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Abstract

Dendritic cells (Dc) are the initiators and modulators
of  the immune responses. Some species of  pathogen-
ic microorganisms have developed immune evasion
strategies by controlling antigen presentation function
of  Dc. Simian virus 40 (SV40) is a Dna tumor virus
of  rhesus monkey origin. It can induce cell transfor-
mation and tumorigenesis in many vertebrate species,
but often causes no visible effects and persists as a la-
tent infection in rhesus monkeys under natural condi-
tions. to investigate the interaction between SV40
and rhesus monkey Dc, rhesus monkey peripheral
blood monocyte-derived Dc were induced using re-
combinant human Interleukin-4 (rhIl-4) and infective
SV40, the phenotype and function of  Dc-specific in-
tracellular adhesion molecule-3 grabbing nonintegrin
(Dc-SIGn)+ Dc were analyzed by flow cytometry
(fcM) and mixed lymphocyte reaction (MlR). Re-
sults showed that SV40 can down-regulate the expres-
sion of  cD83 and cD86 on Dc and impair Dc-in-
duced activation of  t cell proliferation. these find-
ings suggest that SV40 might also cause immune sup-
pression by influencing differentiation and maturation
of  Dc.
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1. IntRoDuctIon

Dendritic cells (Dc) are the most prominent antigen
presenting cells which play a pivotal role in the orches-
tration of  the various forms of  immunity and toler-
ance [1, 2]. the Dc-SIGn+ dendritic cells (DDc),
which were found in the interstitium of  heart, liver,
lung , kidney, skin, etc., are usually thought to play a
pivotal role in the immunosuppressive induction of  a
number of  pathogens [3, 4, 5, 6]. these pathogens in-
clude measles virus [7, 8, 9], human immunodeficiency
virus [10, 11, 12], human hepatitis b virus [13, 14],
Hepatitis c Virus [15], tubercle bacillus [16, 17], ty-
phoid bacillus [18, 19], anthrax bacillus [20, 21], etc.
Details of  immune evasion of  these pathogens are still
unclear at present [22, 23]. Simian virus 40 (SV40) is a
double-stranded Dna tumor virus that was first iden-

tified by Sweet in 1960 [24]. SV40 can transform many
types of  cells and cause carcinogenesis in vitro, includ-
ing those of  human origin [25, 26, 27]. the virus is
usually dormant and asymptomatic in rhesus monkeys
under natural conditions. Whether SV40 subvert den-
dritic cell function remains unclear. the present study
was designed to examine the effect of  SV40 infection
on Dc-SIGn+ dendritic cells.

2. MatERIalS anD MEtHoDS

2.1. anIMal

five- to ten-year-old female rhesus macaques were ob-
tained from the Kunming national Primate Research
center of  china. the SV40 large t antigen (lt-aG)
gene fragment in rhesus monkey peripheral blood was
tested using the forward primer (5’-aacaGccc
aGccactataaGtacc-3’, 3892~3869) and the re-
verse primer (5’-aGcaactccaGccatccattc-3’,
3642~3662). the expected PcR product is 251 bp.
the SV40 major capsid protein VP1 gene fragment in
rhesus monkey peripheral blood was detected using
the following forward primer (5’-ctcaaatGG
GcaatcctGatG-3’, 1665~1685) and the reverse
pri mer (5’-cataGcaGttaccccaataacctc-3’,
1882~1859). the expected PcR product is 218 bp.
those rhesus monkeys that tested SV40-Dna frag-
ment negative were selected to participate in this
study.

2.2. VIRuS anD cEll

the reference strain SV40-776 was proliferated in
Vero cells (atcc, ccl-81) which were cultured in
Minimum Essential Medium (MEM, GIbco) contain-
ing 2% fetal bovine serum (fbS, GIbco), 2 mM l-
glutamine, 100 u/ml penicillin, 100 µg/ml strepto-
mycin at 37 °c, 5% co2, 95% air and 100% relative
humidity. Repetitive freeze-thaw cycles were used to
lyse the cells and release intracellular virus particles
when more than 75 per cent of  the infected Vero cells
show evident cytopathic effect (cPE). the super-
natant of  infected cells suspension, which was ob-
tained by centrifuging the freshly thawed virus suspen-
sion at 1000 ¥ g for 30 min at room temperature to re-
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move any cell debris, was precipitated with 10%
(wt/vol) polyethylene glycol 6000 in the presence of
0.5 M nacl overnight at 4 °c and centrifugation at
12,000 ¥ g for 20 min at 4 °c. the pellet was resus-
pended in 4 ml phosphate buffered saline (PbS, pH
7.2), and virus particles were purified by ultracentrifu-
gation in a cesium chloride (cscl) density gradient at
120,000 ¥ g for 24 h at 20 °c. the purified SV40 were
divided into two parts, half  of  them was inactivated by
b-propiolactone (bPl) with a final concentration of
0.01 M for 72 h at 4 °c and then was settled at 37 °c
for 2 h to decompose bPl completely. the inactivated
SV40 was stored at -20 °c after demonstration of  no
infectivity. the other half  was assayed for plaque
forming units (pfu) of  the purified SV40 and stored at
-80 °c until use.

