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Abstract. 

 

The focusing of microtubules into mitotic 
spindle poles in vertebrate somatic cells has been as-
sumed to be the consequence of their nucleation from 
centrosomes. Contrary to this simple view, in this arti-
cle we show that an antibody recognizing the light in-
termediate chain of cytoplasmic dynein (70.1) disrupts 
both the focused organization of microtubule minus 
ends and the localization of the nuclear mitotic appara-
tus protein at spindle poles when injected into cultured 
cells during metaphase, despite the presence of cen-
trosomes. Examination of the effects of this dynein-spe-
cific antibody both in vitro using a cell-free system for 
mitotic aster assembly and in vivo after injection into 
cultured cells reveals that in addition to its direct effect 
on cytoplasmic dynein this antibody reduces the effi-
ciency with which dynactin associates with microtu-
bules, indicating that the antibody perturbs the cooper-

ative binding of dynein and dynactin to microtubules 
during spindle/aster assembly. These results indicate 
that microtubule minus ends are focused into spindle 
poles in vertebrate somatic cells through a mechanism 
that involves contributions from both centrosomes and 
structural and microtubule motor proteins. Further-
more, these findings, together with the recent observa-
tion that cytoplasmic dynein is required for the forma-
tion and maintenance of acentrosomal spindle poles in 
extracts prepared from 

 

Xenopus

 

 eggs (Heald, R., R. 
Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, 
A. Hyman, and E. Karsenti. 1996. 

 

Nature (Lond.).

 

 382:
420–425) demonstrate that there is a common mecha-
nism for focusing free microtubule minus ends in both 
centrosomal and acentrosomal spindles. We discuss 
these observations in the context of a search-capture-
focus model for spindle assembly.
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C

 

hromosome

 

 segregation during both mitosis and
meiosis is mediated by a complex microtubule-
based structure called the spindle (McIntosh and

Koonce; 1989; Mitchison, 1989

 

a

 

; Rieder, 1991). The spin-
dle is assembled in a spatially and temporally regulated
manner during the cell cycle, and its assembly and function
are intimately associated with microtubule dynamics (In-
oué and Salmon, 1995; Hyman and Karsenti, 1996; Nick-
las, 1997). The organization of microtubules into spindles
is governed largely by the interaction of microtubules and
microtubule ends with accessory proteins that regulate mi-
crotubule dynamics. These accessory proteins are located
on the chromosomes (kinetochores), derived from the cy-
tosol (some motor proteins), and/or found at the microtu-
bule minus ends (centrosomes and peri-centrosomal region
in somatic cells). The result of these complex interactions
is a typical fusiform microtubule array in both mitotic and
meiotic cells with microtubule plus ends attached to the
chromosomes and minus ends focused into spindle poles.

One striking difference between spindles in vertebrate
somatic cells and some types of meiotic and plant cells is
that microtubules in vertebrate somatic cells are nucleated
from centrosomes, whereas plant cells and some meiotic
cells lack bonafide centrosomes. This single structural dif-
ference has spurred two different hypotheses regarding
the mechanism by which microtubule minus ends are fo-
cused at spindle poles (for discussions see Wilson, 1925;
Schrader, 1953; Rieder et al., 1993; Waters and Salmon,
1997). In acentrosomal spindles, microtubules associate
with chromatin and are drawn into two focused poles
through the action of minus end-directed microtubule mo-
tors (Bastmeyer et al., 1986; Steffen et al., 1986; Theurkauf
and Hawley, 1992; McKim and Hawley, 1995; Vernos and
Karsenti, 1995; Heald et al., 1996; Matthies et al., 1996;
Merdes et al., 1996). In contrast, in mitotic spindles in ver-
tebrate cells the predominant view holds that microtubule
minus ends are focused at the poles as a consequence of
their nucleation from the centrosomes (Kirschner and
Mitchison, 1986; Hayden et al., 1990; Holy and Leibler,
1994; Rieder and Salmon, 1995). It is currently unclear,
however, if mitotic spindles containing centrosomes, like
acentrosomal spindles, also use minus end-directed motor
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activity to promote the focusing of microtubule minus
ends at spindle poles despite the presence of centrosomes.

The dynein-specific monoclonal antibody 70.1 (Steuer et
al., 1991) was recently shown to perturb the function of cy-
toplasmic dynein during spindle assembly in meiotic ex-
tracts prepared from 

 

Xenopus

 

 eggs (Heald et al., 1996). It
blocked the formation of spindle poles as well as induced
the disorganization of the polar regions of preassembled
spindles, suggesting that dynein function was important to
establish and maintain these spindle poles. Spindles as-
sembled under those conditions, however, do not contain
centrosomes, and the spindle poles are focused through an
acentrosomal mechanism (Lohka and Maller, 1985; Sawin
and Mitchison, 1991; Heald et al., 1996; Merdes et al.,
1996). Thus, in this article we have used the 70.1 antibody
to investigate whether the organization of microtubules at
the polar ends of the mitotic spindle also relies on the ac-
tion of cytoplasmic dynein despite the inherent focusing
activity of centrosomes. We report that perturbation of
cytoplasmic dynein function with the 70.1 antibody in so-
matic cells leads to the disruption of mitotic spindle poles
and the separation of the centrosomes from the body of
the spindle. Furthermore, the 70.1 antibody prevents the
assembly of mitotic asters when added to a cell-free mi-
totic extract, and in both cases, reduces the efficiency with
which dynactin associates with microtubules. These data
indicate that microtubule minus ends are focused at mitotic
spindle poles through contributions from both centrosomes
and accessory proteins, including the minus end-directed
motor cytoplasmic dynein and dynactin, and suggest that
there are common aspects to the mechanism by which free
microtubule minus ends are focused into poles in cen-
trosomal and acentrosomal spindles. These results are dis-
cussed in the context of a search-capture-focus model for
mitotic spindle assembly.

