
biomedicines

Article

MicroRNA-138 Increases Chemo-Sensitivity of Glioblastoma
through Downregulation of Survivin

Ji-Young Yoo 1, Margaret Yeh 1, Yin-Ying Wang 2, Christina Oh 3, Zhong-Ming Zhao 2,4 , Balveen Kaur 1

and Tae-Jin Lee 1,*

����������
�������

Citation: Yoo, J.-Y.; Yeh, M.; Wang,

Y.-Y.; Oh, C.; Zhao, Z.-M.; Kaur, B.;

Lee, T.-J. MicroRNA-138 Increases

Chemo-Sensitivity of Glioblastoma

through Downregulation of Survivin.

Biomedicines 2021, 9, 780. https://

doi.org/10.3390/biomedicines9070780

Academic Editors: Francesca Lovat

and Mike-Andrew Westhoff

Received: 29 April 2021

Accepted: 2 July 2021

Published: 6 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at
Houston, Houston, TX 77030, USA; Ji.Young.Yoo@uth.tmc.edu (J.-Y.Y.); Margaret.Yeh@uth.tmc.edu (M.Y.);
Balveen.Kaur@uth.tmc.edu (B.K.)

2 Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center
at Houston, Houston, TX 77030, USA; yingxiao8958@gmail.com (Y.-Y.W.);
Zhongming.Zhao@uth.tmc.edu (Z.-M.Z.)

3 Department of Biosciences, Rice University, Houston, TX 77005, USA; chrissooh@gmail.com
4 Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston,

Houston, TX 77030, USA
* Correspondence: Tae.Jin.Lee@uth.tmc.edu

Abstract: Glioblastoma (GBM) is one of the most deadly cancers and poorly responses to chemother-
apies, such as temozolomide (TMZ). Dysregulation of intrinsic signaling pathways in cancer cells
are often resulted by dysregulated tumor suppressive microRNAs (miRNAs). Previously, we found
miR-138 as one of tumor suppressive miRNAs that were significantly down-regulated in GBM. In
this study, we demonstrated that ectopic over-expression of miR-138 sensitizes GBM cells to the
treatment of TMZ and increased apoptotic cell death. Mechanistically, miR-138 directly repressed
the expression of Survivin, an anti-apoptotic protein, to enhance caspase-induced apoptosis upon
TMZ treatment. Using an intracranial GBM xenograft mice model, we also showed that combination
of miR-138 with TMZ increases survival rates of the mice compared to the control mice treated
with TMZ alone. This study provides strong preclinical evidence of the therapeutic benefit from
restoration of miR-138 to sensitize the GBM tumor to conventional chemotherapy.
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1. Introduction

Glioblastoma (GBM) is one of the most aggressive and lethal form of brain tumors [1].
Current treatment options, such as surgical resection, radiation, chemotherapy with temo-
zolomide (TMZ), tumor-treating fields (TTFields) or their combination, only results in
around 20 months of a median overall survival (OS) in patients [2]. Recurrence of GBM is
nearly universal, and salvage therapies to impede further progression are ineffective [3].
Co-extinction strategies using multiple small molecule or antibody-based agents, how-
ever, are often hampered by drug-drug interactions, systemic toxicity due to pronounced
off-target effects, and drug resistance. TMZ, a DNA alkylating agent, has become the
standard chemodrug for GBM treatment [4]. However, therapeutic benefit from TMZ
treatment is often modest in GBM patients. Rather, it only extends the long-term survival
rates by a few months due to low concentration of TMZ accumulated in tumor cells and
suppressed apoptosis. Major side effects of TMZ includes lymphopenia and non-specific
toxicity [4]. Although TMZ is the FDA-approved chemotherapeutic option for primary
GBM patients, the therapeutic benefit of TMZ needs to be further improved due to the
poor response in GBM patients in current clinical settings. To overcome these limitations of
TMZ for the treatment of GBM patients, tumor cells need to be sensitized to TMZ through
reprogramming TMZ-related gene expressions.
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MicroRNAs (miRNAs) have been implicated in many types of human cancers for
their distinct role during the development, progression and metastasis [5]. Restoring
tumor suppressive miRNAs in cancer cells has been proposed as one of potential ther-
apeutic strategies as they can efficiently reprogram the aberrantly dysregulated cancer
gene networks [6]. In the previous miRNA expression profiles obtained from small RNA
sequencing on human GBM patient samples, we identified miR-138 as one of the most
significantly down-regulated miRNAs in GBM [7]. In many studies, inhibition of Survivin,
expressed from a gene BIRC5, expression was shown to enhance chemo-sensitivity of
GBM to TMZ [8–11]. In addition, it was suggested that miR-138 directly down-regulates
Survivin in certain types of cancers, such as bladder cancer, thoracic cancer and lung
adenocarcinoma [12–14]. Therefore, we tested the hypothesis that miR-138 can increase the
sensitivity of GBM cells to TMZ through the suppression of Survivin.