2.3. InDuctIon of RHESuS MacaquE Dc

Mononuclear cells were isolated from 3~5 ml SV40-
negative rhesus monkey peripheral blood by ficoll-
Hypaque density gradient centrifugation. Monocytes
were separated from lymphocyte by glass adherence,
and proliferated by using RPMI 1640 medium (GIb-
co) containing 10% fbS, 20 mM HEPES, 1 mM
sodium pyruvate, 2 mM l-glutamine, 100 u/ml peni-
cillin, 100 µg/ml streptomycin, 500 ng/ml recombi-
nant human granulocyte-macrophage colony stimulat-
ing factor (rhGM-cSf, R&D Systems) at 37 °c, 5%
co2, 100% relative humidity, and induced to differen-
tiate toward IDc by using 10 ng/ml recombinant hu-
man interleukin-4 (rhIl-4, R&D Systems). 

2.4. ISolatIon of t-lyMPHocytES

t-lymphocytes were isolated from cell suspensions
consisting of  t cells and b cells with nylon fiber col-
umn t (Wako) and cultured in RPMI 1640 medium
supplemented with 1 ng/ml recombinant human inter-
leukin-2 (rhIl-2, R&D Systems).

2.5. cHaRactERIZatIon of RHESuS MacaquE Dc

the morphological changes of  Dc were examined
under ordinary light microscope, phase contrast 
microscope and scanning electron microscope. the
phenotype of  the rhesus monkey peripheral blood
monocyte-derived dendritic cells in vitro was analyzed 
by flow cytometry (fcM) using the following fluores-
cence-labeled mouse anti-non-human primate mono-
clonal antibodies: Hla-DR, DP, Dq-PE(clone 
tu39, bD), cD83-PE(clone Hb15e, bD), cD86-
fItc (clone fun-1, bD), cD1a-PE(clone bl 6,
beckman coulter) and PE-conjugated mouse anti-
human Dc-SIGn monoclonal antibodies, cD209-PE
(clone 120507, R&D Systems), which exhibited 
the highest affinity to both human Dc-SIGn and
rhesus macaque Dc-SIGn. cell proliferation effect of
auto t cell activated by Dc infected with SV40 at a
multiplicity of  infection (MoI) of  20 in mixed lym-
phocyte reaction (MlR) were mensurated by 3H-
thymidine ( 3H-tdR) incorporation assay. the control
dendritic cells were pulsed with 50 ng/ml inactivated
SV40.

2.6. ElISPot aSSay

the interleukin 12 (Il-12) enzyme linked immunospot
(ElISPot) assay was carried out in rhesus macaque
peripheral blood monocyte-derived Dc-SIGn+ den dri -
tic cells using a commercial kit (u-cytech biosciences,
Monkey ElISPot kit, uH-ct135-PR2). Infective
SV40 and inactivated SV40 were used as specific anti-
gen stimulators of  the treatment group and the control
group respectively. the spots were counted with an au-
tomated reader. the number of  Il-12 spot forming
cells (Sfc) was calculated by subtracting the non-spe-
cific Sfc in the presence of  antigen-unloaded Dc.

2.7. StatIStIcal analySIS

Differences between groups were analyzed by using
the statistical software package SPSS 15.0 for Win-
dows. Statistical significance was set at P < 0.05.

3. RESultS

3.1. MoRPHoloGy of RHESuS MacaquE Dc

Rhesus macaque monocytes were proliferated by using
RPMI 1640 medium supplemented with 500 ng/ml
rhGM-cSf. Il-4 which induces monocytes to differ-
entiate toward DDc was added to culture medium af-
ter 7 days of  culture, and then infective SV40 and in-
activated SV40 were added to culture medium after 3
days of  Il-4 inducement culture respectively. after ad-
ditional 9 days of  culture, a great number of  spiny,
crab-like, pompon-like, stellate cells were seen floating
in the culture medium (fig. 1b, E). at day 12 of  cul-
ture, these monocyte-derived dendritic cells, which
mainly exhibit squamous, petallike, veillike, sheet-like
processes, could be observed under scanning electron
microscope (fig. 1c, f). Morphocytological changes
of  experiment group (infective SV40-treated group)
are similar to that of  negative control group (inactivat-
ed SV40-treated group). the morphology of  blank
control group (antigen-untreated group), in contrast,
remained unchanged all the time (fig. 1a, D).

