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Abstract Daily (circadian) rhythms coordinate our physiology and behaviour with regular
environmental changes. Molecular clocks in peripheral tissues (e.g. liver, skeletal muscle and
adipose) give rise to rhythms in macronutrient metabolism, appetite regulation and the
components of energy balance such that our bodies can align the periodic delivery of nutrients
with ongoing metabolic requirements. The timing of meals both in absolute terms (i.e. relative
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to clock time) and in relative terms (i.e. relative to other daily events) is therefore relevant to
metabolism and health. Experimental manipulation of feeding–fasting cycles can advance under-
standing of the effect of absolute and relative timing of meals on metabolism and health. Such
studies have extended the overnight fast by regular breakfast omission and revealed that morning
fasting can alter the metabolic response to subsequent meals later in the day, whilst also eliciting
compensatory behavioural responses (i.e. reduced physical activity). Similarly, restricting energy
intake via alternate-day fasting also has the potential to elicit a compensatory reduction in physical
activity, and so can undermine weight-loss efforts (i.e. to preserve body fat stores). Interrupting
the usual overnight fast (and therefore also the usual sleep cycle) by nocturnal feeding has also
been examined and further research is needed to understand the importance of this period
for either nutritional intervention or nutritional withdrawal. In summary, it is important for
dietary guidelines for human health to consider nutrient timing (i.e. when we eat) alongside the
conventional focus on nutrient quantity and nutrient quality (i.e. how much we eat and what we
eat).
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Abstract figure legend Timing of meal-intake across the day can be considered in both absolute (i.e. clock time) and
relative terms (i.e. to other events across the day). In particular meals can be considered relative to predictable cycles
of sleep-wake (e.g. nocturnal feeding) and fasting-feeding (e.g. breakfast and intermittent fasting). Likewise, the timing
of meal-intake throughout the day can also be considered relative to peaks in the rhythmic control of physiology (e.g.
muscle transcript accumulation and/or appetite regulation). Collectively, consideration of these factors provides insight
into the complexity of metabolic regulation within the context of nutrient timing.

Introduction

Life on earth has evolved within the context of a
repetitive cycle of ca 24 h, whereby environmental
variables such as light exposure predictably oscillate
during each daily period. As such, natural selection has
provided almost all organisms on this planet with end-
ogenous circadian rhythms to help anticipate impending
environmental challenges and thus pre-emptively adjust
our physiology, metabolism and/or behaviour accordingly
(Jagannath et al. 2017). The mammalian circadian
timing system comprises both a central ‘master’ clock
located in the suprachiasmatic nucleus of the hypo-
thalamus and an integrated network of peripheral clocks
located throughout various organs, tissues and cell-types
(Albrecht, 2017). Collectively, these molecular clocks
facilitate the coordinated disposal, degradation, synthesis
and recycling of metabolic substrates in order that
our periodic delivery of dietary nutrients (i.e. meal
times) can appropriately meet our ongoing physio-
logical requirements (Frayn, 2019). The objective of this
review is to briefly summarise the mammalian circadian
timing system and the daily rhythmicity of macronutrient
metabolism, energy expenditure and appetite regulation,
before considering how the alignment of daily feeding
patterns with these underlying rhythms can impact
human health.

