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Due to the overuse of antibiotics, people are worried that existing antibiotics will become
ineffective against pathogens with the rapid rise of antibiotic-resistant strains. The use
of cell wall lytic enzymes to destroy bacteria has become a viable alternative to avoid
the crisis of antimicrobial resistance. In this paper, an improved method for cell wall
lytic enzymes prediction was proposed and the amino acid composition (AAC), the
dipeptide composition (DC), the position-specific score matrix auto-covariance (PSSM-
AC), and the auto-covariance average chemical shift (acACS) were selected to predict
the cell wall lytic enzymes with support vector machine (SVM). In order to overcome the
imbalanced data classification problems and remove redundant or irrelevant features,
the synthetic minority over-sampling technique (SMOTE) was used to balance the
dataset. The F-score was used to select features. The Sn, Sp, MCC, and Acc were
99.35%, 99.02%, 0.98, and 99.19% with jackknife test using the optimized combination
feature AAC+DC+acACS+PSSM-AC. The Sn, Sp, MCC, and Acc of cell wall lytic
enzymes in our predictive model were higher than those in existing methods. This
improved method may be helpful for protein function prediction.

Keywords: cell wall lytic enzymes, optimized combination feature, synthetic minority over-sampling technique,
F-score, support vector machine, jackknife test

INTRODUCTION

Bacteria are constantly around us, and bacterial infections have become a major public health
problem. The overuse of antibiotics leads to the rapid rise of antibiotic-resistant strains, and people
are worried that existing antibiotics will become ineffective against pathogens. Using cell wall
lytic enzymes to destroy bacteria has become a viable alternative method to avoid the crisis of
antimicrobial resistance (Sommer et al., 2017; Wu et al., 2017; Bhagwat et al., 2019; Cheng et al.,
2020). Cell wall lytic enzymes are divided into two enzymes: endolysin and autolysin. Endolysins
are phage-encoded enzymes that have evolved to degrade the bacterial cell wall (Shavrina et al.,
2016). Many studies have shown that endolysin has an excellent bactericidal effect on Staphylococcus
aureus (Ajuebor et al., 2016), Escherichia coli (Yan et al., 2019), Streptococcus suis (Der Ploeg, 2008),
and other pathogens. Compared with conventional antibiotics, endolysin has many advantages,
such as rapid host killing, host specificity, low chances of developing drug resistance, and efficacy
against multidrug-resistant bacteria (Gondil et al., 2020). Autolysin is the other cell wall lytic
enzyme that degrades some bonds in the peptidoglycan backbone of the bacterial cell wall (Usobiaga
et al., 1996), and it is closely related to the life of cells and participates in the control of cell growth,
cell lysis, daughter-cell separation, and biofilm formation (Kalali et al., 2019). Cell wall lytic enzymes
have become a valuable tool for biological researchers in the medical and food industry and in
agricultural applications (Yu, 1997).
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Experimental determination of the cell wall lytic enzymes
is time-consuming and laborious, so it is necessary to use an
effective method to predict cell wall lytic enzymes. Recently
some computational methods for predicting cell wall lytic
enzymes have been proposed. Ding et al. (2009) used Chou’s
amphiphilic pseudo to predict cell wall lytic enzymes; the
predictive accuracy was 80.40% with jackknife test. Chen et al.
(2016) developed a predictor called “Lypred” that used pseudo
amino acid composition (PseAAC) as a feature vector; the
predictive accuracy was 91.3% with fivefold cross-validation.
Meng et al. (2020) developed a predictor called “CWLy-SVM”
that employed the 473-dimensional sequence-based feature
descriptor to predict cell wall lytic enzymes; the result was
95.50% with jackknife test. In this paper, the amino acid
composition (AAC), the dipeptide composition (DC), the
position-specific score matrix auto-covariance (PSSM-AC), and
the Auto-covariance average chemical shift (acACS) were used
to predict the cell wall lytic enzymes with the same datasets as
investigated by Chen et al. (2016).

Data imbalance is always considered a problem in developing
efficient and reliable prediction systems; in imbalanced datasets,
the classifier would tend to the majority class. Here, the
synthetic minority over-sampling technique (SMOTE) was used
to solve the problem of imbalance. To remove redundant
or irrelevant features, we selected features using the F-score
algorithm. The accuracy (Acc) was 99.19% with a balanced
dataset in jackknife test by using the optimized combination
feature AAC+DC+PSSM-AC+acACS.