3.2. PHEnotyPE of antIGEn-unloaDED Dc

the expression of  cD83, cD209 on rhesus macaque
Dc cell surface of  antigen-untreated group was ana-
lyzed by flow cytometric analysis. the results showed
that peripheral blood monocyte-derived Dc cultured
with GM-cSf and Il-4 express cD83 and cD209 on
cell surface. at day 9 of  cell culture, the percentage of
Dc expressing cD83 and cD209 is 10.8 ± 2.3% and
69.7 ± 5.2 %, respectively (fig. 2).

3.3. PHEnotyPE of antIGEn-tREatED Dc

the expression of  Hla-DR, cD1a, cD86, cD83 on
cell surface of  Dc that had been released from cfu
in antigen-untreated group, inactivated SV40-treated
group, infective SV40-treated group at day 3, 6, 9 of
culture were analyzed by flow cytometry. the results
showed that, after three days of  culture, rhIl-4 cannot
significantly elevate the expression of  the above mole-
cules except for Hla-DR (fig. 3), and the inactivated
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Fig. 1. Morphology of rhesus macaque monocyte-derived Dc. (a) cell colonies of dendritic cell precursors of antigen-untreat-
ed group on day 3 of culture (magnification, ¥ 400). (b) Morphology of Dc of inactivated SV40-treated group on day 9 of cul-
ture (magnification, ¥ 400). (c) Morphology of Dc of inactivated SV40-treated group on day 12 of culture (magnification, 
¥ 2500). (D) cell colonies of dendritic cell precursors of antigen-untreated group on day 9 of culture (magnification, ¥ 400). (E)
Morphology of Dc of infective SV40-treated group on day 9 of culture (magnification, ¥ 400). (f) Morphology of Dc of infec-
tive SV40-treated group on day 12 of culture (magnification, ¥ 1200).

Fig. 2. Expression of cD83, cD209 on Dc cell surface of antigen-untreated group. (a) Expression of cD83 on Dc cell sur-
face of antigen-untreated group at day 9 culture (the dotted line, isotype control; the solid line, cD83 labeling). (b) Expression
of cD209 on Dc cell surface of antigen-untreated group at day 9 culture (the dotted line, isotype control; the solid line, cD209
labeling).

Fig. 3. Expression of
Hla-DR, cD1a, cD86,
cD83 on cell surface of
antigen-treated Dc. G1,
antigen-untreated group;
G2, inactivated SV40-
treated group; G3, infec-
tive SV40-treated group.
(a) Expression of Hla-
DR on rhesus macaque
Dc. (b) Expression of
cD1a on rhesus ma -
caque Dc. (c) Expres-
sion of cD86 on rhesus
macaque Dc. (D) Ex-
pression of cD83 on
rhesus macaque Dc.
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SV40 antigen can obviously increase the expression of
Hla-DR, cD86 and cD83 (fig. 3a, c, D), while in-
fective SV40, in contrast, can suppress the expression
of  Hla-DR, cD86 and cD83. the expression of
cD1a on Dc remained unchanged all the time during
the entire study (fig. 3b)

3.4. functIon analySIS of antIGEn-tREatED Dc

auto-t cells proliferation effect in MlR activated by
rhesus macaque Dc on day 3, 6, 9 of  culture was ana-
lyzed with 3H-tdR incorporation assay. the results
demonstrated that the proliferation of  t cells activat-
ed by Dc treated with inactivated SV40 was more
prominent than that activated by Dc treated with in-
fective SV40 (P < 0.05). 

3.4. IntERlEuKIn 12 SEcREtInG actIVIty of

antIGEn-tREatED Dc

Interleukin 12, which is naturally produced by dendrit-
ic cells in response to antigen stimulation, is involved
in the differentiation of  naive t cells. In order to eval-
uate the function of  Dc in response to different anti-
gen stimulation, the relative number of  Il-12 secret-
ing Dc on day 3, 6, 9 of  culture following stimulation
with inactivated SV40 and infective SV40 was analyzed
by an ElISPot assay. the results showed that the
frequency of  Il-12 producing cells of  inactivated
SV40-treated group was higher than that of  infective
SV40-treated group (P < 0.05).

4. DIScuSSIon

Dendritic cells can be divided into at least three dis-
tinct subsets, two myeloid lineages and one lymphoid
lineage. langerhans cells and interstitial Dc constitute
two types of  immature myeloid Dc in vivo [28, 29,
30]. langerhans cells can be generated from bone
marrow, cord blood, or adult blood cD34+ hema -
topoietic progenitors cultured with GM-cSf, trans-
forming growth factor (tGf)-b, and tumor necrosis
factor (tnf)-a in vitro [31, 32, 33]. Dc-SIGn-ex-
pressing immature dendritic cells can arise from pe-
ripheral blood monocytes by culturing with GM-cSf
and Il-4 in vitro. these interstitial Dc display striking
similarities to dermal Dc [34, 35].