The mammalian circadian timing system

The suprachiasmatic nucleus can translate repeating
environmental stimuli, such as photic input, into the
appropriate biological rhythms via a variety of signalling
pathways, such as autonomic stimulation, endocrine
action and body temperature modification (Lewy et al.
1999; Brown et al. 2002; Berson, 2003; Buhr et al. 2010;
Slominski et al. 2012). Translation of murine work to
humans highlights that molecular regulation of circadian
rhythms at a cellular level involves the expression of
clock genes, which can maintain approximate 24 h
rhythmicity via interlocking transcriptional–translational
feedback loops with both positive and negative limbs
(Mazzoccoli et al. 2012; McGinnis & Young, 2016). The
positive limb is characterised by the proteins circadian
locomotor output cycles kaput (CLOCK), its paralogue
neuronal PAS domain protein 2 (NPAS2), and brain and
muscle ARNT-like 1 (BMAL1), which are typically found
in the nucleus (Kwon et al. 2006). Whilst this positive
part of the loop targets clock-controlled genes, it also
activates rhythmic transcription within the negative limb,
including thePeriod (PER) andCryptochrome (CRY) genes
(Mohawk et al. 2012); this serves to inhibit the activity
of CLOCK:BMAL1 prior to degradation, thereby ending
repression of the positive aspect and initiating a new cycle
of transcription (Table 1) (Sahar & Sassone-Corsi, 2012;
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Table 1. Name, definition and basic function of the ‘core’ circadian clockmachinery involved in the transcription–translation feedback
loop

Name Definition Function Reference

Ebox Enhancer box Promoter region that regulates
cellular transcriptional activity

Hao et al. (1997)

RORE Retinoic acid-related
orphan receptor
response element.

Promoter region that regulates
cellular transcriptional activity

Cook et al. (2015)

CLOCK Circadian locomotor
output cycles kaput

Forms heterodimer with BMAL1
which binds to and activates the
Ebox thereby stimulating
transcription and translation of
Per and Cry

Buhr & Takahashi (2013)

NPAS2 Neuronal PAS domain
protein 2

Paralogue of CLOCK. Forms
heterodimer with BMAL1 which
binds to and activates the Ebox
thereby activating transcription
and translation of Per and Cry

Buhr & Takahashi (2013)

BMAL1 (Arntl) Brain and muscle
ARNT-like 1

Forms heterodimer with CLOCK
which binds to and activates the
Ebox thereby activating
transcription and translation of
Per and Cry

Buhr & Takahashi (2013)

Cry1,2,3 Cryptochrome 1, 2, 3 Form a complex with Period
proteins. Inactivates Ebox thereby
inhibiting transcription and
translation of CLOCK and BMAL1

Ko & Takahashi (2006)

Per1, 2, 3 Period 1, 2, 3 Form a complex with cryptochrome
proteins. Inactivates Ebox thereby
inhibiting transcription and
translation of CLOCK and BMAL1

Ko & Takahashi (2006)

NR1D1/2 (REV-ERBα/β) Nuclear receptor
subfamily 1 group D
member 1/2

Repression of BMAL1 gene
expression through binding with
RORE sites

Guillaumond et al. (2005)

ROR-α/β/γ Retinoic acid-related
orphan receptors

Transcriptional activator for BMAL1
through binding with RORE sites

Guillaumond et al. (2005)

Buhr & Takahashi, 2013; St John et al. 2014). The
broad importance of proper circadian alignment is clearly
apparent in the expression of this core clock machinery
throughoutmammalian biology, with 3–16% of all mRNA
exhibiting rhythmic daily expression (Mohawk et al. 2012;
Albrecht, 2017; Dierickx et al. 2018).

Circadian rhythmicity is particularly evident in
signalling pathways within peripheral tissues that are vital
for effective metabolic regulation (e.g. liver, muscle, and
adipose tissue) (Fig. 1). Specifically, approximately 6–10%
of genes in murine hepatocytes display robust circadian
rhythms in a tissue-specific manner, with gene clusters
targeting carbohydrate and lipid metabolism (Akhtar
et al. 2002; Robles et al. 2014). Likewise, genome-wide
transcriptome analysis of skeletal muscle samples from
humans reveals high amplitude oscillations for the
core clock genes ARNTL (BMAL1), NPAS2, CLOCK,