 

Materials and Methods

 

Cell Culture

 

The human HeLa cell line and the monkey CV-1 cell line were both main-
tained in DME containing 10% fetal calf serum, 2 mM glutamine, 100 IU/ml
penicillin, and 0.1 

 

m

 

g/ml streptomycin. Cells were grown at 37

 

8

 

C in a hu-
midified incubator with a 5% CO

 

2

 

 atmosphere.

 

Immunological Techniques

 

The control (mAb 154; Compton et al., 1991) and dynein-specific (mAb
70.1; Steuer et al., 1991) IgMs were purified from ascites fluid by man-
nose-binding protein affinity chromatography (Pierce, Rockford, IL). The
purified antibodies were dialyzed into 0.1 M Tris, pH 7.4, and concen-
trated using centricon-30 concentrators (Amicon, Beverly, MA) to 8–16
mg/ml. The remaining antibodies used in this study were a rabbit anti-
nuclear mitotic apparatus (NuMA)

 

1

 

 (Gaglio et al., 1995), mouse anti-
tubulin (DM1A; Blose et al., 1984), rabbit anti-Eg5 stalk-tail (Sawin et al.,
1992), mouse anti-Arp1 (45A; Schafer et al., 1994), mouse anti-p150 dy-
nactin (150B; Gaglio et al., 1996), and mouse anti-dynein (74.1; Dillman
and Pfister, 1994).

Indirect immunofluorescence microscopy was performed on cultured
cells by immersion in microtubule stabilization buffer (MTSB: 4 M glyc-
erol, 100 mM PIPES, pH 6.9, 1 mM EGTA, and 5 mM MgCl

 

2

 

) for 1 min at
room temperature, extraction in MTSB plus 0.5% Triton X-100 for 2 min,
followed by MTSB for 2 min. Cells were then fixed in 

 

2

 

20

 

8

 

C methanol for
10 min. Indirect immunofluorescence microscopy on mitotic asters assem-

 

bled in the cell-free mitotic extract was performed by dilution of 5 

 

m

 

l of
the extract into 25 

 

m

 

l of KHM buffer (78 mM KCl, 50 mM Hepes, pH 7.0,
4 mM MgCl

 

2

 

, 2 mM EGTA, 1 mM DTT; Burke and Gerace, 1986). The
diluted sample was then spotted onto a poly–

 

l

 

-lysine coated glass cover-
slip and fixed by immersion in 

 

2

 

20

 

8

 

C methanol. Both the fixed cells and
mitotic asters were rehydrated in TBS (10 mM Tris-HCl, pH 7.5, 150 mM
NaCl) containing 1% albumin, and all antibody incubations and washes
were performed in TBS plus 1% albumin. Each primary antibody was in-
cubated on the coverslip for 30 min except for the 45A antibody against
dynactin and the 74.1 antibody against cytoplasmic dynein, which were in-
cubated on the coverslip for 2 h. After primary antibody treatment, the
coverslips were washed for 5 min in TBS plus 1% albumin, and the bound
antibodies were detected using either fluorescein- or Texas red-conju-
gated species- and antibody isotype-specific secondary antibodies at dilu-
tions of 1:500 (Vector Labs, Burlingame, CA). DNA was detected using
DAPI (4

 

9

 

,6-diamidino-2-phenylindole) at 0.4 

 

m

 

g/ml (Sigma Chemical Co.,
St. Louis, MO). After a final wash the coverslips were mounted in FITC-
guard mounting medium (Testog, Inc., Chicago, IL) and observed on a
Nikon Optiphot microscope equipped for epifluorescence (Nikon, Inc.,
Meliville, NY).

Proteins from the mitotic extracts were solubilized directly with SDS-
PAGE sample buffer. The proteins were then separated by size using
SDS-PAGE and transferred to PVDF (polyvinylidene difluoride) mem-
brane (Millipore Corp., Bedford, MA). The membranes were blocked in
TBS containing 5% nonfat milk for 30 min at room temperature and the
primary antibody incubated for 6 h at room temperature in TBS contain-
ing 1% nonfat milk. Nonbound primary antibody was removed by wash-
ing five times for 3 min each in TBS, and the bound antibody was detected
using either horseradish peroxidase-conjugated protein A or horseradish
peroxidase-conjugated goat anti–mouse (Bio Rad, Hercules, CA). The
nonbound secondary reagent was removed by washing five times for 3 min
each in TBS and the signal detected using enhanced chemiluminescence
(Amersham Corp., Arlington Heights, IL).

 

Microinjection

 

CV-1 cells growing on photo-etched 

 

a

 

-numeric glass cover slips (Bellco
Glass Co., Vineland, NJ) were microinjected following the procedures of
Compton and Cleveland (1993) and Capecchi (1980). Interphase cells
were microinjected in the cytoplasm with either the control antibody or
the dynein-specific antibody and followed by phase contrast microscopy
as they progressed into mitosis. Metaphase cells were selected for injec-
tion by phase contrast microscopy by virtue of a clearly identifiable bipo-
lar mitotic spindle. Injected cells were followed for up to 4 h after injection
unless otherwise stated in the text and were processed for immunofluores-
cence microscopy as described above.

 

Mitotic Extracts

 

Mitotic extracts from HeLa cells were prepared according to Gaglio et al.
(1995). HeLa cells were synchronized in the cell cycle by double block
with 2 mM thymidine. After release from thymidine block the cells were
allowed to grow for 6 h, and then nocodazole was added to a final concen-
tration of 40 ng/ml. The mitotic cells that accumulated over the next 4 h
were collected by mitotic shake off and incubated for 30 min at 37

 

8

 

C with
20 

 

m

 

g/ml cytochalasin B. The cells were then collected by centrifugation at
1,500 rpm and washed twice with cold PBS containing 20 

 

m

 

g/ml cytochala-
sin B. Cells were washed one last time in cold KHM buffer containing 20

 

m

 

g/ml cytochalasin B and finally Dounce homogenized (tight pestle) at a
concentration of 

 

z

 

3 

 

3

 

 10

 