MATERIALS AND METHODS

Benchmark Dataset
The benchmark dataset was generated by Chen et al. (2016), The
dataset was taken from the Universal Protein Resource (UniProt),
using the following steps to collect the sequence: (1) sequences
annotated with “Inferred from homology” or “Predicted” were
removed. (2) Sequences which were the fragments of other
proteins were not included. (3) Sequences containing ambiguous
letters such as “B,” “J,” “O,” “U,” “X,” and “Z” were excluded. To
reduce homologous bias and redundancy, the program CD–HIT
(Li and Godzik, 2006) was used to remove those sequences that
have ≥ 40% pairwise sequence identity. Finally, 375 sequences
were obtained; they contained 68 lyases and 307 non-lyases, and
the dataset can be expressed as:

S = Slysases ∪ Snonlysases (1)

The dataset can be freely downloaded from http://lin-group.cn/
server/Lypred/data.html.

Feature Extraction Techniques
Feature extraction is a crucial step in developing a powerful
predictor; a set of reasonable features contains more protein
sequence information (Zhu et al., 2018; Yang et al., 2019; Zhang
and Liu, 2019). Generally, the feature combination can boost
the prediction performance. In this paper, the AAC, the DC,

the PSSM-AC, and the acACS were used to predict the cell
wall lytic enzymes.

Amino Acid Composition
The amino acid composition of proteins is the most basic feature
information in all features. The protein sequence consists of 20
amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
and Y). AAC calculates the occurrence frequency of the 20 native
amino acids so that the protein sequence can be expressed as 20
features in a feature vector. It can be defined as:

P = [x1, x2, x3, · · · , xi, · · · , x20] (2)

xi =
ni
L

(3)

Where ni is the occurrence number of the 20 native amino acid
in protein sequence and L is the length of the protein sequence.

Dipeptide Composition
Dipeptide composition (DC) is calculated as the occurrence
frequency of each two adjacent amino acid residues. There
are 20∗20 = 400 combinations of amino acid pairs. Compared
with AAC, DC is a feature that considers some sequence-order
information. It can be calculated as:

P =
[
f1, f2, f3, . . . , fi, . . . , f400

]
(4)

fi =
mi

L− 1
(5)

Where mi is the occurrence number of i-th dipeptide in protein
sequence and L is the length of the protein sequence.

Position-Specific Score Matrix Auto-Covariance
Position-Specific Score Matrix Auto-Covariance (PSSM-AC) is
a feature that extracts the evolutionary information of a protein
sequence. PSSM-AC was first proposed to predict the protein fold
recognition by Dong et al. (2009). Recently, the PSSM-AC was
used successfully in many works for the prediction of protein
function (Zou et al., 2013; Huang and Li, 2018; Wang et al.,
2019b, 2020a). In PSSM-AC, the PSI-BLAST (Position-Specific
Iterative Basic Local Alignment Tool) was used to generate PSSM;
the threshold of e-value is 0.001 and the maximum number of
iterations is 3. PSSM-AC is calculated as the correlation between
two residues within PSSM. This method can be represented as:

PPSSM =



R1,1 R1,2 . . . R1,j . . . R1,20
R2,1 R2,2 . . . R2,j . . . R2,20

...
...

...
...

...
...

Ri,1 Ri,2 . . . Ri,j . . . Ri,20
...

...
...

...
...

...

RL,1 RL,2 . . . RL,j . . . RL,20


(6)

PPSSM − AC
(
j, lg

)
=

1
L− lg

L−lg∑
i=1

(
Ri,j − Rj

) (
Ri+lg,j − Rj

)
(7)
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Rj =
1
L

L∑
i=1

Ri,j
(
j = 1, . . . , 20

)
(8)

Where Ri,j is the score of the residue of the i-th position mutated
to the j-th amino acids residue in the protein sequence; a high
score means a highly conserved position. L is the length of the
protein sequence, lg is the distance along the sequence, and 0
< lg< L. As a result, the protein sequence generates a 20 × lg
dimensional feature vector with PSSM-AC.