PER2, PER3, CRY2, NR1D1 (REV-ERBα) and ROR-α
(Perrin et al. 2018). Notably, these peaks in transcript
accumulation clustered at 16.00 h (for genes implicated in
muscle force production and mitochondrial activity) and
at 04.00 h (for genes implicated in immune function and
inflammation), with rhythmicity also present for genes
linked to glucose, lipid and protein homeostasis (Perrin
et al. 2018). Lastly, approximately 10–20% of the white
adipose tissue transcriptome displays 24 h variation,
with meaningful temporal oscillations present in both
core clock (PER1, PER2, PER3, CRY2, BMAL1 and DBP)
and metabolic (REVERBα, RIP140 and PGC1α) genes
under diurnal and constant conditions (Ptitsyn et al.
2006; Zvonic et al. 2006; Otway et al. 2011; Christou et al.
2019). Within adipocytes, these core clock genes play
an important role in regulating lipolysis, adipogenesis
and adipocyte hypertrophy, and so are central to proper
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understanding of nutrient balances and obesity (Grimaldi
et al. 2010; Shimba et al. 2011; Guo et al. 2012; Paschos
et al. 2012).

Rhythms in macronutrient metabolism

With regard to carbohydrate metabolism, whilst basal
blood glucose can be relatively elevated upon waking (i.e.
the dawn phenomenon), post-prandial glucose tolerance
is generally lower in the evening than in the morning
(Van Cauter et al. 1989, 1992, 1997; Simon et al. 1994;
Qian & Scheer, 2016). The former is subject to end-
ocrine regulation and driven by hepatic glycogenolysis
and gluconeogenesis (Radziuk & Pye, 2006), whereas
the latter is primarily regulated by the positive and
negative limbs of the transcriptional feedback loop
that drives diurnal rhythms in β-cell responsiveness,
insulin secretion/clearance and insulin sensitivity (Baker
& Jarrett, 1972; Aparicio et al. 1974; Boden et al. 1996;
Asher et al. 2008; Lamia et al. 2009; Saad et al. 2012;Morris
et al. 2015b; Perrin et al. 2018).
By contrast, lipid metabolism favours progressively

elevated circulating non-esterified fatty acids, triglyceride
and cholesterol later in the day and overnight (Zimmet
et al. 1974; Morgan et al. 1999; Pan & Hussain, 2007;
Ang et al. 2012; Dallmann et al. 2012; Yoshino et al.
2014), which is a reflection of diurnal rhythms in
lipid storage and mobilisation as opposed to recent

food intake (Yoshino et al. 2014; Held et al. 2020).
Specifically, a combination of animal and human studies
suggests that a net shift in fatty acid metabolism from
oxidation towards lipogenesis occurs throughout the
day, with circadian regulation of intestinal triglyceride
absorption, acylcarnitines, mitochondrial oxidative
capacity, very-low-density lipoprotein secretion and
insulin secretion all contributing to this daily variance
(Marrino et al. 1987; Lee et al. 1992; Pan & Hussain, 2007;
Ang et al. 2012; Pan et al. 2013; Yoshino et al. 2014; van
Moorsel et al. 2016; Sprenger et al. 2021).
Finally, in relation to protein metabolism, the majority

of amino acids (including all essential, some non-essential
and some conditionally essential) display circadian
rhythmicity, with peak values occurring between 12.00
and 20.00 h and with lowest values at 04.00–08.00 h
(Feigin et al. 1967; Wurtman et al. 1967; Feigin et al. 1968;
Grant et al. 2019). Variation in the generation and release
of amino acids from assorted tissues may underpin this
rhythm, including rhythmicity in protein digestion, and
absorption (Barattini et al. 1993; Fiorucci et al. 1995;
Qandeel et al. 2009a,b). The net effect of this variance in
amino acid availability on tissue turnover is that protein
synthesis is higher during the day and protein oxidation
higher at night, with no clear temporal variance in the
rate of protein breakdown (Garlick et al. 1980; Adam &
Oswald, 1981; Kelu et al. 2020). This apparent day–night
rhythm of muscle protein synthesis is not modulated
by the relative absence of dietary protein at night, nor
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Figure 1. The central clock is located in the brain in the suprachiasmatic nucleus (SCN) and is robustly
driven by regular cycles of light and dark
Core clock machinery is also present in numerous metabolically important peripheral tissues such as the liver,
skeletal muscle, adipose tissue and gut. Given the role of these tissues in processing ingested nutrients, it is perhaps
unsurprising that the effects of meal timing on metabolism are mediated by these peripheral clocks.
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the overnight endocrine response (Beelen et al. 2008;
Betts et al. 2011) but is consistent with the rhythmic
regulation of MyoD (a myogenic transcription factor)
by the CLOCK:BMAL1 complex (Andrews et al. 2010;
Perrin et al. 2018).