We observed that miR-138 over-expression sensitizes GBM cells to TMZ treatment
with increased apoptotic cell death. Ectopic restoration of miR-138 negatively modulated
the expression of Survivin in GBM cells leading to the increased survival rate in orthotopic
GBM xenograft mouse model. We also observed that miR-138 directly regulates Survivin
expression by binding to the 3′ UTR of BIRC5 mRNA. Our data strongly suggest that the
inhibition of Survivin through the restoration of miR-138 can benefit therapeutic outcomes
from GBM patients in clinical settings.

2. Materials and Methods
2.1. Cells and Cell Cultures

Patient-derived de-identified primary GBM cells (GBM12, GBM28, and GBM43) were
kindly provided by Dr. Jann N. Sarkaria (Mayo Clinic, Rochester, MN, USA), and their use
was approved by The University of Texas Health Science Center at Houston (UTHealth,
Houston) Institutional Review Board (IRB). The patient-derived primary GBM cells were
maintained as tumor spheres in neurobasal medium supplemented with 2% B27 without
vitamin A, human EGF (20 ng/mL), and basic FGF (20 ng/mL) in low-attachment cell
culture flasks. All cell cultures were maintained at 37 ◦C in a humidified atmosphere with
5% carbon dioxide (CO2). All cells were routinely monitored for morphology changes and
mycoplasma contamination, and authenticated by Short Tandem Repeat (STR) analysis at
the University of Arizona Genetics Core.

2.2. Cell Proliferation Assay

Patient-derived primary GBM cells were plated in 6-well plates at density of 5 × 105

cells per well in DMEM/F12 containing 2% FBS, 2% B27 without vitamin A, human EGF
(20 ng/mL), and basic FGF (20 ng/mL) without antibiotics. The cells were transiently
transfected with miR-138 mimics (Dharmacon miRIDIAN microRNA Mimics, Horizon Dis-
covery, USA) or negative control mimics after pre-incubated with Lipofectamine RNAiMAX
transfection reagent (Invitrogen, Thermo Fisher Scientific, USA) by following the manufac-
turer’s manual. Then the cells were incubated at 37 ◦C in a humidified atmosphere with
5% carbon dioxide (CO2). Four days later, each well was treated with equal volume of
CellTiter-Glo Luminescent Cell Viability Assay. After 10 min of incubation, the plate was
examined by Synergy H1 multi-mode microplate reader (BioTek Instruments, USA) for the
luminescence intensity, which is proportional to the number of live cells.

For live cell proliferation imaging, engineered GBM12 cells expressing red fluores-
cence protein (GBM12-RFP) was transiently transfected with miR-138 mimics as described
above. The cells were then treated with TMZ (Sigma-Aldrich, St. Louis, MO, USA)
at the final concentration of 10 µM for GBM12 and GBM43, while 50 µM for GBM28
(Supplementary Figure S1). Using Cytation-5 Live Cell Imaging System (BioTek Instru-
ments, Winooski, VT, USA), the live cells were imaged every four hours by visualizing
fluorescence intensity from the RFP-positive GBM12-RFP cells with excitation at 532 nm
and emission at 588 nm.
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2.3. Apoptosis Analysis

GBM cells were transfected with miR-138 mimics or miR-Ctrl as described above in
6 well plates in the presence of 10 µM TMZ or DMSO. After four days of transfection, the
GBM cells were stained with FITC-Annexin V/PI Apoptosis Detection Kit (BD Biosciences,
San Diego, CA, USA) according to the manufacturer’s manual, and subjected to flow
cytometry by Beckman CytoFLEX Flow Cytometer (Beckman Coulter, Indianapolis, IN,
USA). The obtained flow cytometry data was analyzed with FlowJo version 10 software
(BD Biosciences, San Diego, CA, USA). Only Annexin V-positive cells were considered to
be apoptotic cell populations.

