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Abstract

Development of new computational methods and testing their performance has to be

carried out using experimental data. Only in comparison to existing knowledge can

method performance be assessed. For that purpose, benchmark datasets with known and

verified outcome are needed. High-quality benchmark datasets are valuable and may be

difficult, laborious and time consuming to generate. VariBench and VariSNP are the two

existing databases for sharing variation benchmark datasets used mainly for variation

interpretation. They have been used for training and benchmarking predictors for various

types of variations and their effects. VariBench was updated with 419 new datasets

from 109 papers containing altogether 329 014 152 variants; however, there is plenty of

redundancy between the datasets. VariBench is freely available at http://structure.bmc.lu.

se/VariBench/. The contents of the datasets vary depending on information in the original

source. The available datasets have been categorized into 20 groups and subgroups.

There are datasets for insertions and deletions, substitutions in coding and non-coding

region, structure mapped, synonymous and benign variants. Effect-specific datasets

include DNA regulatory elements, RNA splicing, and protein property for aggregation,

binding free energy, disorder and stability. Then there are several datasets for molecule-

specific and disease-specific applications, as well as one dataset for variation phenotype

effects. Variants are often described at three molecular levels (DNA, RNA and protein)

and sometimes also at the protein structural level including relevant cross references

and variant descriptions. The updated VariBench facilitates development and testing

of new methods and comparison of obtained performances to previously published

methods. We compared the performance of the pathogenicity/tolerance predictor

PON-P2 to several benchmark studies, and show that such comparisons are feasible

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
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and useful, however, there may be limitations due to lack of provided details and shared

data.

Database URL: http://structure.bmc.lu.se/VariBench

Introduction

Development and testing of computational methods are
dependent on experimental data. Only in comparison to
existing knowledge can method performance be assessed.
For that purpose, benchmark datasets with known and
verified outcome are needed. During the last few years, such
datasets have been collected for a number of applications
in the field of variation interpretation. VariBench (1) and
VariSNP (2) are the two existing databases for variation
benchmark datasets for variation interpretation. VariBench
contains all kinds of datasets while VariSNP is a dedicated
resource for variation sets from dbSNP database for short
variations (3).

Benchmark datasets are used both for method training
and testing. We can divide testing approaches into three cat-
egories (Figure 1). The most reliable are systematic bench-
mark studies. Quite often the initial method performance
assessment is done on somewhat limited test data or does
not report all necessary measures. The third group includes
studies for initial method and hypothesis testing typically
with a limited amount of data. An example for this kind
of testing is Critical Assessment of Genome Interpreta-
tion (CAGI, https://genomeinterpretation.org/), which has
organized several challenges for method developers. These
contests with blind data, when the participants do not know
the true answer, have been important e.g. for testing new
ideas and methods, as well for tackling novel application
areas.

High-quality benchmark datasets are valuable and
may be difficult, laborious and time consuming to
generate. Already from the point of view of reasonable
use of resources it is important to share such datasets.
Secondly, comparison of method performance is reliable
only when using the same test dataset. According to
the FAIR principles (4), research data should be made
findable, accessible, interoperable and reusable. VariBench
and VariSNP provide variation data according to these
principles and include relevant metadata.

It is still quite common that authors collect and use
extensive datasets for their published papers, but do not
share and make the datasets available. This practice pre-
vents others from comparing additional tools to those used
in the paper. Even when the data are made available, it may
be in a format that makes reuse practically impossible. An
example is the datasets used for testing the MutationTaster2
tolerance predictor (5). They were published as figures and

Figure 1. Types of method performance tests. The boxes indicate the

three major test settings and the graphs below show how the amounts

of certain properties vary along test setup. The figure is adapted

from (71).

at very low resolution. Now, these datasets are available in
VariBench.

Criteria for benchmarks

We defined criteria for a benchmark when the VariBench
database was first published (1). These criteria were more
extensive than previously used and have been found very
useful and still form the basis for inclusion of data and
for their representation in VariBench. The criteria are as
follows.

Relevance. The dataset has to capture the characteristics
of the investigated property. Not all available data may
be relevant for the phenomenon or may be only indirectly
related to it. The collected cases have to be for the specific
effect or mechanism under study.

Representativeness. The datasets should cover the event
space as well as possible, thus preferably containing exam-
ples from all the regions relevant to the effect. The actual
number of cases for achieving this coverage may vary widely
depending on the effect. The dataset should be of sufficient
size to allow statistical studies but may not need to include
all known instances.

Non-redundancy. This means excluding overlapping
cases within each dataset.

Experimentally verified cases. Method performance
comparisons have to be based on experimental data, not
on predictions, otherwise the comparison will be about the
congruence of methods, not about their true performance.

Positive and negative cases. Comprehensive assessment
has to be based both on positive (showing the investigated
feature) and negative (not having effect) cases.

Scalability. It should be possible to test systems of differ-
ent sizes.

http://structure.bmc.lu.se/VariBench
https://genomeinterpretation.org/
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Reusability. As datasets are expensive to generate, they
should be shared in such a way that they can be used for
other investigations. This may mean similar applications or
usage in new areas.