Auto-Covariance Average Chemical Shift
As important parameters are measured by nuclear magnetic
resonance (NMR) spectroscopy, the chemical shift has been
used as a powerful indicator of the protein structure. Several
researchers revealed that the average chemical shift (ACS) of a
particular nucleus in the protein backbone empirically correlates
to its secondary structure (Sibley et al., 2003). acACS was
proposed by Fan et al. (2014), In acACS, the secondary structure
was converted into the average chemical shift, and then the auto-
covariance function was used to construct the vector representing
the protein sequence by selecting different. In this work, the
secondary structure was obtained by submitting the protein
sequence to PSIPRED1, and then the protein sequence and the
corresponding secondary structure were submitted to the acACS
web server2. It can be calculated as:

For a protein P, where each amino acid in the sequence is
substituted by its averaged chemical shift, P can be expressed as:

P =
[
Ai

1,A
i
2,A

i
3, . . . ,A

i
L
] (
i = 15N, 13Cα,

1Hα,
1HN

)
(9)

Where 15N stands for Nitrogen, 13Cα for alpha Carbon, 1Hα for
alpha Hydrogen, and 1HN for Hydrogen linked with Nitrogen.

After we select λ = 17 and i = 15N, 13Cα,
1Hα,

1H, the acACS
could be expressed as:

ϕλ
i =

1
L− λ

L−λ∑
k=1

[
Ai
k − Ai

k+λ

] (
i = 15N, 13Cα,

1Hα,
1HN;λ < L

)
(10)

P =
[
ϕ0
i , ϕ

1
i , ϕ

2
i , . . . ,ϕ

λ
i
] (
i = 15N, 13Cα,

1Hα,
1HN

)
(11)

Synthetic Minority Over-Sampling
Technique
The numbers of non-lyases are about 4.5 times that of lyases,
and this leads to imbalanced data classification problems. In
order to overcome this problem, we used SMOTE to solve the
problem of imbalance. SMOTE is an over-sampling approach for
imbalanced data classification (Wang et al., 2018a; Zhou et al.,
2019). The algorithm of SMOTE is described as follows: (1)
randomly choose the samples xi from the minority class, and
calculate the Euclidean distance to all other samples in this class,
then K nearest neighbors of this sample were selected, (2) select

1http://bioinf.cs.ucl.ac.uk/psipred/
2http://202.207.14.87:8032/bioinformation/acACS/index.asp

xi samples from the k nearest neighbors, and (3) generate a new
sample xnew by: xnew = xi + α (x− xi), α is a random number in
(0, 1). In this paper, the protein numbers of lyases and non-lyases
are in equilibrium with SMOTE.

Feature Selection
Redundant or irrelevant features will decrease the accuracy
of prediction and increase computational time. In order to
remove redundant or irrelevant features, a variety of feature
selection techniques have been proposed: the analysis of variance
(ANOVA) (Tan et al., 2018; Li et al., 2019; Zhang et al., 2020a),
Max-Relevance-Max-Distance algorithms (MRMD) (Zou et al.,
2016; Wan et al., 2017; Ru et al., 2019; Kwon et al., 2020),
and Minimal-Redundancy-Maximal-Relevance (MRMR) (Jiao
and Du, 2016; Xu et al., 2016; Wang et al., 2018b; Kabir et al.,
2020) are the representative feature selection algorithms. In this
study, we selected features using the F-score algorithm; the
F-score algorithm was proposed by Yi-Wei (Chen and Lin, 2006).
All features are ranked according to F-score values; a higher
score indicates a higher likelihood that this feature is more
discriminative (Zhang et al., 2020b). It can be calculated as:

Fi =

(
x̄(+)
i − x̄i

)2
+

(
x̄(−)
i − x̄i

)2

∑n+
k=1

(
x̄(+)
k,i − x̄(+)

i

)2
+

1
n−−1

∑n−
k=1

(
x̄(−)
k,i − x̄(−)

i

)2 (12)

Where x̄i is the average of the i-th feature of the whole sample,
x̄(+)
i is the average of the i-th feature of the positive samples, x̄(−)

i
is the average of the i-th feature of the negative samples; n+ is
the total number of positive samples, n− is the total number of
negative samples; x̄(+)

k,i is the average of the i-th feature of the k-th

sample in the positive samples, and x̄(−)
k,i is the average of the i-th

feature of the k-th sample in the negative samples.
To determine the optimal features, the incremental feature

selection (IFS) (Ju and He, 2017; Tang et al., 2018) was employed
based on the features ranked. The IFS procedure starts with one
feature with the highest score, then adds features to the start
feature based on their scores until all the features are added.