2.4. Western Blotting

GBM cells harvested from in vitro or GBM tumor from in vivo studies were denatured
in RIPA buffer (Pierce Biotechnology, Waltham, MA, USA). The cell lysates were fraction-
ated by 4–20% Criterion TGX SDS-PAGE Pre-cast gels (Bio-Rad, Hercules, CA, USA), then
transferred to 0.45 µm Amersham Protran nitrocellulose (NC) membranes (Sigma-Aldrich,
St. Louis, MO, USA). After blocking with 5% BSA-containing TBS blocking buffer, the NC
membranes were probed with primary antibodies diluted at 1:1000 against Survivin, p-
H2AX, cleaved Caspase-3, cleaved PARP, or GAPDH (Cell Signaling Technology, Waltham,
MA, USA) followed by further incubation with HRP-conjugated secondary antibodies
(GE Healthcare, Piscataway, NJ, USA). The immuno-reactive bands were visualized using
enhanced chemiluminescence (ECL) (GE Healthcare, Piscataway, NJ, USA) by Chemi-Doc
gel imaging system (Bio-Rad, Hercules, CA, USA).

2.5. Dual Luciferase Reporter Assay

Firefly/Renilla Duo-Luciferase reporter vector expressing the 3′ UTR clone of human
BIRC5 containing a putative binding site of miR-138 was purchased from GeneCopoeia,
USA. A mutation was introduced into the putative miR-138 binding site by replacing
adenines and guanosines within the seed sequences to cytosines using site-directed muta-
genesis kit (GenScript, New Jersey, NJ, USA). The plasmid DNAs were amplified from E.coli
were, then purified by DNA Maxi kit (Qiagen, Germantown, MD, USA). GBM cells plated
in 12 well plates one day before were transfected with 1 µg of BIRC5 3′ UTR reporter DNA,
or BIRC5-Mut DNA in Lipofectamine 3000 (Invitrogen, Thermo Fisher, USA). Next day, the
cells were further transfected with miR-138 or miR-Ctrl as described above. After 48 h post
transfection, the cells were lysed with Passive Lysis Buffer (Promega, Madison, WI, USA)
and assayed with Dual Luciferase Assay kit (Promega, Madison, WI, USA) according to
the manufacturer’s instruction.

2.6. Animal Studies

Six to eight weeks old NSG mice (NOD-scid IL2Rgamma-null) (Jackson Laboratory,
Bar Harbor, ME, USA) were housed and handled in accordance with the guideline of
UTHealth Center for Laboratory Animal Medicine and Care (CLAMC) and the animal
protocols approved by the UTHealth Animal Welfare Committee (AWC). Intracranial
glioblastoma xenograft was generated in the NSG mice by implanting GBM cells as previ-
ously described [15,16].

For in vivo survival studies, GBM28 cells were stably transduced with human pre-
miRNA Expression Lenti-miR Vector containing the full-length miR-138 and green fluores-
cent protein (GFP) gene (System Biosciences, Palo Alto, CA, USA). Human pre-miRNA
Scramble Negative Control Expression Lenti Vector plasmid was used as a control. Pre-
miR-138 and negative control vector plasmids were packaged with pPACKH1 Lentivector
Packaging Kit (System Biosciences, Palo Alto, CA, USA) in HEK293TN packaging cells
according to the manufacturer’s manual. The transduced GBM cells were sorted by FACS
analysis (FACSCalibur, BD Biosciences, San Diego, CA, USA) to select GFP-positive cell
population containing pre-miRNA. The expression of miR-138 in the sorted cells was fur-
ther confirmed by quantitative real-time PCR with TaqMan miRNA Expression kit (Applied
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Biosystems, Thermo Fisher Scientific, Waltham, MA, USA). Total of 5 × 105 GBM28 cells
were implanted into seven NSG mice brain for each group. The mice were daily treated
with 10 mg/kg of TMZ on days 10–14 post tumor implant via oral gavage.

For western analysis, tumor tissues from the mice brain were harvested after three
weeks from the intracranial implantation, and snap frozen in liquid nitrogen. For histologi-
cal analysis, the harvested tumor tissues were fixed in 4% PBS-saturated formaldehyde. The
fixed tissues were embedded in paraffin and sectioned at 5 µm thickness. Representative
sections from each group were stained with Survivin or Ki67 antibodies (Cell Signaling,
USA) by immunohistochemistry (IHC).