Most of the criteria are rather easy to fulfill, but some
others are more difficult to take into account. We recently
investigated the representativeness of 24 tolerance datasets
from VariBench in the human protein universe by analyzing
the distribution and coverage of cases in chromosomes, pro-
tein structures, CATH domains and classes, Pfam families,
Enzyme Commission (EC) categories and Gene Ontology
annotations (6). The outcome was that none of the datasets
were well representative. When correlating the training
data representativeness to the performance of predictors
based on them, no clear correlation was found. However,
it is apparent that representative training data would allow
training of methods that have good performance for cases
distributed throughout the event space.

Benchmark studies in relation to variation predictions
have been made for variants affecting protein stability (7, 8),
protein substitution tolerance/pathogenicity (9–14), protein
localization (15), protein disorder (16), protein solubility
(17), benign variants (18), transmembrane proteins (19),
alternative splicing (20, 21) and phenotypes of amino acid
substitutions (22). Many of the datasets used in these
studies are available for verification and reuse, but unfor-
tunately e.g. the last one, which is unique, is not accessible.

To test the relevance of the tolerance datasets, we investi-
gated how many disease-causing variations could be found
from neutral training data. A small number of such variants
were found, 1.13–1.77% (6). These numbers are so small
that they do not have a major impact on method perfor-
mances. VariBench datasets are reusable and scalable, con-
tain experimental cases and are typically non-redundant.
However, how redundancy should be defined may depend
on the application. For example, when using domain fea-
tures in variant predictors, variants even in related domain
members would be redundant.

Dataset quality

The quality of benchmark datasets is of utmost significance.
This is naturally dependent on the quality of the data
sources. There are not many quality schemes in this field.
For locus-specific variation databases (LSDBs) there is a
quality scheme that contains close to 50 criteria in four
main areas including database quality, technical quality,
accessibility and timeliness (23). However, these guidelines
are not yet widely followed and similar criteria are missing
for other types of variation data resources.

Systematics within datasets and databases can signifi-
cantly improve their quality and usability. For variation

data there are a number of systematics solutions available.
These include systematic gene names available for human
from the HUGO Gene Nomenclature Committee (HGNC)
(24), Human Genome Variation Society (HGVS) varia-
tion nomenclature (25), Locus Reference Genomic (LRG)
and (26) RefSeq reference sequences (27), and Variation
Ontology (VariO) variation type, effect and mechanism
annotations (28).

Quality relates to numerous aspects in the datasets, the
correctness of variation and gene/protein and disease infor-
mation, relevance of references, etc. We recently selected
cases from ProTherm (29) to build an unbiased dataset for
the protein variant stability predictor PON-tstab (30). We
were aware that the database had some problems, however,
were surprised with the extent of problematic cases. While
making the selection, we noticed numerous issues, such
as cases of two-stage denaturation pathways where values
for all the steps and then the total value were provided;
there were errors in sequences, variants, recorded measuring
temperatures, ��G values and their signs and units, and
in indicated PDB structures; and so on. The uncorrected
and wrong data have been used for development of tens of
prediction methods. This is probably an extreme exception
(ProTherm was taken away from the internet after our
paper was published); however, this indicates that one has
to be careful even when using popular data. When includ-
ing datasets to VariBench we performed several quality
controls, however, we also list datasets that may contain
problems e.g. numerous ProTherm sub-selections that have
been published and sometimes used in several papers. They
have been included for comparative purposes.

How to test predictor performance

The use of a benchmark dataset is just one of the require-
ments for systematic method performance assessment.
Proper measures are needed to find out the qualities of
performance. Most of the currently available prediction
methods are binary, distributing cases into two categories.
There are guidelines for how to test and report method
performance (31–33). There is also a checklist what to
report when using such methods in publications.

Results for binary methods are presented in a contin-
gency (also called for confusion) table out of which different
measures can be calculated. The most important ones are
the following six, which according to the guidelines (32)
have to be provided for comprehensive assessments. Speci-
ficity, sensitivity, positive and negative predictive values
(PPV and NPV) use half of the data in the matrix, while
accuracy and Matthews correlation coefficient (MCC) use
data from all the four data cells. Additional useful mea-
sures include area under curve when presenting Receiver
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Operating Characteristic curves and Overall Performance
Measure. Good methods display a balanced performance
and their values for measures differ only slightly.

In case there is an imbalance in the number of cases in
the classes, it has to be mitigated (31). Several approaches
are available for that. Cases used for testing method perfor-
mance should not have been used for training them, other-
wise there is circularity that overinflates performance mea-
sures (14). A scheme has been presented on how datasets
should be split for training and testing as well as for blind
testing (34). When there are more than two predicted classes
additional measures are available (31, 32). In addition
to these measures, method assessment can contain other
factors such as time required for predictions, as well as user
friendliness and clarity of the service and results.

Datasets used for assessment have to be of sufficient
size. There are a number of reasons for this requirement.
Widely used machine learning methods are statistical by
nature and require a relatively large number of cases for
reliable testing. If we think the event space, in the case
of human proteins, there are 380 different amino acid
substitution types, 150 of which are more likely due to
emerging because of a single nucleotide substitution within
the coding region for a codon. These substitutions can
appear in numerous different contexts, thus too small test
datasets should be avoided. There are several performance
assessments, especially for variants in a single protein or a
small number of genes/proteins that do not have any sta-
tistical power. The smallest dataset we have seen contained
just nine substitutions, based on which a detailed analysis
was performed to recommend the best performing tools!