Support Vector Machine
The support vector machine was proposed by Vapnik; the
basic idea of SVM is to transform the input data into a high-
dimensional Hilbert space and then determine the optional
separating hyperplane. SVM has been successfully applied in
the field of computational biology and bioinformatics (Fan
et al., 2013; Li and Wang, 2016; Arif et al., 2018; Chen
et al., 2019; Tian et al., 2019; Wang et al., 2019a; Du et al.,
2020; Jing and Li, 2020; Yang et al., 2020). Therefore, we
used this classifier to build our model. The radial basis
function (RBF) kernel was adopted to perform prediction. The
regulation parameter c and kernel width parameter γ were
tuned via the grid search method. In this paper, the LibSVM
package was used to predict cell wall lytic enzymes, which
can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/
libsvm.
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Performance Evaluation
In statistical prediction, three cross-validation methods are
commonly used to examine a predictor for its effectiveness
in practical applications: k-fold cross-validation, independent
dataset test, and jackknife test (Li and Li, 2008; Tan et al.,
2019; Dao et al., 2020a,b). Among the three methods,
the jackknife test is deemed the most objective and
rigorous. Hence, the jackknife test was used to evaluate the
performance of this paper.

In order to evaluate the predictive capability and reliability
of our model, the sensitivity (Sn), specificity (Sp), Matthew’s
correlation coefficient (MCC), and accuracy (Acc) (Bustamam
et al., 2019; Cheng, 2019; Cheng et al., 2019; Feng et al., 2019;
Malebary et al., 2019; Chen et al., 2020; Li and Gao, 2020; Wang
et al., 2020b) were measured and defined by:

sn =
TP

TP + FN
(13)

sp =
TN

TN + FN
(14)

MCC =
TP×TN − FP×FN

√
(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)

(15)

Acc =
TP+TN

TP + TN + FP + FN
(16)

Where TP represents the true positive, TN represents the true
negative, FP represents the false positive, and FN represents
the false negative.

FIGURE 1 | The Acc of position-specific score matrix auto-covariance
(PSSM-AC) with different lg.

RESULTS AND DISCUSSION

The Choice of Our Model Parameters lg,
and Combination Schemes of Chemical
Shifts
In order to investigate the effectiveness of the predictive model,
the AAC, the DC, PSSM-AC, and the auto-covariance, average
chemical shift was selected to predict the cell wall lytic enzymes.
Furthermore, for the sake of the best performance of predicting

FIGURE 2 | The Acc with respect to the correlation factor λ of the
combination mode of chemically shifted atoms 15N, 13Cα, 1Hα, 1H.

FIGURE 3 | The Acc of different combination schemes of chemical shifts.
Numbers denote the chemical shifts of atoms: 1 denotes 15N, 2 denotes
13Cα, 3 denotes 1Hα, 4 denotes 1HN.

TABLE 1 | The predictive results of individual features with jackknife
test by using SVM.

Features Sn (%) Sp (%) MCC Acc (%)

AAC 47.06 95.77 0.51 86.93

DC 38.24 97.39 0.48 86.67

PSSM-AC 72.06 99.67 0.81 94.40

acACS 57.35 93.81 0.55 87.20
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cell wall lytic enzyme, the lg of the distance was selected,
with results in Figure 1, and the best lg was 28 when the
accuracy was the highest. In addition, the combination mode of
chemically shifted atoms and the best parameter λ were selected.
Figure 2 shows that the best parameter λ was 17. The results of
combination mode of chemically shifted atoms were shown in

FIGURE 4 | Three-dimensional heat map of DC’s F-score value.

FIGURE 5 | The Acc of dipeptide composition (DC) with the incremental
feature selection.

FIGURE 6 | The Acc of DC with feature selection and non-feature selection.

Figure 3; the best combination mode of chemically shifted atoms
was 15N, 13Cα,

1Hα,
1H when the accuracy was the highest.

The Predictive Performance of Cell Wall
Lytic Enzymes
The predictive performance of cell wall lytic enzymes by using
the SVM classification algorithm with SMOTE was listed in
Table 1. The highest sensitivity (Sn), specificity (Sp), Matthew’s
correlation coefficient (MCC), and accuracy (Acc) of individual
parameters were 72.06%, 99.67%, 0.81, and 94.40% with jackknife
test by using PSSM-AC. By comparison, the result of acACS was
better than AAC and DC; this is probably due to the fact that

FIGURE 7 | Prediction results of different combined features. Letters denote
features: a for AAC, b for DC, c for acACS, d for PSSM-AC.

TABLE 2 | The predictive results of combined feature
AAC+DC+acACS+PSSM-AC by using different algorithms with
and without SMOTE.