2.7. Statistical Analysis

All statistics was analyzed with GraphPad Prism 7 software (GraphPad Software,
San Diego, CA, USA). Data were analyzed using unpaired, two-tailed t-tests for the compar-
ison of the difference between two groups. Kaplan–Meier survival curves were compared
by using the log-rank test. Statistical significance was determined by p-value lower than
0.05. Data variations in a group were expressed as mean ± SD (standard deviation).

3. Results
3.1. miR-138 Sensitizes GBM to Chemotherapeutic Drug Temozolomide

Previously, we reported that ectopic expression of miR-138 in GBM patient-derived
primary cells (GBM 12, 28 and 43) abolishes their cell growth, demonstrating the tumor
suppressive potential of miR-138 in GBM [7]. To assess an impact of miR-138 overexpression
on chemo-sensitivity in GBM cells, three GBM cells (GBM12, 28 and 43) were transiently
transfected with 25 nM of miR-138 mimics in the presence or absence of TMZ (10 µM
for GBM12 and GBM43; 10 µM for GBM28; Supplementary Figure S1) in comparison to
scrambled negative control (miR-Ctrl). After 4 days from the transfection, all GBM cells
transfected with miR-138 showed significant level of sensitivity to TMZ in comparison to
of the cells treated with miR-138 alone (GBM12, p = 0.002; GBM28, p = 0.0001; and GBM43,
p = 0.0002) (Figure 1). However, GBM cells treated with miR-Ctrl showed no (GBM12,
p = 0.070; and GBM43, p = 0.521) or little sensitivity (GBM28, p = 0.017) to the treatment
of TMZ (Figure 1). The results indicates that the combination of TMZ with miR-138
overexpression increases chemo-sensitivity of GBM cells. Using GBM12-RFP, engineered
GBM12 cells to express red fluorescence protein, the cell growth was monitored by live cell
imaging for over 4 days after treatment with 25 nM of miRNA and 10 µM of TMZ. Transient
transfection of miR-138 mimics significantly inhibited the proliferation of GBM12-RFP cells
after 48 h post transfection, in accordance to the previous report [7]. The combination of
miR-138 overexpression with TMZ inhibited cell proliferation at more significant level than
miR-138 alone (Figure 2A). In the same experiment, GBM12-RFP cells treated with miR-Ctrl
with or without TMZ did not decrease the cell growth at significant level (Figure 2A). When
the cells were subjected to flow cytometry analysis after stained with Annexin V-PI double
staining, the GBM cells co-treated with 25 nM of miRNA and 10 µM of TMZ presented
nearly twice apoptotic cells (62.6 ± 0.3%) compared to miR-138 (32.9 ± 0.3%) or TMZ
alone (32.0 ± 0.3%) (Figure 2B,C, p < 0.001). All of these in vitro experimental data clearly
demonstrated that combination of TMZ with miR-138 over-expression can increase the
cytotoxicity of TMZ in GBM cells.
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Figure 1. Combination of TMZ with miR-138 over-expression increases inhibition of cell prolifera-
tion in vitro. Patient-derived primary GBM cells, (A) GBM12, (B) GBM28 and (C) GBM43), were 
transfected with miR-138 mimics or negative control (miR-Ctrl). After 4 days of transfection, viable 
cells were measured by CellTiter-Glo Luminescent Cell Viability Assay. All error bars indicates 
standard deviations (n = 3), and the p-values were determined by two-tailed student t-test. * p  <  
0.05, *** p  <  0.001, n.s = not significant. 

 
Figure 2. Over-expression of miR-138 combined with TMZ inhibits cell proliferation and increases 
apoptosis in vitro. (A) Cell proliferation analysis by fluorescence live cell imaging every four hours 
on GBM12-RFP cells after transfection of 25 nM miR-138 or miR-Ctrl. Left, the plot shows live cells 
imaged every 4 h to detect fluorescence intensity; Right, representative fluorescence images of 
GBM12-RFP cells at 96 hrs after the treatment of miRNA and TMZ. Scale bars indicate 100 µm. (B) 
Apoptosis analysis on GBM28 cells after transfection of 25 nM miR-138 or miR-Ctrl followed by 
Annexin V-PI double staining for flow cytometry. The scale bar indicates 100 µm. (C) Annexin V-
positive cell population was considered to be apoptotic cells from cytograms. All error bars indicates 
standard deviations (n = 3), and the p-values were determined by two-tailed student t-test. *** p < 
0.001. 