Variation interpretation is often carried out in relation
to human diseases. It is important to note that diseases
are not binary states (benign/disease) instead there is a
continuum and certain disease state can appear due to
numerous different combinations of disease components,
see the pathogenicity model (35). This aspect has not been
taken into account in benchmark datasets apart from the
training data for PON-PS (36) and clinical data for cystic
fibrosis (37).

Variation datasets

We have collected from literature, websites and databases
datasets, which have been used for training and benchmark-
ing various types of variations and their effects (Table 1).
The new datasets come from 109 papers. There are 419
new separate datasets containing altogether 329 014 152
variants. One paper can contain more than one dataset. The
number of unique variants is smaller as many of the datasets
are different subsets of commonly used datasets such as
ClinVar or ProTherm or VariBench itself. The total number

Figure 2. Types of benchmark datasets and their relations in VariBench.

is dominated by VariSNP cases. The original VariBench
version contained 17 datasets from 10 articles representing
five variation categories, thus the growth in the database
size has been substantial.

VariBench datasets are freely available at http://
structure.bmc.lu.se/VariBench/ and can be downloaded
separately. The website contains basic information about
the datasets, their origin and for what purpose they were
initially used for. There is also information about in how
many genes, transcripts or proteins the variants appear.
Datasets are categorized similar to Table 1 for easy access.
The contents of the datasets vary depending on information
in the original source. We have enriched many of them e.g.
by mapping to reference sequences or PDB structures and
some contain VariO annotations. Columns in the original
sources irrelevant for VariBench were removed.

The available datasets have been categorized into 20
groups and subgroups as indicated in Figure 2. The figure
shows also the relationships of the datasets in different
categories. Variants are often described at three molecular
levels (DNA, RNA and protein) and sometimes also at
protein structural level, including relevant cross references
and variant descriptions. VariBench utilizes and follows
a number of standards and systematics including HGVS
variation nomenclature, HGNC gene names (not in all
databases due to mapping problems) and VariO annota-
tions in some datasets.

Links are available to data in some external databases,
including AmyLoad (38) and WALTZ-DB (39) for protein
aggregation, DBASS3 and DBASS5 (40, 41) for splicing
variants, SKEMPI (42), cancer datasets in KinMutBase (43),
Kin-Driver (44), dbCPM (45), DoCM (46), OncoKB (47)
and tolerance predictor training set in DANN (48). The
latter has a link due to its huge size, the others since

http://structure.bmc.lu.se/VariBench/
http://structure.bmc.lu.se/VariBench/
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Table 1. New benchmark datasets added to VariBench

Origin of data Dataset first used for Number of variants in
each dataset

Number of different
genes, transcripts or
proteins in each dataset

Reference

Variation type datasets
Insertions and deletions (0/0)
HGMD, 1000 GP DDIG-In 659, 2008, 2479, 3861,

579, 2008, 2413, 3861
659, 737, 2447, 751,
1122, 493, 1996, 1933,
2989

(74)

ClinVar, 1000 GP, ESP6500 SIFT-Indel ENTPRISE-X 6513,5023,82, 366,
3171, 1604, 181, 1025

1078, 1361, 38, 307,
2491, 1251, 170, 1018

(75)

SwissProt, 100 GP, SM2PH KD4i 2734 1973 (76)
Sequence alignments SIFT Indel 474, 9710 474, 9698 (77)
Substitutions, coding region (6/10)
Training datasets
Literature, patents PredictSNP 10 581, 5871, 43 882,

32 776, 3497, 11 994
12, 12, 11 410, 8336,
1421, 23

(11)

HGMD, SwissProt FATHMM,
FATHMM-XF

69 141, 94 995, 69 141 12 412, 47 510, 12 412 (78, 79)

ClinVar, HGMD MutationTaster 2600, 2199, 1100,
1100

617, 1652, 618, 1006 (5)

HumDiv, UniProt, ClinVar VIPUR 9477, 1542, 382, 949,
4992, 6555

2444, 1477, 381, 913,
4362, 1120

(80)

Humsavar BadMut 33 483 8185 (81)
HumVar, ExoVar, VariBenchSelected,
SwissVarSelected

RAPSODY 21 946 2728 (73)

ClinVar, ESP DANN 16 627 775, 49 407 057 –, – (48)
SwissProt NetSAP 5375, 1152 218, 734 (82)
VariBench PON-P2 10 717, 13 063, 1108,

1605, 6144, 8661, 656,
1053

980, 5936, 93, 669,
786, 4522, 75, 518

(10)

Humsavar, VariBench SuSPect 18 633, 64 163 6874, 12 171 (83)
CMG, DDD, ClinVar, ExoVar, 1000 GP,
Hg19, Gencode, ESP6500

MAPPIN 64, 158, 3595, 15 702,
512 370, 51 599,
11 763, 1 048 544

27, 100, 961, 309, −,
3888, 10 035, −

(84)

Uniprot, 1000 GP, literature, VariBench,
ARIC study

Ensemble predictor 36 192, 238, 19 520,
7953, 33 511, 26 962

35 892, 237, 19 427,
7907, 33 305, 26 829

(85)

