3/XBP1-specific siRNAs (FI-
115) using P3 primary cell 4D-Nucleofector X kit (V4XP-3024, Lonza).
CD8+ T cells (2 × 105 cells/well in 96-well plates) were activated by
incubation with RPMI medium supplemented with 10% serum
(Thermo Fisher Scientific) in the presence of 10 U/mL IL-2 (R&D) and
2.5 μg/mL anti-CD3 (mouse, 16-0038-85, 2.5 μg/μL; eBioscience) and
anti-CD28 (mouse, 16-0089-85, 2.5 μg/μL; eBioscience) for 36 h. 2 ×
105 NK cells/well in 96-well plates were incubated in RPMI medium
supplemented with 10% serum (Thermo Fisher Scientific) and
50 IU/mL IL-2 (R&D) for 16 h.
The NPC samples were washed with PBS (Thermo Fisher

Scientific, Waltham, MA, USA), cut into small pieces (< 1 mm3) and
transferred to 1mL PBS containing collagenase IV (1 mg/mL)
(Thermo Fisher Scientific) and 2% FBS. The samples were
incubated for 30 min at 37 °C with manual shaking every 10 min
and then filtered twice using a 40-µm nylon mesh (Thermo Fisher
Scientific), and the mononuclear cells were washed and resus-
pended in RPMI 1640 supplemented with 10% FBS.

Flow cytometry
The mononuclear leukocytes were labeled with monoclonal
antibodies for 30 min on ice in the dark and washed with PBS
containing 2% BSA (Sigma-Aldrich). The cells were washed, fixed,
and permeabilized using the FOXP3/Transcription Factor Staining
Buffer Set (eBioscience) according to the manufacturer’s
instructions.
For analysis of primary human monocytes stimulated by M-CSF,

cells were stained with anti-CD14 (mouse, 557923, dilution 1:120;
BD Bioscience), anti-CD86 (mouse, 555660, dilution 1:100; BD
Bioscience), and anti-HLA-DR (mouse, 562804, dilution 1:120; BD
Bioscience) antibodies.
For analysis of CD8+ T cells and NK cells, cells were stained with

anti-CD3 (mouse, 300405, dilution 1:100; BioLegend), anti-CD4
(mouse, 317418, dilution 1:100; BioLegend), anti-CD8 (mouse,
344708, dilution 1:100; BioLegend), and anti-CD56 (mouse,
318318, dilution 1:100; BioLegend) antibodies; CD8+ T cells and
NK cells were gated as CD3+CD4–CD8+ cells and CD56+CD3– cells,
respectively. CD8+ T cells and NK cells were also stained with anti-
GZMB (mouse, 372204, dilution 1:100; BioLegend), anti-perforin
(mouse, 308122, dilution 1:100; BioLegend), anti-EOMES (mouse,
12-4877-41, dilution 1:100; eBioscience), PE-conjugated anti-
RUNX3 (mouse, ab224641, dilution 1:500; Abcam) and anti-XBP1
(mouse, ab109221, dilution 1:80; Abcam) antibodies.
For analysis of B cells, cells were stained with anti-CD19 (mouse,

302206, dilution 1:100; BioLegend), anti-CD138 (mouse, 356527,
dilution 1:100; BioLegend), and anti-CXCR5 (mouse, 356923,
dilution 1:100; BioLegend) antibodies. GC B cells were gated as
CD19+CD138–CXCR5+ cells, and the other B cells were gated as
CD19+CD138+ or CD19+CD138–CXCR5– cells. Plasma cells were
gated as CD19+CD138+ cells, and the other B cells were gated as
CD19+CD138– cells. B cells were also stained with anti-BCL6
(mouse, NBP2-59597, dilution 1:100; Novus Biologicals) and PE-
conjugated anti-ATF4 (mouse, ab184909, dilution 1:80; Abcam)
antibodies. Appropriate PE-conjugated isotype controls (rabbit,
ab172730, diluted to the same concentration of the primary
antibody; Abcam) were used for setting gates. Flow cytometry
analyses were performed on a CytoFLEX flow cytometer (Beckman
Coulter, Inc.) with FlowJo software (Tree Star Inc., Ashland, OR,

USA). The gating strategy was shown in Supplementary informa-
tion, Fig. S12.

Immunoblotting
Proteins from cells were extracted as previously described.76 The
following antibodies were used in immunoblotting: anti-NR1H3
(Rabbit, ab176323, dilution 1:1000; Abcam), anti-TFEC (Rabbit,
ab185226, dilution 1:1000; Abcam), anti-EOMES (Rabbit, 81493s,
dilution 1:1000; CST), anti-RUNX3 (Rabbit, ab224641, dilution
1:1000; Abcam), anti-XBP1 (Rabbit, ab109221, dilution 1:1000;
Abcam), and anti-β-actin (mouse, 3700s, dilution 1:1000; CST).

Real-time PCR
TRIzol reagent (Invitrogen) was used to isolate total RNA from
monocytes and macrophages as described above. The concentra-
tion and quality of the total RNA were determined using
NanoDrop 2000. First-strand complementary DNA was synthesized
using random primers and the M-MLV reverse transcriptase
(Promega). PCR was performed in triplicate using SYBR Green
qPCR SuperMix-UDG reagents (Invitrogen) on a CFX96 Touch
sequence detection system (Bio-Rad). GAPDH was used as an
endogenous control for all the genes. The primer sequences are
listed in Supplementary information, Table S10.

Statistical analysis
All statistical analyses were performed using R (http://www.r-
project.org) and SPSS version 19.0 (SPSS Inc., Chicago, IL, USA). We
used the R Base package with default parameters to generate box
plots. The Beanplot R package was used to generate violin plots,
with the data distribution bandwidth evaluated by kernel density
estimation. We do not display each data point in all box and violin
plots because the large number of data points would obscure the
overall distribution. A two-sided paired or unpaired Student’s
t-test and unpaired Wilcoxon rank-sum test was used where
indicated. P < 0.05 was considered to indicate statistical
significance.
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