Figure 1. Combination of TMZ with miR-138 over-expression increases inhibition of cell prolifer-
ation in vitro. Patient-derived primary GBM cells, (A) GBM12, (B) GBM28 and (C) GBM43, were
transfected with miR-138 mimics or negative control (miR-Ctrl). After 4 days of transfection, viable
cells were measured by CellTiter-Glo Luminescent Cell Viability Assay. All error bars indicates
standard deviations (n = 3), and the p-values were determined by two-tailed student t-test. * p < 0.05,
*** p < 0.001, n.s = not significant.
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Figure 2. Over-expression of miR-138 combined with TMZ inhibits cell proliferation and increases
apoptosis in vitro. (A) Cell proliferation analysis by fluorescence live cell imaging every four hours
on GBM12-RFP cells after transfection of 25 nM miR-138 or miR-Ctrl. Left, the plot shows live
cells imaged every 4 h to detect fluorescence intensity; Right, representative fluorescence images
of GBM12-RFP cells at 96 h after the treatment of miRNA and TMZ. Scale bars indicate 100 µm.
(B) Apoptosis analysis on GBM28 cells after transfection of 25 nM miR-138 or miR-Ctrl followed
by Annexin V-PI double staining for flow cytometry. The scale bar indicates 100 µm. (C) Annexin
V-positive cell population was considered to be apoptotic cells from cytograms. All error bars
indicates standard deviations (n = 3), and the p-values were determined by two-tailed student t-test.
*** p < 0.001.
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3.2. BICR5 Is Downregulated in Glioblastoma

To unveil the molecular mechanism behind the synergistic combination between TMZ
and miR-138 overexpression, TCGA database was mined for the correlation of expres-
sions between miR-138 and BIRC5. Compared to the RNA expression in normal tissues
(53.24 ± 104.6, n = 10), mRNA expression of BIRC5 was up-regulated in most types of
glioma patients: classical (120.7 ± 64.42, n = 52); mesenchymal (130.0 ± 110.6, n = 58);
neural (186.7 ± 154.8, n = 30); and proneural (289.6 ± 228.4, n = 56) (Figure 3A). In contrast,
the expression level of miR-138 was significantly lower in the most types of glioma patients:
classical (35.32 ± 35.44, n = 52); mesenchymal (32.81 ± 32.53, n = 58); neural (63.04 ± 71.26,
n = 30); and proneural (82.1 ± 68.13, n = 56), compared to normal tissues (417.3 ± 126.4,
n = 10) (Figure 3B). When the expression levels of miR-138 and BIRC5 were compared
in each type of glioma, it was inversely correlated in all types of glioma at significant
level (Figure 3C). These results indicate that miR-138 is down-regulated in glioma at an
inverse correlation with BIRC5. In addition, the gene set enrichment analysis (GSEA) anal-
ysis on RNA-seq data obtained from human GBM patient samples (NCBI GEO database
GSE165286 [7]) revealed that the genes participating in the pathways “negatively regulating
DNA damage stimulus response” (NES: 1.85, FDR: 0.004) (Supplementary Figure S2) and
“negatively regulating apoptosis” (NES: 1.90, FDR: 0.002) (Supplementary Figure S3) were
highly expressed in GBM, implying the involvement of Survivin during the insensitivity of
GBM to DNA damaging agent, such as TMZ.
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Figure 3. The Cancer Genome Atlas Program (TCGA) database shows inverse correlation between BRIC5 and miR-138
in their expression. (A) BIRC5 expression is up-regulated, while (B) miR-138 expression is down-regulated in most types
of glioma compared to that of normal tissues. (C) Direct comparison between BIRC5 and miR-138 clearly reveals inverse
correlation in all types of glioma compared to normal tissues. All error bars indicates standard deviations, and Student
t-test was used to determine the significance in difference between the two groups. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Survivin Is a Direct Target of miR-138