ClinVar PhD-SNPg 48 534, 1408 43 273, 1407 (86)
Multiple gene panel MVP 1161 10 (69)
ADME genes
LoF only ADME optimized 337, 180 43, 43 (68)
CinVar, NHGRI GWAS catalog,
COSMIC, VariSNP

PredictSNP2 25 480, 12 050,
142 722, 16 716,
71 674

9929, 5570, −, 5949,
19 702

(87)

Test datasets
HumVar, ExoVar, VariBench, predictSNP,
SwissVar

Circularity 40 389, 8850, 10 266,
16 098, 12 729

9250, 3612, 4203,
4456, 5057

(14)

ClinVar, literature, PredictSNP ACMG/AMP rules 14 819, 1442, 4667,
6931, 5379, 12 496,
14 819, 4192, 16 064,
10 308, 7766

1726, 75, 476, 1695,
1146, 1723, 1821, 656,
15 921, 4183, 1349

(51)

ClinVar, TP53, PPARG Performance
assessment

11 995 3717 (49)

UniProt Guideline
discordant/PRDIS

28 474, 336 730 2393, 2388 (52)

ESP6500, HGMD Compensated
pathogenic deviations

1964 685 (53)

Continued
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Table 1. Continued

Origin of data Dataset first used
for

Number of variants in
each dataset

Number of different
genes, transcripts or
proteins in each dataset

Reference

VariBench Representativeness 446 013, 23 671,
19 335, 19 459, 14 610,
17 623, 17 525, 14 647,
13 096, 13 069, 12 584,
1605, 1301, 8664,
7152, 1053, 751,
16 098, 10 266, 8850,
40 389, 21 151, 22 196,
75 042

53 850, 8762, 1190,
7816, 1100, 6047, 954,
5476, 884, 4998, 980,
546, 93, 3800, 786,
425, 75, 4456, 4201,
3612, 9250, 8791,
1852, 12 735

(6)

Structure mapped variants
PDB, UniProt PON-SC 349, 7795 62, 4574 (54)
3D 3D structure

analysis
374 334 (55)

LSDBs, literature, ClinVar Membrane proteins 2058 2019 (19)
Synonymous
ClinVar, GRASP, GWAS Catalog,
GWASdb, PolymiRTS, PubMed, Web of
Knowledge

dbDSM 2021 954 (88)

dbDSM, ClinVar, literature IDSV 600, 5331 493, 99 (89)
Benign
dbSNP VariSNP 446 013, 956 958,

470 473, 3802, 9285,
3402, 5277, 11 339,
588, 318 967,
1 804 501, 610 396,
25 930 776

19 597, 51 764, 19 618,
2972, 7242, 1056,
1542, 8444, 584,
48 018, 35 200, 39 531,
65 437

(2)

ExAX Assessment of
benign variants

63 197, 1302 37 148, 400 (18)

Effect-specific datasets
DNA regulatory elements
Ensembl Compara, 1000 GP Pathogenic

regulatory variants
42, 142, 153, 43, 65, 3,
5

19, 58, 72, 24, 3, 1, 3 (90)

OMIM, ClinVar, VarDi, GWAS Catalog,
HGMD, COSMIC, FANTOM5,
ENCODE

Regulatory variants 27 558, 20 963, 43 364 3826, 6653, 40 548 (91)

dbSNP, HGMP, HapMap, GWAS
Catalog

Regulatory elements 225, 241 910 66, 19 346 (92)

ENCODE, NIH Roadmap Epigenomics CAPE 7948, 4044, 2693, 51,
156, 56 497, 2029

4744, 3214, 1980, 48,
112, 43 676, 1568

(93)

Whole-genome sequences, GiaB,
HGMD, ClinVar

CDTS 15 741, 427, 10 979,
67 144 812,
34 687 974,
30 634 572,
31 893 124, 61 372 584

1862, 309, −, −, −, −,
−

(94)

Literature, OMIM, Epi4K TraP 402, 97, 103 64, 97, 102 (95)
HGMD, 1000GP, ClinVar ShapeGTP 4462, 1116 1362, 691 (96)
ClinVar, literature NCBoost 655, 6550, 770 612, 6380, 765 (97)
RNA splicing (1/1)
Literature, LSDBs, HGP DBASS3 and

DBASS5
307, 577 131, 166 (40, 41)

HGMD, SpliceDisease database, DBASS,
1000 GP

dbscSNV 2959, 45, 2025 2938, 2, 333 (21)

Experimental BRCA1 and BRCA2 13, 15, 33, 38, 35, 73 1, 1, 1, 1, 1, 1 (98)

Continued
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Table 1. Continued