Rhythms in energy expenditure

In stark contrast to the periodic arrival of dietary
nutrients from regular daily meals, our ongoingmetabolic
requirements present a relentless need for continuous
energy expenditure. Nonetheless, although unceasing, the
rate of thermogenesis also exhibits variability over time
and is integral to circadian regulation. For example,
elevated body temperature is generally observed during
daylight/waking hours, with lower temperature coincident
with the dark/sleeping phase amongst most humans,
which contributes to synchronising central and peri-
pheral clock machinery (Edwards et al. 2002; Buhr
et al. 2010). Indeed, constant routine protocols (removal
of environmental/behavioural stimuli through prolonged
wakefulness and even distribution of energy intake)
reveal that heat production, oxygen uptake (V̇O2), and
carbon dioxide production (V̇CO2) are all highest during
the biological morning (Krauchi & Wirz-Justice, 1994;
Spengler et al. 2000), whereas a recent forced desynchrony
protocol (non-standard daily behavioural patterns under
dim light conditions) demonstrated that restingmetabolic
rate is lowest during the late biological night and highest
∼12 h later in the biological afternoon/evening (Zitting
et al. 2018). Interestingly resting energy expenditure
also changes overnight with differing stages of sleep (as
assessed by sleep encephalography). Generally energy
expenditure tends to be highest during lighter/earlier
phases, and lowest during the deepest/later stages of
sleep (Brebbia & Altshuler, 1965; Fontvieille et al. 1994),
but some studies have failed to replicate any differences
between stages of sleep (Webb & Hiestand, 1975; Haskell
et al. 1981; White et al. 1985; Palca et al. 1986; Jung
et al. 2011). Beyond basal metabolic requirements (i.e.
under fasted and resting conditions), an endogenously
driven daily rhythm has been reported in diet-induced
thermogenesis (i.e. the thermic effect of feeding), with
∼20–44% higher values in the morning relative to the
evening (Romon et al. 1993; Bo et al. 2015; Morris et al.
2015a). However, recent evidence indicates that this is
apparent rhythmicity in diet-induced thermogenesis can
be accounted for by the underlying circadian variation
in resting metabolic rate (Ruddick-Collins et al. 2021).
Finally, although highly individual, a range of contrasting
diurnal patterns of physical activity thermogenesis have
been identified, with more intense physical activity often
favoured earlier in the day (Maddison et al. 2009; Sartini
et al. 2015; Jansen et al. 2018).

Rhythms in appetite regulation

Evidence for circadian rhythms in appetite and
appetite regulatory peptides has been generated using
experimental protocols involving both the constant
routine and forced desynchrony protocols introduced
above. These studies have revealed that hunger is typically
lowest in the morning (∼08.00 h) and peaks in the
evening (∼20.00 h), when satiety also tends to be lowest
(Scheer et al. 2013; Sargent et al. 2016; Rynders et al. 2020;
Templeman et al. 2021b). This robust rhythmicity in
appetite ratings occurs independent of time since waking,
inter-meal intervals and the energy content of meals
(Scheer et al. 2013), but is nonetheless entirely consistent
with the typical feeding pattern in westernised societies,
whereby energy intake tends to be lowest in the morning
and highest in the evening (NHANES, 2016).
Our recent work employed a semi-constant routine