The inverse correlation between the expression of miR-138 and BIRC5 suggests a
possibility that miR-138 directly target BIRC5. In western blotting on GBM cell lysates,
transient overexpression of miR-138 showed a significant reduction of the Survivin expres-
sion compared to GBM cells treated with miR-Ctrl (GBM12, 28 and 43) (Figure 4A). Target
gene repression by miRNAs is mediated through a direct binding of miRNA to the 3′ UTR
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of target gene mRNA. Bioinformatics prediction software search (TargetScan, version 7.2
(Released March 2018): http://www.targetscan.org/vert_72/, accessed on 20 June 2020)
revealed that the 3′ UTR region of human BIRC5 contains a putative binding site matched
with the seed sequence of miR-138-5p (Figure 4B) [13]. A luciferase vector plasmid was
constructed to contain the 3′ UTR sequence of human BIRC5 to carry out dual luciferase re-
porter assay. Additional luciferase reporter vector was also constructed to contain mutated
seed sequences within the putative miR-138 binding sites (BIRC5-Mut) (Figure 4B). GBM
cells (GBM12, 28 and 43 cells) were co-transfected with miR-138 mimics and the luciferase
reporter vector plasmids. Luciferase activity was significantly decreased by miR-138 in
all three GBM cells transfected with wild type BIRC5 3′ UTR (GBM12, p = 0.002; GBM28,
p = 0.00003; and GBM43, p = 0.0005) (Figure 4C). However, the reduction of luciferase
activity was not observed in the GBM cells transfected with BIRC5-Mut plasmids (GBM12,
p = 0.02; GBM28, p = 0.94; and GBM43, p = 0.92) (Figure 4C), indicating that the direct
interaction between miR-138 and the 3′ UTR region of BIRC5 was responsible for the
reduction of luciferase activity with sequence specific manner. Our data clearly showed
that BIRC5 is a direct target of miR-138, which down-regulates the expression of Survivin
through direct binding to the 3′ UTR region of BICR5.
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Figure 4. miR-138 negatively regulates the expression of Survivin through direct targeting its 3′ UTR.
(A) Western blotting on GBM cells (GBM12, GBM28 and GBM43) with transient overexpression of
miR-138. The protein expression levels of Survivin were significantly decreased by imR-138 compared
to miR-Ctrl treated GBM cells. Relative fold change of Survivin expression by miR-138 or miR-Ctrl
was compared to the No miR control in each cell. (B) Schematic diagram of 3′ UTR sequences of
Survivin containing a predicted miR-138 binding site (red letters). BIRC5-Mut construct contains the
mutated sequences in the seed regions (blue letters). (C) Luciferase reporter assays for direct binding
of miR-138 to the 3′ UTR of BIRC5. GBM cells were co-transfected with miR-138 and the luciferase
reporter plasmid DNA containing BIRC5 3′ UTR, or BIRC5-Mut sequences respectively. The cells
were further treated with TMZ for 4 days, and the repression of luciferase activity by miR-138 was
analyzed by Dual Luciferase Assay kit. The relative luciferase activity values were normalized to
Renilla luciferase activity as internal control. All error bars indicates standard deviations (n = 3), and
the p-values were determined by two-tailed student t-test. * p < 0.05, *** p < 0.001, n.s = not significant.
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3.4. Ectopic Expression of miR-138 Improves Survival Rates in Intracranial Tumor Bearing Mice

To evaluate the preclinical impact of miR-138 on the resistance of GBM tumors to
TMZ, intracranial GBM tumor was induced in NSG mice by implanting GBM28 cells after
transduced with either miR-138 or miR-Ctrl. GBM28 was chosen to test, since it was
relatively more resistant to TMZ than GBM12 or GBM43 cells (Supplementary Figure S1).
From day 10 to 14 post the tumor implantation, the mice were daily treated with TMZ.
Kaplan–Meier survival curves showed that the combination treatment of TMZ with miR-
138 significantly increased survival rates of the GBM-bearing mice (median survival of 77
days) compared to that of mice treated with TMZ and miR-Ctrl (median survival of 56
days, p = 0.0076) or DMSO alone (median survival of 34 days, p = 0.003) (Figure 5A). From
western blotting analysis on the harvested mice GBM tumor, it was confirmed that the
expression of Survivin was lowered by miR-138 overexpression (Figure 5B). Conversely,
miR-138 overexpression elevated the expression levels of cleaved Caspase-3 and cleaved
PARP as an indicative of apoptosis in the TMZ-treated mice brain (Figure 5B). However,
miR-Ctrl did not significantly alter the TMZ-induced activation of those apoptosis effectors
compared to no-miR controls (Figure 5B). IHC staining on the mice GBM tumor tissues also
revealed the down-regulation of Survivin expression while increased expression of Ki67
was observed by miR-138 restoration (Figure 5C). All of these results clearly demonstrated
that miR-138 restoration sensitizes GBM cells to TMZ by inducing apoptotic cell death
through the direct repression of Survivin.
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Figure 5. Sensitization of GBM cells by miR-138 reduces tumorigenicity in orthotopic in vivo model. (A) Mouse survival
Kaplan-Meier survival curve for mouse survival rates. Intracranial xenograft tumor was induced by implanting GBM cells
transduced with miR-138 or miR-Ctrl expressing lentiviruses. (B) Mice brain tumor tissues were harvested subjected to
western blotting to show the expression levels of Survivin. Expression of cleaved Caspase-3 and cleaved PARP was detected
to show activation of apoptosis. Phosphorylated H2AX (p-H2AX) was used as an indicator for the DNA damage activity
of TMZ. (C) Representative immunohistochemistry staining images of mice brain tumor tissue sections for the change of
Survivin expression by miR-138. Ki76 was stained for cell proliferation. Scale bars indicate 100 µm.