Origin of data Dataset first used
for

Number of variants in
each dataset

Number of different
genes, transcripts or
proteins in each dataset

Reference

Ensembl, UCSC Genome Browser HumanSplicingFinder 424, 81, 15, 89 222, 6, 4, 8 (99)
HGMD MutPred Splice 2354, 638 452, 176 (100)
hg19, GenBank, dbSNP ASSEDA 41, 8, 12 14, 7, 11 (101)
Experimental RB1 3, 17, 13, 6 1, 1, 1, 1 (102)
Experimental LDLR 18, 18 1, 1 (103)
Experimental BRCA1 and BRCA2 6, 29, 6, 19 2, 2, 2, 1 (104)
Experimental, LSDBs BRCA1 and BRCA2 53, 4, 4, 6, 5 2, 2, 2, 2, 2 (105)
Experimental BRCA1 and BRCA2 24, 22, 13, 10, 10, 5, 11 2, 2, 2, 2, 2, 5, 2 (106)
Experimental Exon 1st nucleotide 25, 5, 9, 5, 5, 9, 30, 9 20, 5, 9, 20, 4, 7, 24, 7 (107)
ClinVar, 1000GP Splice site consensus

region
222, 50 138, 44 (108)

Protein aggregation (0/0)
WALTZ-DB, AmylHex, AmylFrag,
AGGRESCAN, TANGO

AmyLoad 1400 – (38)

Experimental WALTZ-DB 1089 140 (39)
Binding free energy
Literature, ASEdb, PIN, ABbind,
PROXiMATE, dbMPIKT

SKEMPI 2.0 7085 348 (42)

SKEMPI Flex ddG 1249 55 (109)
Protein disorder (0/0)
Literature PON-Diso 103 32 (16)
Protein solubility (0/0)
Literature PON-Sol 443 61 (17)
Protein stability (4/6)
Single variants
ProTherm PON-Tstab 1564 80 (30)
ProTherm I-Mutant2.0 2087, 1948 58, 64 (110)
ProTherm Average assignment 1791, 1396, 2204 70, 45, 89 (111)
ProTherm iPTREE-STAB 1859 64 (112)
ProTherm SVM-WIN31 and

SVM-3D12
1681, 1634, 499 58, 55, 34 (113)

ProTherm PoPMuSiC-2.0 2648 132 (114)
ProTherm sMMGB 1109 60 (115)
ProTherm M8 and M47 2760, 1810 75, 71 (116)
ProTherm EASE-MM 238, 1676, 543 25, 70, 55 (117)
ProTherm HoTMuSiC 1626 101 (118)

SAAFEC 1262, 983 49, 28 (119)
ProTherm STRUM 3421, 306 148, 32 (120)
ProTherm Metapredictor 605 58 (121)
ProTherm Automute 1962, 1925, 1749 77, 54, 64 (122)
TP53 TP53 42 1 (123)
ProTherm Ssym 684 15 (124)
ProTherm, experimental data, ASEdb Alanine scanning

for binding energy
768, 2971, 1005, 380,
2154

56, 119, 82, 19, 84 (125)

ProTherm Rosetta 1210 75 (126)
Double variants
ProTherm WET-STAB 180 28 (127)
Molecule-specific datasets (1/2)
InSiGHT PON-MMR2 178, 45 5, 5 (61)
Literature PON-mt-tRNA 145 22 (56)
BTKbase PON-BTK 152 1 (60)
Kin-Driver, ClinVar, Ensembl Kinact 384, 258 42, 23 (57)
Literature KinMutBase 1414 39 (43)

Continued
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Table 1. Continued

Origin of data Dataset first used
for

Number of variants in
each dataset

Number of different
genes, transcripts or
proteins in each dataset

Reference

COSMIC Kin-Driver 783, 648 43, 43 (44)
OMIM, KinMutBase, HGMD Protein kinases 1463, 999, 302 392, 49, 144 (59, 128)
UniProt, KinMutBase, SAAPdb,
COSMIC

wKin-Mut 865, 2627 447, 65 (58)

dbSNP, HGMD, COSMIC, literature PTENpred 676 1 (129)
UniProt, Humsavar Protein-specific

predictors
1 872 222 in 82 files 82 (12)

Literature SAVER 187 1 (130)
Literature, experimental, dbSNP, ExAC,
ESP

DPYD-Varifier 69, 295 1, 1 (131)

Experimental BRCA1/2 201, 68 2, 2 (132)
Experimental CFTR 20, 11 1, 1 (37)
CHAMP, literature HApredictor 1138 1 (133)
Humsavar MutaCYP 29, 285, 328 4, 15, 36 (134)
UniProt, HGMD, MutDB, dbSNP,
literature

KvSNP 1259, 176 87, 60 (135)

Disease-specific datasets (0/0)
Literature, TP53 database, ClinVar,
DoCM

Pan-cancer analysis 659, 65, 387 33, 60, 1 (64)

Literature, IARC TP53 Database, UMD
BRCA1 and BRCA2

Cancer 3706 15 (65)

ICGC, TCGA, Pediatric Cancer Genome
Project, dbSNP

Cancer 4690 17 (66)

Literature, LOVD, Inherited Arrhythmia
Database

Long QT syndrome 90, 82, 8, 81, 113, 99,
14, 58, 55, 52, 28, 24,
109, 101, 8, 312

1, 1, 1, 3, 1, 5, 1, 1, 1,
3, 2, 3, 1, 1, 1, 7

(62)

Experimental PolyPhen-HCM 74, 78 983 6, 6 (63)
Functional assays FASMIC 1049, 95, 40, 785, 21,

14, 35, 65, 22
93, 95, 38, 57, 6, 8, 14,
22, 9

(136)

Literature dbCPM 941 161 (45)
cBioPortal, COSMIC, MSK-IMPACT
cohort

OncoKB 4472 595 (47)

TCGA DoCM 1364 132 (46)
Phenotype dataset (0/0)
Literature, LSDBs PON-PS 2527, 401 83, 8 (36)

they are databases and as such easy to use directly and
updated by third parties. We excluded datasets used in
CAGI experiments, since they are available for registered
participants only. LSDBs were excluded because data from
these sources usually have to be manually selected before
using as benchmark. Most of the time, they do not con-
tain clear information for variant relevance to disease(s).
Datasets for structural genomic variants were excluded,
because they usually lack information about exact variation
positions.