(i.e. continuous feeding throughout waking hours) to
examine the 24 h profile of appetite regulatory hormones
(Templeman et al. 2021b). In that study we reported
diurnal rhythms in leptin (peak 00.32 h) and unacylated
ghrelin (peak 08.26 h) (Fig. 2). Notably, despite nominally
being classified as a hunger hormone, the observed
rhythm of ghrelin was approximately antiphasic with
that of subjective hunger and ratings of prospective food
consumption, which peaked as expected in the evening
(i.e. ca 20.00–21.00 h) – this phase separation between
peaks in appetite ratings and appetite hormones was also
evident in another recent study (Rynders et al. 2020).
In addition to leptin and ghrelin, such daily rhythmicity
has also been identified for other appetite regulatory
peptides, such as: glucagon-like peptide-1 (peak∼10.00 h,
nadir ∼17.00 h), peptide YY (peak at ∼14.00 h, nadir

Figure 2. Diurnal profiles of hunger
Diurnal rhythms in unacylated ghrelin, leptin and subjective hunger
under conditions of semi-constant routine (i.e. hourly feeding during
waking hours only) relative to melatonin profile (grey) and light/dark
(yellow/blue respectively)

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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∼04.00 h) and pancreatic polypeptide (peak ∼15.00 h,
nadir∼09.00 h) (Johns et al. 2006; Hill et al. 2011; Galindo
Munoz et al. 2015; Rynders et al. 2020).

Nutrient timing

Endogenously controlled rhythms are entrained to
environmental time cues known as zeitgebers or
‘time givers’ (Aschoff, 1954; Aschoff & Pohl, 1978).
These include naturally repeating cycles of light–dark,
waking–sleeping and activity–rest but also our
transitions between the fed–fasted state. As such,
the scheduling/alignment of eating occasions (i.e.
chrono-nutrition; Flanagan et al. 2021), and thus the
availability of exogenous nutrients, relative to other
regular daily events can serve as a powerful signal to
help entrain the endogenous rhythms described in the
previous sections (la Fleur et al. 2001; Zambon et al. 2003;
Duffy & Czeisler, 2009; Figueiro et al. 2012; Leproult et al.
2014; Cheung et al. 2016; Tanaka et al. 2020). Therefore,
in addition to the conventional focus of dietary guidelines
for human health regarding nutrient quantity and nutrient
quality (i.e. how much we eat and what we eat), it is also
important to consider nutrient timing (i.e. when we eat).
Nutrient timing can be understood in terms of

both absolute timing (i.e. objective time-of-day, clock
time) and relative timing (i.e. with respect to when
other relevant events occur and/or usually occur, e.g.
wake/sleep, exercise, other meals). The physiological
responses to identical meals consumed at different times
of day can vary dramatically. For example, as noted earlier,
carbohydrate, lipid and protein metabolism all exhibit
marked morning–evening differences (Van Cauter et al.
1992; Yoshino et al. 2014; Morris et al. 2015a; Leung
et al. 2019), yet the complete absence of daily food
intake for 24 h (i.e. fasting) can eradicate the circadian
rhythm in hepatic gene expression that would otherwise
occur with a regular meal pattern (Vollmers et al. 2009).
Even just a short delay in habitual meal timing can alter
Per2 phase in adipose tissue, with corresponding phase
shifts in systemic metabolites and hormones but without
altering the temporal pattern of melatonin or cortisol
(robust markers of the central clock) – all consistent with
the idea that peripheral rhythms are closely matched to
the absolute time of feeding each day (Schoeller et al.
1997; Wehrens et al. 2017; Gu et al. 2020). Indeed,
feeding responsive hormones such as insulin, glucagon
and insulin-like growth factor 1 appear to be especially
potentmodulators of clock gene and/or protein expression
in multiple tissues – at least in murine models, but
emerging evidence is now beginning to demonstrate this
in humans (Tahara et al. 2010; Mukherji et al. 2015; Sun
et al. 2015; Ikeda et al. 2018; Crosby et al. 2019; Tuvia et al.
2021).