4. Discussion

This study aimed to identify a role of putative tumor suppressive miR-138 during
chemo-resistance of GBM. As discussed earlier, we have found from recent RNA-seq
on human GBM patient samples that miR-138 can play a tumor suppressive role when
overexpressed in GBM cells and extend survival rates in GBM mice model systems [7]. The
finding was in accordance with many previous studies as shown that an overexpression of
miR-138 can suppress cell proliferation, metastatic ability and drug resistance of cancer
cells in many types of cancers [17–19].

For many years, activation of Survivin has been implicated in human cancers including
GBM and responsible for inactivation of Caspase pathway. Survivin is a pro-survival
oncogene that is highly overexpressed in cancer cells and inhibits caspase activation to
block an induction of apoptosis [20,21]. In addition, miR-138 was previously shown to
directly target Survivin in bladder cancer and esophageal cancer [13,14]. We recognized an
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inverse correlation in the expression between miR-138 and BIRC5 in all types of glioma.
Our data also showed that miR-138 overexpression sensitizes GBM cells to TMZ through
direct down-regulation of Survivin by binding to its 3′ UTR. Our study results clearly
indicate a strong rationale of combination of miR-138 over-expression with TMZ treatment
for therapeutic benefit in GBM patients. Interestingly, it was reported that miR-138 can
educate CD4+ T cells by down-regulating two immune checkpoints, programmed cell
death 1 (PD-1) and cytotoxic T-lymphocyte-associated molecule 4 (CTLA-4), which resulted
in 43% increase of survival rates in GBM mice models [22]. It can be also expected to
observe increased tumor mutation burden (TMB) through TMZ-mediated DNA damages
in the sensitized tumor, which will result an increase of neoantigen formations to further
activate immune response [23]. Therefore, it will be intriguing to combine the TMZ
treatment with T cell activity by single tumor suppressor, miR-138, for synergistic anti-
tumor effect. For future translation into human clinical trials, miR-138 needs to be efficiently
delivered into GBM cells by distinguishing adjacent normal cells. Recently advanced RNA
nanotechnology will be useful to test the challenging task [24,25]. The RNA-driven small
RNA delivery system has shown the preclinical potential for successful targeted delivery
of cargo RNAs into brain tumor cells across BBB via folate (FA)-mediated folate receptor
(FR) recognition on tumor cells [15,16,26].

In contrast, a compelling result was reported that miR-138 may act as an oncogenic
miRNA and increase TMZ resistance in glioma [27]. They demonstrated that an ectopic
expression of miR-138 promoted TMZ resistance by targeting apoptosis regulator BIM.
Their observation was obtained from long term-established glioma cell lines, which may
display different characteristics from the patient-derived primary GBM cells that were
used for this study. Therefore further study will need to clarify the role of miR-138 in TMZ
resistance, and whose GBM patients will benefit from the restoration of miR-138.

5. Conclusions

We report that putative tumor suppressive miRNA, miR-138, can sensitize GBM tumor
by negatively modulating Survivin. The results strongly demonstrated the therapeutic
potential of miR-138 for primary GBM tumor by itself or through a combination with TMZ,
which needs to be further assessed through future clinical trials.
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