7

 

 cells/ml in KHM buffer containing 20 

 

m

 

g/ml cy-
tochalasin B, 20 

 

m

 

g/ml phenylmethylsulfonyl fluoride, and 1 

 

m

 

g/ml each of
chymostatin, leupeptin, antipain, and pepstatin. The crude cell extract was
then subjected to sedimentation at 100,000 

 

g

 

 for 15 min at 4

 

8

 

C. The super-
natant was recovered and supplemented with 2.5 mM ATP (prepared as
Mg

 

2

 

1

 

 salts in KHM buffer) and 10 

 

m

 

M taxol, and the mitotic asters were
stimulated to assemble by incubation at 30

 

8

 

C for 30–60 min. After incuba-
tion, samples were processed for indirect immunofluorescence microscopy
as described above, and the remainder of the extract containing the as-
sembled mitotic asters was subjected to sedimentation at 10,000 

 

g

 

 for 15
min at 4

 

8

 

C. The supernatant and pellet fractions were both recovered and
solubilized in SDS-PAGE sample buffer for immunoblot analysis.

Immunodepletions from the extract before aster assembly was carried
out using 20–50 

 

m

 

g of either an anti-Eg5 affinity-purified rabbit polyclonal
IgG or the monoclonal antibody 70.1, which is an IgM specific for the
IC74 intermediate chain of cytoplasmic dynein. Each antibody was ad-
sorbed onto 

 

z

 

25 

 

m

 

l of either protein A- or protein G-conjugated agarose

 

1. 

 

Abbreviation used in this paper

 

: NuMA, nuclear mitotic apparatus.
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(Boehringer Mannheim, Indianapolis, IN). The 70.1 monoclonal antibody
against cytoplasmic dynein intermediate chain was coupled to protein
G-conjugated agarose using goat anti–murine IgM specific antibody (Vec-
tor Lab. Burlingame, CA). The antibody-coupled agarose was washed in
KHM buffer and then packed by centrifugation to remove the excess
fluid. Efficient depletion of each target protein was routinely achieved by
sequential depletion reactions in which the total quantity of packed aga-
rose did not exceed 15 

 

m

 

l per 100 

 

m

 

l of extract. First, half of the antibody-
coupled agarose was resuspended with the mitotic extract and incubated
with agitation for 1 h at 4

 

8

 

C. After this incubation the agarose was re-
moved from the extract by sedimentation at 15,000 

 

g

 

 for 10 s and saved.
Next, the extract was recovered and used to resuspend the other half of
the antibody-coupled agarose and another incubation performed with agi-
tation for 1 h at 4

 

8

 

C. After this incubation the agarose was removed by
sedimentation at 15,000 

 

g

 

 for 10 s and pooled with the agarose pellet from
the initial depletion reaction. In all cases, immunoblot analysis indicates
that this depletion protocol results in nearly 100% efficient depletion of
the target protein as described previously (Gaglio et al., 1996). The de-
pleted extract was recovered and microtubule polymerization induced by
the addition of taxol and ATP and incubation at 30

 

8

 

C. Each depletion ex-
periment was performed at least two times and in all cases the efficiency
of mitotic aster formation (as determined by counting the average number
of asters per microscope field) was not significantly different from the val-
ues determined previously (Gaglio et al., 1996).

 

Results

 

The Dynein-specific Antibody 70.1 Perturbs Mitotic 
Spindle Assembly In Vivo

 

Heald et al. (1996) recently showed that an antibody
raised against the 74-kD subunit of cytoplasmic dynein pu-
rified from chicken embryo fibroblast cells (mAb 70.1;
Steuer et al., 1991) perturbed the formation and mainte-
nance of the polar ends of spindles assembled in meiotic
extracts prepared from 

 

Xenopus

 

 eggs. To determine the
specificity of this antibody in primate somatic cells, we
performed immunoblot analysis of total cell protein from
the primate cell lines HeLa and CV-1. Fig. 1 shows that
this antibody reacts specifically with a single polypeptide
of apparent molecular mass of 74 kD. This band most

likely represents the light intermediate chain of cytoplas-
mic dynein derived from these two cell lines, because this
immunoreactive polypeptide has the same apparent mo-
lecular weight as the original chicken protein, and we have
previously shown that this antibody specifically immuno-
precipitates cytoplasmic dynein from HeLa cell mitotic ex-
tracts (Gaglio et al., 1996). In some cases where we per-
formed immunoblot analysis with this antibody on enriched
cellular fractions, we observed three reactive species that
ranged in molecular mass from 70–76 kD (see below). This
result is consistent with both the expression of multiple
isoforms and the complex post-translational regulation of
this subunit of cytoplasmic dynein (Paschal et al., 1992;
Niclas et al., 1996; Pfister et al., 1996). Thus, mAb 70.1 is
specific for the light intermediate chain of cytoplasmic dy-
nein in these primate cell types in accordance with its spec-
ificity for this subunit of cytoplasmic dynein in avian cells
(Steuer et al., 1991).

To determine if the dynein-specific antibody is capable
of disrupting the assembly of the vertebrate mitotic spin-
dle, we microinjected CV-1 cells during interphase with
the dynein-specific monoclonal antibody (70.1) and fol-
lowed the fate of each cell as it entered mitosis. 60% (

 

n

 

 

 

5

 

20) of cells that entered mitosis after microinjection with
the dynein-specific antibody were significantly delayed in
their completion of mitosis (

 

.