Unfortunately, many papers, even those reporting on
benchmarking, do not contain and share the data, which
does not allow others to extend the analyses and reuse the
datasets.

Variation type datasets

Variation types include insertions and deletions, coding
and non-coding region substitutions, which are divided
into training and test datasets, structure mapped variants,
as well as synonymous, and benign variants. There are
now data from four amino acid insertion effect predictors,
mainly for short alterations. Only datasets added after the
release of the first version of VariBench are discussed here.
In Table 1 is shown how many datasets and publications in
each category appeared in the first edition.

Training datasets have mainly been used for devel-
opment of machine learning predictors, there are 17
new datasets. They typically also contain test sets. Six
test datasets have been specifically designed for method
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performance assessments. These include a set for address-
ing circularity (14) and pathogenicity/tolerance method
performance assessment (49). The American College
of Medical Genetics and Genomics (ACMG) and the
Association for Molecular Pathology (AMP) has published
guidelines for variant interpretation (50). These include
instructions for use of prediction methods. A dataset
was obtained for addressing concordance of prediction
methods (51). Another study addressed discordant cases
(52). Protein sequences of even closely related organisms
contain differences and some of these are compensated
variants where a disease-related variant in human is
normal in another organism due to additional alteration(s)
at other site(s). A dataset has been collected for such
variants (53). Unfortunately, only the benign variants were
made available. Analysis of the dataset representativeness,
how well the datasets represent the variation space, was
investigated for 24 datasets in VariBench and VariSNP (6).
These cases were mapped to reference sequence and are
now available in the database.

Variations are mapped into protein 3D structures in
several datasets. Dedicated datasets contain those used
for developing a method for predicting side-chain clashes
because of residue substitutions (54), analysis of effects on
structures and functions of substitutions (55) and investiga-
tion of variations in membrane proteins (19).

There are two datasets for synonymous variants as well
as two for benign ones.

Effect-specific datasets

These datasets are for various types of effects. On DNA
level there are eight sets for DNA regulatory elements, and
on RNA level 14 datasets for splicing. Most of the splicing
datasets are very small, but there are a few with substan-
tially larger numbers. In the first version of VariBench, there
were only protein stability datasets in this category, totally
six datasets from four studies.

Many more sets are available for effects on protein level.
Protein aggregation (two datasets), binding free energy (2),
disorder (1), solubility (1) and stability are the currently
available categories. Among protein stability datasets, there
are 22 new datasets for single variants, almost all originat-
ing from ProTherm, and one dataset for double variants.

Molecule-specific datasets

There are in VariBench 18 specific datasets for certain
molecules. There is a set of variants used to train PON-
mt-tRNA for substitutions affecting mitochondrial transfer
RNA (tRNA) molecules (56). This is of special interest as
there are 22 unique mitochondrial tRNAs that are impli-
cated in a number of diseases.

The other datasets are protein specific. Kinact (57),
Kin-Driver (44), KinMutBase (43), Kin-Mut (58) and the
protein kinase dataset (59) contain variation information
for protein kinases. The PON-BTK dataset was used to train
a predictor for protein kinase domain variants in Bruton
tyrosine kinase (BTK) (60). There is a set for mismatch
repair (MMR) proteins MLH1, MSH2, MSH6 and PMS2
and used to train PON-MMR2 (61).

Single amino acid substitutions were collected in 82 pro-
teins to test whether there is a difference in performance for
protein specific and generic predictors (12). All the datasets
contain at least ∼100 variants. The results indicated vast
differences in performances, the best generic predictors
outperforming the specific predictors in most but not all
cases.

The remaining datasets in this category are for variants
in individual genes/proteins.

Disease-specific datasets

This category contains totally nine datasets, six of which
are for cancer, one for long QT syndrome (62) and another
for hypertrophic cardiomyopathy (63).

Although there are numerous studies of cancer varia-
tions, the functional verification of the relevance of those
variants for the disease is usually missing. VariBench con-
tains three datasets for variants in cancer, which have been
experimentally tested (64–66), and links to three other
sources, namely dbCPM (45), DoCM (46) and OncoKB
(47). In addition, there is the FASMIC dataset for variants
that are largely cancer related (67).

Phenotype dataset

One dataset contains information for disease phenotype,
whether there is mild/moderate or severe disease due to
substitutions. This dataset was used to train disease severity
predictor called PON-PS (36).