Extended overnight fasting. In terms of relative nutrient
timing, the ‘other relevant events’ that can both influence
and be influenced by the response to feeding may
include light exposure, sleeping, exercise and, critically,
other eating occasions. Breakfast is an eating occasion
with particular potential to serve as a zeitgeber and
to modify subsequent responses, since this first meal
of the day generally marks the end of the overnight
period of darkness, sleeping, resting and fasting, whilst
also preceding all other daily events. The capacity of
breakfast to exert a marked influence on metabolic
control later in the day is perhaps best illustrated by the
‘second-meal effect’, which describes how the glycaemic
and insulinaemic responses to repeated carbohydrate
ingestion are attenuated relative to an initial meal
hours earlier (Hamman & Hirschman, 1919). This
phenomenon was first observed using sequential oral
glucose tolerance tests but has since been replicated with
intravenous infusions (Szabo et al. 1969) and mixed
macronutrient breakfasts relative to extended morning
fasting (Gonzalez, 2014; Chowdhury et al. 2015, 2016b;
Jakubowicz et al. 2017). Interestingly the availability of
systemic glucose across themorning has been suggested as
a possible determinant of physical activity levels in break-
fast ‘consumers’ relative to ‘skippers’ (Betts et al. 2014;
Chowdhury et al. 2016a). Whilst the precise mechanisms
underpinning the second-meal effect remain the subject
of current investigations (Lee et al. 2011; Edinburgh et al.
2017; Edinburgh et al. 2018), the study by Jakubowicz
et al. (2017) supports that maintenance of rhythmic clock
gene expression plays a role, since the expected pattern
of core clock gene expression in leukocytes is disrupted
when habitual breakfast consumers omit their usual
morning meal.
Further to the acutemetabolic effects of breakfast on the

responses to subsequent meals later within the same day,
recent research has also explored the longer-term effects
(i.e. 6weeks) of regular daily breakfast consumption versus
extended morning fasting on free-living behavioural
responses and any accumulated adaptation in metabolic
control. In brief, complete omission of breakfast (i.e. zero
energy intake until midday) every day for 6 weeks resulted
in significantly lower physical activity thermogenesis than
when a regularmorning feedingwas prescribed – a finding
that has been replicated amongst both lean adults and
those with obesity (Betts et al. 2014; Chowdhury et al.
2016a). However, other than some evidence in these
studies of more stable glycaemia and altered adipose
tissue gene expression in lean individuals and improved
insulin sensitivity in obese individuals (Gonzalez et al.
2018), there were no other effects of regular break-
fast on markers of cardiometabolic health nor any
metabolic adaptation (Chowdhury et al. 2018, 2019). (For
a more detailed overview of this series of studies, see
Betts et al. 2016.)

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Intermittent fasting. Whilst skipping breakfast is
often considered an unhealthy dietary approach
(notwithstanding the lack of empirical support for
that view), regularly omitting the same meal and/or
restricting energy intake to the same set times each day
(i.e. time restricted eating)may at least be conducive to the
entrainment of endogenous rhythms to that consistently
repeating feeding pattern. By contrast, numerous other
contemporary approaches to intermittent fasting, often
employed as a means to control body weight through
weight loss or maintenance, can involve irregular or
chaotic patterns of feeding and fasting within each 24
h period (Templeman et al. 2020), so are not easily
anticipated by the circadian timing system and thus
complicate effective metabolic regulation. Popular forms
of intermittent fasting within this category include the
5:2 diet (fasting on two non-consecutive days each
week) and alternate day fasting (i.e. never feeding on
consecutive days). Part of the challenge in understanding
the potential effects of any diet based upon intermittent
fasting is that the extended periods of complete energy
restriction typically culminate in a net energy deficit
and therefore weight loss. It therefore becomes difficult
to determine whether any observed effects on cardio-
metabolic health, appetite regulation or other relevant
outcomes are attributable to fasting per se or simply to
the consequences of negative energy balance and reduced
adipose tissue mass.