Algorithms SMOTE (N/Y) Sn (%) Sp (%) MCC Acc (%)

SVM N 75.00 99.67 0.83 95.20

RF 41.18 85.99 0.27 77.87

KNN 66.18 80.13 0.40 77.60

NB 86.76 66.78 0.42 70.40

SVM Y 99.35 99.02 0.98 99.19

RF 85.99 77.52 0.64 81.76

KNN 100.00 73.94 0.77 86.97

NB 92.18 69.38 0.63 80.78

TABLE 3 | The comparison of the predictive results between this paper and
existing methods.

Method Sn (%) Sp (%) MCC Acc (%)

Ding et al. 66.70 88.60 0.573 80.40

Lypred 76.47 93.16 0.678 91.30

CWLy-SVM 85.30 97.70 0.845 95.50

Our predictive model 99.35 99.02 0.98 99.19
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acACS considers the protein secondary structure information.
The sensitivity (Sn), Matthew’s correlation coefficient (MCC),
and accuracy (Acc) of AAC were all higher than DC, because
DC displays redundant or irrelevant features, so we used “F-
score” to select the feature. As shown in Figure 4, the closer
the color is to red, the higher the F-score of adjacent amino
acid residue and the easier it is to distinguish. On the contrary,
the closer the color is to blue, the harder it is to distinguish.
It can be seen that DC has some redundant information; this
redundant information will reduce the prediction success rate.
Figure 5 showed the Acc of DC based on the incremental
feature selection (IFS). The peak (the maximum accuracy) can
be found in this curve, and it was 90.93% with 245D features.
Figure 6 showed the comparison of DC with feature selection
and non-feature selection; we can see that feature selection was
successfully applied to remove the irrelevant and redundant
features. The Sn, MCC, and Acc were improved remarkably;
Acc increased from 86.67 to 90.93%, Sn increased from 38.24
to 60.29%, and the results indicate that feature selection was
helpful to enhance the predictive performance. The predictive
results of different combined features with SVM without SMOTE
were displayed in Figure 7. From Figure 7 we can see the
combined feature AAC+DC+acACS+PSSM-AC was better than
other parameters. The accuracy (Acc) of combined feature
AAC+DC+acACS+PSSM-AC was 95.20% with the jackknife
test. This result indicates that the combined feature was powerful
in the prediction of cell wall lytic enzymes.

Comparison With Different Classifiers
In order to display the power of our predictive model, our
predictive model [Support Vector Machine (SVM)], Random
Forest (RF), K-Nearest Neighbors (KNN), and Naive Bayes (NB)
were used to predict cell wall lytic enzymes. The predictive
performance of SVM, RF, KNN, and NB were listed in Table 2.
From Table 2, we can see the predictive performance of SVM,
RF, KNN, and NB with SMOTE were superior to those without
SMOTE. The Acc of SVM, RF, KNN, and NB increased by 3.99,
3.89, 9.37, and 10.38% when using SMOTE; the MCC of SVM,
RF, KNN, and NB increased by 0.15, 0.37, 0.37, and 0.21 when
using SMOTE. In addition, the Sn, Sp, MCC, and Acc of SVM
reached 99.35%, 99.02%, 0.98, and 99.19% by using SMOTE. The
experimental results show that SVM was useful for improving the
predictive performance of cell wall lytic enzymes.

Comparison With Existing Methods
To further investigate the effectiveness of our predictive model,
we compared it with existing methods with the same dataset. The

comparison results were listed in Table 3. From Table 3, we can
see that the predictive results of cell wall lytic enzymes in our
predictive model were better than those of the other methods.
Furthermore, the Sn, Sp, MCC, and Acc in our predictive model
reached 99.35%, 99.02%, 0.98, and 99.19%, which were 32.65%,
10.42%, 0.407, and 18.79% higher than the Ding et al. (2009)
method, 22.88%, 5.86%, 0.302, and 7.89% higher than Lypred,
and 14.05%, 1.32%, 0.135, and 3.69% higher than CWLy-SVM.
These results indicate that our predictive model was superior to
existing methods.

CONCLUSION

With the rapid rise of antibiotic-resistant strains, cell wall lytic
enzymes used to destroy bacteria is a viable alternative method
to avoid the crisis of antimicrobial resistance. In this work, a
reliable and effective computational method was developed to
identify the cell wall lytic enzymes. This model was derived
from the SVM machine learning algorithm; SMOTE was used
to counter the imbalanced data classification problems, and the
F-score algorithm was used to remove redundant or irrelevant
features. A series of experiments demonstrated that the proposed
method is powerful. This method has good capability for
distinguishing lyases.
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