Benchmark use case

VariBench datasets have mainly been used for prediction
method development and testing. As the benchmark studies
typically have not contained all the best performing tools,
we compared the performance of the variant tolerance/-
pathogenicity predictor PON-P2, since this tool has been
the best or among the best performing methods in a number
of previous investigations (10, 12, 18, 19, 52). The setup
was similar in all these studies to test the outcome of a spec-
trum of methods. We extended the published benchmark
studies by repeating the original analyses with PON-P2.
To avoid circularity, we first excluded from the datasets all
cases that had been used for training PON-P2. The results
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Table 2. Performance of PON-P2 on test datasets

Dataset TP FP TN FN Coverage PPV NPV Sens Spec Acca MCC OPM

MutationTaster2, ClinVar (5) 544 9 959 32 0.685 0.99 0.947 0.944 0.991 0.968 0.936 0.910
MutationTaster2 (5) 407 10 803 63 0.635 0.986 0.881 0.866 0.988 0.927 0.860 0.810
Circularity, PredictSNPSelected
(14)

5116 341 3173 590 0.623 0.940 0.770 0.900 0.860 0.880 0.730 0.606

Circularity, SwissVarSelected
(14)

1551 818 3194 773 0.557 0.650 0.810 0.670 0.800 0.750 0.460 0.325

ACMG/AMP, MetaSVM (51) 2588 364 2457 192 0.503 0.878 0.927 0.931 0.871 0.901 0.803 0.733
ACMG/AMP, ClinVar_balanced
(51)

841 136 608 69 0.455 0.835 0.915 0.924 0.817 0.871 0.746 0.666

ACMG/AMP,
VaribenchSelected_Tolerance
(51)

1727 171 2996 57 0.513 0.947 0.967 0.968 0.946 0.957 0.914 0.875

ACMG/AMP, predictSNPdsel
(51)

3752 317 3071 427 0.539 0.906 0.899 0.898 0.906 0.902 0.804 0.734

ACMG/AMP, ClinVar_Sep2016
(51)

1050 215 1726 102 0.514 0.892 0.909 0.911 0.889 0.900 0.801 0.729

ACMG/AMP,
Dominant_Recessive_Genes
(51)

1284 98 619 52 0.506 0.875 0.957 0.961 0.863 0.912 0.828 0.769

ACMG/AMP, Oncogenes_TSG
(51)

535 59 74 3 0.497 0.692 0.99 0.994 0.556 0.908
0.775(AN)

0.613 0.559

Variants in 3D structures (73) 5077 300 1060 266 0.337 0.812 0.94 0.95 0.779 0.865 0.741 0.676
ClinVar dataset (49) 1040 157 1200 169 0.541 0.881 0.864 0.86 0.884 0.872 0.745 0.664
TP53 dataset (49) 430 130 13 3 0.509 0.522 0.929 0.993 0.091 0.769

0.542(AN)
0.195 0.269

PPARG dataset (49) 131 1376 7 0 0.598 0.501 1.000 1.000 0.005 0.503 0.000 0.111
Cancer, functionally tested (65) 561 18 16 3 0.605 0.653 0.989 0.995 0.471 0.965

0.733(AN)
0.546 0.523

Cancer, non-COSMIC
functionally tested (65)

108 10 14 3 0.455 0.700 0.956 0.973 0.583 0.904
0.778(AN)

0.604 0.549

are shown in Table 2 and are reported according to the
published guidelines (32) and including some additional
measures.

The exercise indicated that reproducibility and reusabil-
ity could not be achieved in a number of cases due to
problems in reporting. We had to exclude some published
benchmark studies. The dataset for pharmacogenetics
variants (68) was too small for reliable estimation. The
paper for compensated variants (53) did not share the
disease-related variants, and thus could not be evaluated.
Of the dataset used by Qian et al. (69) only 36 cases were
not included to the PON-P2 training set, and therefore
the benchmark had to be excluded because of too small
size.

We were able to perform the analysis for six studies and
we analyzed altogether 17 datasets. Full comparison was
not possible in all cases as some details were not available.
Therefore, we discuss and compare the performances based
on the information in the original papers, but list all the
details from our study in Table 2.

For MutationTaster2 the published test data has not
been previously available due to being in a format that
prevents reuse of the data. MutationTaster 2 was originally
compared to five tools and versions (MutationTaster1,
PolyPhen humdiv and humvar, PROVEAN and SIFT) (5).
The accuracy and specificity are better for PON-P2 than the
scores for the six tested tools and sensitivity is the second
best. Only the measures given in the original article are
discussed in here.

The study of circularity problems in variant testing
was conducted on predictSNPSelected and SwissVarS-
elected datasets (14). The performance of PON-P2 is
superior compared to the eight tested predictors (Muta-
tionTaster2, PolyPhen, MutationAssessor, CADD, SIFT,
LRT, FatHMM-U, FatHMM-W, Gerp++ and phyloP).
In the test for predictSNPSelected dataset, NPV, PPV,
sensitivity, accuracy and MCC are the best for PON-
P2. Only for specificity, it is the second best predictor
with a margin of 1%. In the data for SwissVarSelected,
PON-P2 has the best score for PPV, accuracy and MCC.
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It is the second best for NPV and specificity, by 1–
2% margin to the best, and for sensitivity. On both
datasets, PON-P2 showed the most balanced perfor-
mances.