 

2 h). In contrast, 96% (

 

n

 

 

 

5

 

25) of cells that entered mitosis after microinjection with a
control antibody completed mitosis normally within 1 h.
The control antibody recognizes CENP-E. We specifically
chose it as a control because it is a monoclonal IgM that
recognizes a known spindle component, and we have pre-
viously determined that it does not perturb the progres-
sion of mitosis when injected into cultured cells (Compton
et al., 1991). Examination of the mitotic spindles in cells
injected with the control antibody by immunofluorescence
microscopy showed a typical fusiform microtubule array
with NuMA concentrated in a characteristic crescent-like
position at the polar ends of the spindle (Fig. 2 

 

A

 

). In con-
trast, cells that entered mitosis in the presence of the dy-
nein-specific antibody have disorganized mitotic spindles
that lack well organized poles with NuMA localized along
the length of many of the microtubules (Fig. 2 

 

B

 

). These
results suggest that this antibody perturbs an essential
function of cytoplasmic dynein during the formation of a
normal bipolar spindle in somatic cells. This conclusion is
consistent with the results previously reported by Heald et
al. (1996) using this antibody to perturb acentrosomal
spindle formation in extracts prepared from 

 

Xenopus

 

 eggs
as well as evidence supporting a role for cytoplasmic dy-
nein during spindle assembly in somatic cells (Pfarr et al.,
1991; Steuer et al., 1991; Vaisberg et al., 1993; Echeverri et
al., 1996; Gaglio et al., 1996).

The data presented in Fig. 2 suggest that the 70.1 anti-
body prevents mitotic spindle formation but does not di-
rectly demonstrate whether cytoplasmic dynein plays a
specific role in maintaining the focused organization of mi-
crotubule minus ends at the mitotic spindle pole in the
presence of centrosomes. To address this point, we micro-
injected CV-1 cells during metaphase (i.e., with pre-assem-
bled spindles) with either the control antibody or the dy-
nein-specific antibody. 8 out of 8 metaphase cells injected
with the dynein-specific antibody were blocked in mitosis

Figure 1. mAb 70.1 specifically recognizes
the light intermediate chain of cytoplasmic
dynein in primate cells. Immunoblot anal-
ysis of total cell protein from 100,000
HeLa or CV-1 cells (z50 mg protein) using
the 70.1 monoclonal antibody. The migra-
tion position of myosin (200), b-galactosi-
dase (116), phosphorylase B (97), and
BSA (66) are indicated in kD.
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for at least 2 h, whereas 8 out of 10 metaphase cells
injected with a control antibody completed mitosis nor-
mally within 1 h. This indicates that the injection of the dy-
nein-specific antibody into metaphase cells with pre-
assembled spindles delays the completion of mitosis. To
explore the effects of this antibody we examined the mor-
phology of the mitotic spindle in cells at various times af-
ter antibody microinjection. 95% (

 

n

 

 

 

5

 

 21) of metaphase
cells injected with the control antibody had typical bipolar
mitotic spindles with NuMA concentrated in the charac-
teristic crescent-like shape near the centrosomes (Fig. 3

 

A

 

). In contrast, 91% (

 

n

 

 

 

5

 

 43) of metaphase cells injected
with the dynein-specific antibody had abnormal mitotic
spindles (Fig. 3, 

 

B–D

 

). As rapidly as 5 min after injection
with the dynein-specific antibody, the mitotic spindles
were barrel shaped and the poles were unusually broad as
judged by the organization of the microtubules and the
distribution of NuMA (Fig. 3 

 

B

 

). If the injected cells were
examined between 15 and 30 min after injection, the spin-
dles lacked a typical fusiform organization. The microtu-
bule minus ends appeared splayed, and NuMA was dislo-
cated from the centrosomal region of the spindle and
localized on the microtubules at the splayed ends of the
spindle (Fig. 3, 

 

C

 

 and 

 

D

 

). At later time points, NuMA was
localized along the length of many of the microtubules
(Fig. 3 

 

D

 

, 

 

arrows

 

). Importantly, the centrosomes in these
injected cells stained positively for 

 

g

 

-tubulin (data not
shown) and were nucleating microtubules normally form-
ing small astral microtubule arrays, but were separated
from the body of the spindle (Fig. 3, 

 

C

 

 and 

 

D

 

, 

 

arrow-
heads

 

). Thus, despite the presence of functional cen-
trosomes, the minus ends of the microtubules became un-
focused and were displaced from the centrosomes after the
injection of this dynein-specific antibody into metaphase
cells.

To determine if the 70.1 antibody perturbs the associa-
tion of cytoplasmic dynein with the mitotic spindle, we mi-

croinjected metaphase cells with the 70.1 antibody and
stained the cells with the dynein-specific monoclonal anti-
body 74.1 (Dillman and Pfister, 1994). Cytoplasmic dynein
is localized on the mitotic spindle and throughout the cyto-
sol of mitotic cells after injection with the control antibody
(Fig. 4 

 

A

 

) consistent with previously published reports
(Pfarr et al., 1991; Steuer et al., 1991). In contrast, the sig-
nal intensity for cytoplasmic dynein on mitotic spindles of
cells injected with the dynein-specific 70.1 antibody is sig-
nificantly reduced (Fig. 4 

 

B

 

). The intensity of staining of
the cytosolic fraction of cytoplasmic dynein is equivalent
between these two samples, indicating that the staining ef-
ficiency for each sample was similar (Fig. 4, 

 

A

 

 and 

 

B

 

). The
possibility that the 70.1 antibody sterically hinders the
binding of the 74.1 antibody to cytoplasmic dynein is un-
likely, because the 74.1 antibody decorates the cytosolic
fraction of cytoplasmic dynein to the same extent in the
presence of either the 70.1 or control antibodies (Fig. 4, 

 

A

 

and 

 

B

 

). Also, preincubation of fixed cells with the 70.1 an-
tibody does not reduce the signal observed using the 74.1
antibody in immunofluorescence microscopy (data not
shown). These results indicate that the dynein-specific 70.1
antibody disrupts the interaction of cytoplasmic dynein
with the mitotic spindle in somatic cells.