We recently conducted a randomised controlled trial
in lean participants expressly to isolate the independent
effects of intermittent fasting and net energy restriction
(Templeman et al. 2021a). This was achieved by having
some participants impart a prescribed degree of energy
restriction but without fasting (i.e. consuming 75% of
usual energy intake at each regular meal), whilst others
fasted completely every other 24 h but, critically, were
re-fed on the alternate days either to match the first group
for net energy restriction (i.e. 50% more food than usual
on fed days) or to replace the energy ‘missed’ through
fasting altogether (i.e. 100% more food than usual on
fed days). Prescribing additional food to minimise or
even completely prevent weight loss is understandably
not intended to reflect a diet that might be advocated in
the real world, but this unusual approach does provide
the required experimental design needed to understand
the separate and combined effects of fasting and energy
(im)balance.

Through the above approach it was possible to
determine that standard daily dieting (i.e. without fasting)
elicited almost 2 kg of weight loss over 3 weeks and,
moreover, that almost all of that change in total body
mass was attributable to reductions in body fat content. By
contrast, imposing the same prescribed degree of energy
restriction via alternate-day fasting resulted in a similar
(albeit slightly lower) rate of overall weight loss but this

was accounted for in equal measure by reductions in
both fat mass and fat-free mass. Part of the explanation
for this apparent difference in energy balance despite
ostensibly similar reductions in energy intake is that
energy expenditure is not constant but rather has the
capacity to compensate for extended periods of fasting
to preserve endogenous energy reserves. Specifically,
consistent with the adaptive behavioural responses to
breakfast omission described earlier, achieving an energy
deficit via intermittent fasting can spontaneously inhibit
physical activity energy expenditure (i.e. skeletal muscle
force production; Westerterp, 2013; Ruddick-Collins
et al. 2020) to below habitual levels, whereas there
was no such change in physical activity levels when
the same degree of energy restriction was achieved
without fasting (it remains to be seen whether similar
behavioural responses occur in obese individuals). Non-
etheless, unlike the previously described effect of break-
fast omission, there was no difference between any of the
interventions in relation to systemic indices of cardio-
metabolic health, gut hormones, or the expression of key
genes in subcutaneous adipose tissue. Overall, the data
reported in Templeman et al. (2021a) further illustrate
the complexity of metabolic regulation within the context
of nutrient timing since the potential physiological
consequences of intermittent fasting may depend upon
the interaction between circadian rhythms and related
compensatory responses to a modified feeding–fasting
pattern.

Nocturnal interventions. Excepting the above rather
extreme forms of prolonged fasting, most individuals
remain in a permanently post-prandial (fed) state for
the entirety of daylight/waking hours and so the over-
night/sleep phase typically coincides with the longest
period of fasting in any given 24 h cycle (Ruge et al. 2009).
According to the circadian timing system described
earlier, this may reflect an entirely natural and properly
synchronised alignment between the fed–fasted cycle and
all other daily light–dark, wake–sleep and activity–rest
cycles. However, it might also be reasoned that this
extended period of nutritional withdrawal presents
a possible opportunity for dietary intervention. For
example, the ‘dawn phenomenon’ noted earlier highlights
how blood glucose may be elevated upon waking,
whereas the ‘second-meal effect’ highlights how prior
feeding can be employed to prime the system in pre-
paration for subsequent meals; this begs questions such
as whether a nocturnal pre-load can be used to improve
glycaemic control in response to breakfast. An initial
investigation into such possibilities examined whether
waking briefly at 04.00 h to consume a bolus of whey
protein might improve metabolic control at breakfast;
paradoxically, that nocturnal feeding intervention actually