Twenty-five tools were tested according to ACMG/AMP
guidelines using several datasets (51). The compared
methods were REVEL, VEST3, MetaSVM, MetaLR,
hEAt, Condel, MutPred, Mcap, Eigen, CADD, PolyPhen2,
PROVEAN, SIFT, EA, MutationAssessor, MutationTaster,
phyloP100way, FATHMM, DANN, LRT, SiPhy, phast-
Const100way, GenoCanyon, GERP and Integrated_fitCons.
Unfortunately, the results were not comprehensively
reported. The paper contains data for AUC scores but they
are presented as figures. The exact values were difficult
to estimate, especially when results for 18 datasets were
combined into single figures. In the end, we performed the
test for eight of these datasets. In the ClinVar balanced
data the AUC of PON-P2 is either shared first or second,
and in VariBenchselected data it has the best performance.
Comparison for the six other datasets is not as reliable, but
we can summarize that the PON-P2 performance is among
the best if not the best for all of these. It is unfortunate that
exact numbers were not provided by the authors.

The performances of 23 methods (FATHMM, fit-
Cons, LRT, MutationAssessor, MutationTaster, PlyPhen
humdiv and humvar versions, PROVEAN, SIFT, VEST3,
GERP++, phastCons, phyloP, SiPhy, CADD, DANN,
Eigen, FATHMM-MKL, GenoCanyon, M-CAP, MetaLR,
MetaSVM and REVEL) were tested on three datasets:
ClinVar and two protein-specific sets for TP53 and PPARG
(49). They had also a fourth set for autism spectrum
diseases, but since there is no experimental evidence for
the relation of these variations to the disease, that set was
excluded. Although the study was well performed and
described, it seems that the authors have not corrected
for class imbalance. For the methods to be comparable the
measures should be calculated based on the same data and
have equal numbers of positive and negative cases. If that
is not the case, the imbalance has to be mitigated with one
of the available solutions. Some of the other benchmark
studies may suffer from the same problem, but we are not
sure due to incomplete descriptions of the studies. None
of the tools can predict all possible variations and thus
they have predictions for different numbers. Therefore we
present the results both for non-normalized and normalized
data. We believe that the former was used by the authors.
In the case of ClinVar data, PON-P2 has better PPV,
accuracy and MCC than the other methods tested in the
paper.

In the case of TP53 data, the PON-P2 accuracy is second
best when the data are not normalized; on other mea-
sures, PON-P2 is ranked the fourth or worse. All cancer

variants, such as those in TP53, were excluded from the
PON-P2 training data. This was done because the effects
of variations in cancers usually have not been experi-
mentally verified. A variant in TP53 is not ‘pathogenic’
alone, several variants in different proteins are needed for
cancer.

All the predictors are known to have variable perfor-
mance depending on the tested protein, see the study of
protein-specific predictors (12); this study showed that
PON-P2 had better performance for 85% of proteins, being
the best of the five tested tools (PolyPhen-2, SIFT, PON-
P2, MutationTaster2, CADD). PPARG seems to be another
example for which PON-P2 has poor performance (49). An
additional reason for poor performance may be that the
PPARG data is not for pathogenicity, instead it is a ‘function
score’ that is based on the distribution of FACS sorted cells
(70). The same applies to the TP53 test data which is based
on the protein function, not pathogenicity. Depending on
a protein, the threshold for phenotype can be anything
between 1% and 85% of the wild type activity (Vihinen, in
preparation). We have previously tested PON-P2 in protein
function prediction but with poor (71) or mixed (72) out-
come. This is because the method has not been trained and
intended for this task. These results indicate the importance
of applying computational tools to their intended purpose
or at least testing the performance carefully before applied
to new tasks.

Another study tested the performance of 14 tools
(SEQ + DYN, SEQ, DYN, MutationTaster2, PolyPhen2,
MutationAssessor, CADD, SIFT, LRT, FATHMM-U,
Gerp++, phyloP, Condel and Logit) in relation to structural
dynamics, which was used as a proxy for functional
significance of amino acid substitutions (73). PON-P2
has the best sensitivity, specificity, NPV and MMC, it is
the second best for accuracy but only 13th for PPV. The
explanation for the latter observation is that many of the
tested tools are severely biased, having very high PPV but
very low NPV, whereas the performance of PON-P2 was
again balanced over all the measures.

The exercise indicated that it is possible to compare
predictors to published results based on exactly the same
datasets. The new performance results for PON-P2 are in
line with several previously published studies that have
indicated the method to be a top performer on differ-
ent benchmarks (10, 12, 18, 19, 52). When choosing a
method(s), one should look at consistent performance over
several benchmarks.

Full comparisons were not always possible because of
incomplete performance assessments. Therefore, authors
should meticulously describe all details and procedures in
the data analysis as well as share the datasets used. Even
if the data is taken from public sources, it is not possible
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for others to obtain exactly the same dataset as used in
the papers even when applying the same selection criteria,
as some important aspects seem always to be missing.
In summary, it was possible to compare performances for
methods not included into original studies. This is impor-
tant in many ways and contributes toward increased repro-
ducibility and comparability. Good datasets are difficult to
obtain, therefore VariBench will serve as a hub for sharing
these important data.
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