 

The Dynein-specific Antibody 70.1 Perturbs Mitotic 
Aster Assembly In Vitro

 

We next tested if mitotic asters that form through a cen-
trosome-independent mechanism in somatic cell mitotic
extracts (Gaglio et al., 1995, 1996) are perturbed by the ad-
dition of this dynein-specific antibody. Addition of the
control antibody to the extract either before mitotic aster
assembly (Fig. 5 

 

A

 

) or after mitotic aster assembly (data
not shown) had no observable effect on the organization
of microtubules within the mitotic asters or the localiza-
tion of NuMA at the central core of each aster. Addition

Figure 2. The dynein-specific 70.1 anti-
body blocks the formation of the mitotic
spindle. Monkey CV-1 cells were moni-
tored as they progressed through mitosis
after microinjection with either a control
antibody (A) or the dynein-specific 70.1
monoclonal antibody (B). The mitotic
cells were fixed and processed for immu-
nofluorescence microscopy using the
DNA-specific dye DAPI, and antibodies
specific for tubulin and NuMA as indi-
cated. Bar, 10 mm.
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of the dynein-specific antibody, however, prevented the
assembly of mitotic asters if added to the extract before in-
duction of aster assembly and perturbed the organization
of preassembled mitotic asters if it was added to the ex-
tract after the induction of aster assembly (Fig. 5, 

 

B

 

 and

 

C

 

). In both cases, NuMA was associated with the microtu-
bules but was distributed along the length of many of the
microtubules instead of concentrated at any one position.
This indicates that addition of this antibody before mitotic
aster formation prevented the accumulation of NuMA in
any one position, while addition of this antibody to pre-
assembled mitotic asters caused the displacement of
NuMA from the region near the microtubule minus ends.
Thus, perturbation of cytoplasmic dynein function by the
addition of this antibody is sufficient to not only prevent
the assembly of mitotic asters in this system but also to dis-

rupt the organization of pre-assembled mitotic asters in a
manner very similar to the disruption of the polar regions
of mitotic spindles in cultured cells (see above) and in
acentrosomal spindles assembled in extracts prepared
from 

 

Xenopus

 

 eggs (Heald et al., 1996).

 

The Dynein-specific Antibody 70.1 Reduces
the Efficiency with Which Dynactin Associates
with Microtubules

 

To determine if the presence of these antibodies in the mi-
totic extract altered the efficiency with which proteins
known to be involved in spindle pole and aster assembly
associated with microtubules, we performed immunoblot
analysis on the soluble and insoluble fractions derived
from the mitotic extract containing the control and dy-

Figure 3. The dynein-specific 70.1
antibody disrupts preassembled mi-
totic spindles despite the presence of
functional centrosomes. Monkey CV-1
cells in metaphase with bipolar mi-
totic spindles were selected by phase
contrast microscopy and microin-
jected with either a control antibody
(A) or the dynein-specific 70.1 mono-
clonal antibody (B–D). 5 min (B) or
15–30 min (A, C, and D) after micro-
injection, the cells were fixed and
processed for immunofluorescence
microscopy using the DNA-specific
dye DAPI and antibodies specific for
tubulin and NuMA as indicated. Ar-
rowheads in C and D indicate cen-
trosomes and arrows in D indicate
NuMA. Bar, 10 mm.
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nein-specific antibodies (Fig. 5 

 

D

 

). The efficiency with
which tubulin (data not shown), NuMA, cytoplasmic dy-
nein, or Eg5 was converted from the soluble fraction to the
insoluble fraction during the reaction was not significantly
altered by the presence of the dynein-specific antibody,
despite the fact that this antibody disrupted the formation
of mitotic asters. This was true whether the antibody was
added before (Fig. 5 

 

D

 

, 

 

PRE) or after (Fig. 5 D, POST)
the formation of mitotic asters. In contrast, we consistently
observed a reduction in the efficiency with which dynactin
associated with the microtubules in the presence of the dy-
nein-specific antibody. Typically, 15–30% of dynactin as-
sociates with the mitotic asters in the insoluble fraction
(Gaglio et al., 1996). Fig. 5 D shows that 15% of dynactin
is associated with the mitotic asters in the insoluble pellet
in the presence of the control antibody, but ,5% of dy-
nactin is found in the insoluble fraction in the presence of
the dynein-specific antibody (Fig. 5 D; percentages deter-
mined by densitometry). The alteration in the efficiency
with which dynactin associates with the microtubules in
the presence of the dynein-specific antibody was not de-
pendent on when the antibody was added to the extract,
because the same result was obtained if the dynein-specific
antibody was added before mitotic aster assembly or if the
antibody was added to pre-assembled mitotic asters. This
effect on dynactin, while indirect because the antibody is

Figure 4. The dynein-specific 70.1 antibody causes a reduction in
the efficiency with which cytoplasmic dynein associates with the
mitotic spindle in vivo. Monkey CV-1 cells in metaphase with bi-
polar mitotic spindles were selected by phase contrast microscopy
and microinjected with either a control antibody (A) or the dy-
nein-specific 70.1 monoclonal antibody (B). The cells were then
fixed and processed for immunofluorescence microscopy using
the DNA-specific dye DAPI and the 74.1 antibody, which is spe-
cific for the light intermediate chain of cytoplasmic dynein as in-
dicated. Bar, 10 mm.

Figure 5. The dynein-specific 70.1 antibody disrupts both the for-
mation and maintenance of mitotic asters assembled in a cell-free
mitotic extract. The control antibody (A) and the dynein-specific
70.1 antibody (B and C) were added to a HeLa cell mitotic ex-
tract either before (A and B) or after (C) the induction of mitotic
aster assembly by the addition of taxol and incubation at 308C.
After incubation, a portion of the sample was fixed and processed
for immunofluorescence microscopy (A–C) using antibodies spe-
cific for tubulin and NuMA as indicated. The remainder of the
sample, in which either the control antibody (154) or the dynein-
specific antibody (70.1) were added before (PRE) or after
(POST) mitotic aster assembly, was separated into 10,000-g solu-
ble (S) and insoluble (P) fractions. These fractions were sub-
jected to immunoblot analysis using antibodies specific for
NuMA, Eg5, cytoplasmic dynein, and dynactin as indicated (D).
Bar, 10 mm.
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directed against cytoplasmic dynein (Fig. 1), is specific be-
cause the efficiency with which both NuMA and Eg5 asso-
ciated with microtubules in the presence of this antibody
was not appreciably altered. Thus, these data suggest that
in addition to its direct effects on cytoplasmic dynein, this
dynein-specific antibody perturbs the efficiency with which
dynactin associates with microtubules in this system.