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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resulted in impaired glucose tolerance at breakfast, along
with elevated lipid oxidation but no effect on appetite
(Smith et al. 2021). This surprising finding may be partly
attributable to the relatively large dose of protein, which
was delivered at a time when an abundance of exogenous
amino acids is neither required nor expected by the
circadian timing system. Consequently, whilst nocturnal
feeding presents a possible opportunity for nutritional
intervention, it also is a useful paradigm through which
we can further understand the relationship between
misaligned eating and the increased risk of cardio-
metabolic disease.
In addition to balancing the potential benefits and

apparent risks of applying nutritional interventions at
night, it is also important to consider the indirect impact
of interfering with habitual sleep patterns. Indeed, sleep
appears to be inherently linked to metabolic regulation,
obesity and associated comorbidities, with chronic sleep
disorders exerting a potent negative effect on glycaemic
control (Briancon-Marjollet et al. 2015). For example,
to begin with the more extreme model of total sleep
deprivation (i.e. remaining awake for one or more
nights), fasted glucose concentrations are progressively
elevated after 24–120 h of sleeplessness (Kuhn et al.
1969; Vondra et al. 1981; Wehrens et al. 2010; Benedict
et al. 2011). Post-prandial metabolic control is even
more profoundly affected by such models of total sleep
restriction, with elevated glycaemic and insulinaemic
responses and reduced insulin sensitivity clearly evident
after a single night of complete nocturnal wakefulness
(Kuhn et al. 1969; VanHelder et al. 1993; Wehrens
et al. 2010; Benedict et al. 2011). Disrupted sleep may
perturb next day metabolism through a multitude of
proposed mechanisms; these include, but are not limited
to alterations in brain glucose utilization and changes
in hormonal secretion profile (Scheen et al. 1996),
sympathetic nervous stimulation (Spiegel et al. 2004),
and/or inflammation (Meier-Ewert et al. 2004; Vgontzas
et al. 2004).
Partial sleep deprivation (i.e. a shorter total sleep

duration than usual) is a more common occurrence in
the real world and can also perturb glycaemic control
the following morning, with evidence of impaired glucose
clearance and whole-body insulin sensitivity after even a
single night of limited sleep (Donga et al. 2010; Gonnissen
et al. 2013; Wang et al. 2016; Sweeney et al. 2017). Sleep
duration can be limited by simply going to bed later
and/or getting up earlier or via sleep fragmentation. The
latter refers to when sleep is intermittently disrupted by
brief waking periods and has the potential to interrupt
progression through the various stages of the sleep cycle
even if total sleep duration is not substantially curtailed
(Tasali et al. 2008).We tested the effect of fragmented sleep
in our recent work but found post-prandial glucose and
insulin responses upon waking to be unaffected by having

woken hourly throughout the prior 8-h sleep opportunity
(Smith et al. 2020). Interestingly, based on the reasoning
that a strong coffee is a common remedy following a
night of broken sleep, we also investigated the effects
of caffeine within the context of the above experimental
model. Consistent with the established effects of caffeine
on insulin sensitivity independent of sleep deprivation
(Robertson et al. 2015; Robertson et al. 2018), consuming
a cup of coffee following a night of sleep fragmentation
resulted in a ∼50% higher glycaemic response and
∼15% higher insulinaemic response at breakfast than
either a night of uninterrupted sleep or a matched sleep
fragmentation protocol without caffeine prior to breakfast
(Smith et al. 2020). Further work is therefore needed to
better understand whether the potential opportunity for
nutritional intervention at night can be harnessed with
minimal disruption of sleep patterns, circadian rhythms
and next-day metabolic responses.

Conclusion

Molecular clocks allow for temporal coordination
between environmental, metabolic and behavioural
cues. Meal patterns are a key element of this system
and so considerations regarding nutrient timing should
be incorporated into dietary guidelines alongside the
conventional focus on nutrient quantity and nutrient
quality. Research over the past decade has explored
various aspects of nutrient timing and identified several
promising approaches to human health improvement
involving chrono-nutrition. Further novel insight
will be possible through examining the physiological
responses of human participants over complete 24-h
monitoring cycles, including sequential meal tests,
nocturnal feeding and with assessments under free-living
conditions.
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