The alteration in the efficiency with which dynactin as-
sociates with microtubules in the presence of the dynein-
specific antibody suggests that addition of this dynein-specific
antibody to the extract may have functional consequences
that are different from inactivation of cytoplasmic dynein
alone. To determine if the reduction of dynactin associa-
tion with microtubules induced by the addition of the dy-
nein-specific antibody is functionally involved in the dis-
ruption of mitotic aster formation, we compared the effects
of the addition of the dynein-specific antibody to the de-
pletion of cytoplasmic dynein (Fig. 6). In this experiment,
it was necessary to either deplete cytoplasmic dynein or
add the 70.1 antibody to extracts depleted of the plus end-
directed kinesin-related protein Eg5. The formation of mi-
totic asters in this system requires cytoplasmic dynein, and
asters fail to organize in the absence of cytoplasmic dynein
alone due to the imbalance in forces generated by micro-
tubule motors during aster assembly. Mitotic asters will
form in the absence of cytoplasmic dynein, however, if the
forces generated by microtubule motors are partially
equilibrated by the simultaneous depletion of the plus
end-directed motor Eg5 (Gaglio et al., 1996). Thus, if the
depletion of cytoplasmic dynein is functionally equivalent
to the addition of the dynein-specific 70.1 antibody, then
mitotic asters should be observed after either the simulta-
neous depletion of cytoplasmic dynein and Eg5 or addi-
tion of the 70.1 antibody to an Eg5-depleted extract. Fig. 6
shows that in the absence of Eg5 alone, microtubules orga-
nize into astral arrays that are larger than typical mitotic
asters, they lack a well formed central core, and NuMA is
diffusely localized at the center (Fig. 6 B; Gaglio et al.,
1996). In the absence of both Eg5 and cytoplasmic dynein,
mitotic asters form that resemble those formed in the
absence of Eg5 alone, although they are somewhat less
well organized (Fig. 6 C; Gaglio et al., 1996). Thus, if the
70.1 antibody only affects the function of cytoplasmic dy-
nein, then addition of the 70.1 antibody to an Eg5-
depleted extract should also yield asters. Contrary to this
prediction, mitotic asters did not form when the 70.1 anti-
body was added to an Eg5-depleted extract, while addition
of the control antibody had no observable effect on the
formation of astral microtubule arrays (Fig. 6, D and E).
Thus, in this cell-free system the depletion of cytoplasmic
dynein is not functionally equivalent to the addition of this
dynein-specific antibody. The most likely explanation for
this difference is that the dynein-specific antibody both di-
rectly affects cytoplasmic dynein and indirectly affects dy-
nactin such that the presence of the 70.1 antibody is analo-

Figure 6. The addition of mAb 70.1 to the cell-free mitotic aster
assembly system is more deleterious to mitotic aster assembly
than the depletion of cytoplasmic dynein. The cell-free HeLa mi-
totic extract was depleted using either a preimmune antibody (A)
or an Eg5-specific antibody (B–E). The Eg5-depleted samples
were further treated by either the depletion of cytoplasmic dy-
nein (C) or the addition of the dynein-specific (D) or control (E)

antibodies. After the induction of mitotic aster assembly under
these conditions, the samples were fixed and processed for immu-
nofluorescence microscopy using antibodies specific for tubulin
and NuMA as indicated. Bar, 10 mm.
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gous to the simultaneous disruption of dynein and dynactin.
While we can not rule out the possibility that this antibody
has additional deleterious effects beyond the perturbation
of cytoplasmic dynein and dynactin, this interpretation is
consistent with our previous results showing that the de-
pletion of dynactin is more deleterious to mitotic aster for-
mation than the depletion of cytoplasmic dynein (Gaglio
et al., 1996).

Finally, to determine if the association of dynactin with
the mitotic spindle was also altered in vivo by the presence
of the 70.1 antibody, we microinjected this dynein-specific
antibody into metaphase cells and performed immunoflu-
orescence microscopy with a dynactin-specific antibody
(45A, which recognizes the Arp1 subunit; Fig. 7). In
metaphase cells that have been microinjected with the
control antibody, dynactin is localized in a crescent-like
pattern concentrated at the polar regions of the spindle as
well as throughout the cytoplasm, consistent with previ-
ously published reports (Fig. 7 A; Gill et al., 1991). In con-
trast, the staining intensity for dynactin at the spindle
poles is significantly reduced after the microinjection of
the dynein-specific antibody (Fig. 7 B). The staining inten-
sity for dynactin at centrosomes of adjacent, uninjected
cells is equivalent, indicating that the staining efficiency
was similar for the two samples (Fig. 7, A and B, arrow-
heads). Thus, while this result is difficult to quantitate, it

indicates that the dynein-specific antibody is affecting the
efficiency with which dynactin associates with the mitotic
spindle in vivo, consistent with our observations using the
cell-free system for mitotic aster assembly. The disruption
of both cytoplasmic dynein and dynactin by the dynein-
specific 70.1 antibody suggests that cytoplasmic dynein
and dynactin associate with microtubules in a cooperative
manner, which is consistent with the following: the current
models for the interaction of dynein and dynactin with mi-
crotubules (Allan 1996; Schroer et al., 1996); the original
functional characterization of dynactin (Schroer and
Sheetz, 1991); the fact that both dynein and dynactin have
microtubule binding domains (Waterman-Storer et al.,
1995); our previous data showing that the efficiency with
which cytoplasmic dynein associates with microtubules in
a cell-free mitotic extract can be modulated by manipulat-
ing the quantity of dynactin in the extract (Gaglio et al.,
1996); and the reduction in the association of cytoplasmic
dynein with mitotic structures following the disruption of
dynactin (Echeverri et al., 1996). This interpretation offers
the most likely explanation for the discrepancy between
the present data and the results of Vaisberg et al. (1993),
who previously investigated the role of cytoplasmic dynein
in the assembly of the mitotic spindle by microinjection of
an antibody directed against the cytoplasmic dynein heavy
chain. Their antibody, while inhibitory to dynein-mediated

Figure 7. The dynein-specific 70.1 antibody causes a reduction in the efficiency with which dynactin associates with the mitotic spindle
in vivo. Monkey CV-1 cells in metaphase with bipolar mitotic spindles were selected by phase contrast microscopy and microinjected
with either a control antibody (A) or the dynein-specific 70.1 monoclonal antibody (B). The cells were then fixed and processed for im-
munofluorescence microscopy using the DNA-specific dye DAPI and the 45A antibody, which is specific for the Arp1 subunit of dynac-
tin as indicated. The arrowheads indicate centrosomal staining for dynactin in adjacent uninjected cells, which verifies that these two
samples were stained equivalently. Bar, 20 mm.
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motility in vitro, is not known to inhibit dynein-mediated
motility in vivo and would not be predicted to disrupt the
interaction of dynein with dynactin, which is mediated by
the 74-kD light intermediate chain of dynein (Karki and
Holzbaur, 1995; Vaughan and Vallee, 1995). The 70.1 anti-
body, on the other hand, has effects on both cytoplasmic
dynein and dynactin, implying that cytoplasmic dynein and
dynactin act as a functionally relevant unit that may have
structural activities in addition to minus end-directed mo-
tor activity.

Discussion

The data presented here indicate that microtubule minus
ends located at mitotic spindle poles in vertebrate somatic
cells are organized in a complex manner requiring contri-
butions from both the centrosomes and noncentrosomal
protein components. Centrosomes are essential to nucle-
ate microtubules in somatic cells (McIntosh, 1983; Mazia,
1984; Maniotis and Schliwa, 1991; Zhang and Nickals,
1995a,b). Contrary to the traditional view that the forma-
tion of a spindle pole in somatic cells is a consequence of
this nucleation event, we demonstrate here that the non-
centrosomal proteins cytoplasmic dynein and dynactin are
also required for both the formation and maintenance of
the organization of microtubule minus ends at the mitotic
spindle pole. Disruption of their activities using the dy-
nein-specific 70.1 monoclonal antibody leads to the splay-
ing of microtubule minus ends and disruption of the con-
nection between the centrosome and the body of the
mitotic spindle. This result underscores the concept that
the mitotic spindle pole is not synonymous with a mitotic
aster nucleated from a centrosome, but that the spindle
pole is a specialized entity of noncentrosomal components
that is superimposed onto the centrosomally nucleated mi-
crotubule aster.

Based on these data, we propose that mitotic spindle
formation in somatic cells proceeds through a search-cap-
ture-focus mechanism (Fig. 8). This model expands on the
search-capture model (Kirschner and Mitchison, 1986)
and begins with the nucleation of microtubule asters from
centrosomes. The plus ends of these microtubules “search”
the cytoplasm by rapidly converting between growing and
shrinking states and are “captured” and stabilized by kine-
tochores. At some point during the search and capture
process microtubules are released (or severed) from the
centrosome, and these microtubules become “focused” by
structural and motor proteins into a spindle pole with their
free minus ends near the centrosome (Fig. 8). The cen-
trosome remains tethered to this newly focused array
through a lateral interaction between microtubules within
this array and astral microtubules that continue to ema-
nate from the centrosome (Fig. 8).

This search-capture-focus model for spindle assembly
accounts for both our observations of spindle pole forma-
tion in somatic cells (i.e., centrosomal spindles) as well as
spindle pole formation in systems such as plants and some
meiotic cells that assemble spindles in the absence of cen-
trosomes. In acentrosomal meiotic systems, microtubules
appear to be nucleated from free g-tubulin ring complexes
(Zheng et al., 1996). These short microtubules associate

randomly with chromatin in disorganized arrays and are
then organized into parallel bundles (Steffen et al., 1986;
Theurkauf and Hawley, 1992; Heald et al., 1996). In so-
matic cells, microtubules are nucleated from g-tubulin ring
complexes that are associated with centrosomes (Moritz et
al., 1996), which establishes an oriented microtubule array
(mitotic asters) with microtubule plus ends that search the
cytoplasm and are captured by kinetochores. Despite
these differences in the initial search and capture stages of
spindle formation, both systems appear to use a common

Figure 8. The search-capture-focus model for mitotic spindle as-
sembly. Microtubules in somatic cells are nucleated from cen-
trosomes that form symmetrical mitotic asters. These microtu-
bules are relatively unstable (dashed lines) and “search” the
cytoplasm by continuously converting between growing and
shrinking states (arrows). Occasionally a microtubule plus end
will contact a kinetochore and be “captured” and stabilized (solid
lines). At some point during the search and capture events, some
of the microtubules will release from the centrosome, resulting in
free microtubule minus ends. These free microtubule minus ends
are “focused” at the spindle pole by noncentrosomal proteins, in-
cluding cytoplasmic dynein, dynactin, NuMA, Eg5, and a minus
end–directed kinesin-related protein. The centrosome is tethered
to this focused group of microtubules by the lateral interaction of
microtubules within this array and astral microtubules that ema-
nate from the centrosome.
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mechanism to “focus” the free microtubule minus ends
into spindle poles. The parallel bundles of microtubules in
acentrosomal spindles are focused at their minus ends
(Theurkauf and Hawley, 1992; Matthies et al., 1996; Mer-
des et al., 1996; Heald et al., 1996), while in centrosomal
spindles free microtubule minus ends are focused onto the
astral microtubule array. This process of focusing free mi-
crotubule minus ends is much more pronounced in acen-
trosomal meiotic systems, because unlike mitotic systems
in which microtubules are inherently focused from cen-
trosomes, microtubules in acentrosomal meiotic systems
have no organization before the focusing activity exerted
by the noncentrosomal components.

According to this search-capture-focus model for spin-
dle assembly it may be possible to separate the microtu-
bule nucleating activity associated with centrosomes in so-
matic cells from the focusing activity exerted by the
noncentrosomal structural and motor proteins. In fact, this
possibility has already been confirmed under a variety of
different experimental conditions. First, there are several
reports in the literature that centrosomes have detached
from the body of the spindle while the microtubule minus
ends remain focused in a pole (Rieder and Hard, 1990;
Mitchison and Salmon, 1992; Murray et al., 1996). These
poles are functional because they support chromosome
segregation, and in one case it was observed that the mi-
crotubule turnover associated with poleward microtubule
flux continued to converge towards this pole (Mitchison
and Salmon, 1992). Second, centrosomes can be mechani-
cally detached from the body of the mitotic spindle at
metaphase, and the minus ends of the mitotic spindle re-
main focused; and in some cases the chromosomes still mi-
grate toward that focused collection of microtubule minus
ends despite the removal of the centrosome (Hiramoto
and Nakano, 1988; Nicklas, 1989; Nicklas et al., 1989).
Third, in rare cases where microtubules associate with
chromosomes in the absence of centrosomes and/or centri-
oles in cultured cells (Brenner et al., 1977; Keyer et al.,
1984; Debec et al., 1995), or if the requirement for cen-
trosomes in microtubule nucleation is bypassed by the ad-
dition of taxol both in vivo during mitosis (DeBrabander
et al., 1981) and in vitro in mitotic extracts (Gaglio et al.,
1995, 1996), then microtubules are still organized into as-
tral and polar arrays. The focusing of microtubule minus
ends under these conditions is likely the manifestation of
the microtubule minus end focusing activity exerted by the
noncentrosomal components. Fourth, electron microscopy
has shown that many microtubule minus ends within both
mitotic and centrosome-containing meiotic spindles are
not associated with centrosomes (Wolf and Bastmeyer,
1991; Mastronarde et al., 1993). Fifth, microtubule release
from centrosomes has been documented in cell-free ex-
tracts (Belmont et al., 1990) as well as under nonmitotic
circumstances in living cells (Keating et al., 1997). Finally,
free microtubule minus ends within the mitotic spindle are
necessary for tubulin subunit loss during poleward micro-
tubule flux (Mitchison, 1989b). Taken together, these re-
sults clearly discriminate between the processes of micro-
tubule nucleation and minus end focusing during mitosis
in somatic cells, and demonstrate that noncentrosomal
structural and motor proteins will focus microtubule mi-
nus ends independently of centrosomes in somatic cells

through a mechanism that is probably related to spindle
pole formation in acentrosomal systems.

Finally, prevailing evidence indicates that the mecha-
nism for focusing free microtubule minus ends into spindle
poles in both centrosomal and acentrosomal spindles is
driven by a common group of noncentrosomal accessory
proteins including NuMA, cytoplasmic dynein, dynactin,
Eg5, and a minus end-directed kinesin-related protein
(Verde et al., 1991; Sawin et al., 1993; Endow et al., 1994;
Gaglio et al., 1995, 1996; Blangy et al., 1996; Heald et al.,
1996; Matthies et al., 1996; Merdes et al., 1996; Walczak et
al., 1997). Experimental data indicate that all of these pro-
teins participate in the organization of spindle poles in
both centrosomal and acentrosomal systems. Despite the
complex nature of this process and the involvement of nu-
merous components, recent evidence suggests that a tri-
molecular complex composed of NuMA, cytoplasmic dy-
nein, and dynactin may be crucial for focusing free
microtubule minus ends at spindle poles. These three
proteins form a stable complex in extracts prepared from
Xenopus eggs, and this complex of proteins is essential for
the organization of spindle poles in that system (Merdes et
al., 1996). While no evidence exists for a stable complex
between these proteins in extracts prepared from somatic
cells, we show that NuMA fails to concentrate near micro-
tubule minus ends in the absence of dynein and/or dynac-
tin under both in vitro and in vivo conditions, consistent
with a dynein/dynactin-dependent movement of NuMA to
microtubule minus ends (Figs. 3 and 5, and Gaglio et al.,
1996). Indeed, in a striking group of experiments, the per-
turbation of either cytoplasmic dynein (mAb 70.1 microin-
jection; present work), dynactin (dynamitin over expres-
sion; Echeverri et al., 1996; Gaglio et al., 1996), or NuMA
(antibody microinjection; Gaglio et al., 1995) in cultured
cells all produced a similar effect on the spindle pole orga-
nization characterized by splaying of microtubule minus
ends and detachment of centrosomes. Given that the inter-
action of NuMA with cytoplasmic dynein and dynactin is
mitosis-specific in somatic cells (NuMA is nuclear during
interphase), it is possible that NuMA confers a unique mi-
tosis-specific property to the minus end-directed motor ac-
tivity of cytoplasmic dynein and dynactin, which contrib-
utes to the essential function of this trimolecular complex
during spindle formation.

In the end, we speculate that free microtubule minus
ends are necessary for proper spindle function, because
they are necessary for the mechanism of poleward micro-
tubule flux, which exerts force through the spindle (Wa-
ters et al., 1996) and (depending on the cell type) contrib-
utes to poleward chromosome movement (Salmon, 1992;
Wilson et al., 1994; Mitchison and Salmon, 1992; Zhai et
al., 1995). Free microtubule minus ends are inherently pro-
duced in acentrosomal spindles, whereas in centrosomal
spindles they must be generated by microtubule release
from centrosomes. In both cases, a common pole-forming
activity focuses the free microtubule ends. In somatic cells,
these free microtubule minus ends that are obligatory to
poleward microtubule flux remain attached to the astral
microtubules emanating from the centrosome, thus allow-
ing the centrosome-associated astral array to convey posi-
tional cues derived from the cell cortex to the body of the
spindle.
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