Recent studies have demonstrated that several
pathogens can manipulate Dc functions to facilitate
their survival by employing Dc-SIGn/cD209 which
is expressed by a subset of  immature Dc. this recep-
tor is associated with receptor-mediated cellular endo-
cytosis and involved in the capture of  various patho -
gens. However, it has been demonstrated that Dc-
SIGn+ immature dendritic cells are related to im-
munosuppressive inducement of  many pathogenic mi-
croorganism [5, 6]. 

cutaneous dendritic cells mainly comprise epider-
mal langerin+ dendritic cells, namely, langerhans
cells (lc) and dermal Dc-SIGn+ dendritic cells
(DDc), namely, interstitial dendritic cells (IDc) [36].
although both lc and IDc share equally common
bone marrow origin, accumulating evidence suggests
that their immunological orchestration function ap-
pear different in antiviral immunity [37, 38]. DDc lo-
cated in mucosal tissues of  the genital tract are consid-
ered to play a central role in the early steps of  HIV
transfer from Dc to t cells through sexual transmis-
sion route [39]. Dc-SIGn-expressing immature Dc
exposed to a small amount of  HIV particles can pro-
mote more efficient infection of  t cells than that by
free viruses. Dc-SIGn-expressing cells can evidently
improve the stability and infectivity of  HIV. Research
shows that HIV particles captured by Dc-SIGn-ex-
pressing Dc remain infectious after 4 days of  culture,
whereas cell-free virus rapidly loses its infectivity 
[5, 40]. langerin+ Dc residing in the epidermal or ep-
ithelial cells in the skin and mucosa are the first Dc
subset to encounter HIV-1 and has generally been
thought to mediate the spread of  HIV-1 to t cells
through the c-type lectin langerin, similarly to trans-
mission by Dc-SIGn on dendritic cells. Instead, re-
cent research suggests that in contrast to Dc-SIGn,
langerin on lc can protect against HIV-1 transmis-
sion by internalization and degradation of  the virus
[37, 38].

Measles virus (MV) is a high contagious pathogen
which can induce profound immunosuppression, re-
sulting in a high mortality rate. It has been demon-
strated that Dc play a crucial role in the pathogenesis
of  MV infection [41, 42]. Various immunosuppres-
sion mechanisms of  MV infection elicited by Dc
have been described. although Dc-SIGn is not 
an entry receptor of  MV, yet it functions as an attach-
ment receptor to enhance dendritic cell infection 
[11]. 
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Fig. 4. cell proliferation effect of auto t cell activated by Dc
in mixed lymphocyte reaction. cpm, counts per minute; G2,
inactivated SV40-treated group; G3, infective SV40-treated
group.

Fig. 5. Il-12 secreting spot forming cell (Sfc) frequency in
inactivated and infective SV40-treated group. G2, inactivated
SV40-treated group; G3, infective SV40-treated group.
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In this study, the phenotype and function of  infec-
tive SV40-treated peripheral blood monocytes derived
Dc were analyzed. the results showed that the pheno-
type and function of  inactivated SV40-treated Dc and
infective SV40-treated Dc are rather different. the
expression levels of  major histocompatibility complex
(MHc) class II molecules, cD86 and cD83 of  infec-
tive SV40-treated Dc on day 6, 9 of  culture were low-
er than those of  inactivated SV40-treated Dc (fig. 3a,
c, D). t cell proliferation activity stimulated by infec-
tive SV40-treated Dc was also lower than that stimu-
lated by inactivated SV40-treated Dc (fig. 4). MHc
class II molecule of  Dc is related to antigen process-
ing and presentation of  exogenous antigen. cD86 is
an important costimulatory molecule for the priming
of  naive t cells. cD83 is one of  the best markers for
mature dendritic cells. Recent studies showed that
cD83 expressed on Dc plays a costimulatory role in t
cell initiation [43]. although cD209+ Dc can uptake
infective SV40, the virus infection is not productive.
Down-regulation of  the expression of  MHc class II
molecules, cD86 and cD83 on infective SV40-treated
Dc suggests that infective SV40 can inhibit the differ-
entiation and maturation of  rhesus macaque Dc-
SIGn+ dendritic cells and subvert antigen presenta-
tion function of  Dc. compare with inactivated SV40
antigen, infective SV40 can significantly down-regulate
the expression of  dendritic cell-derived interleukin-12
and facilitates immunosuppression (fig. 4). these pre-
liminary data suggest that SV40 can manipulate anti-
gen presentation function of  Dc-SIGn+ Dc and ini-
tiate immune tolerance.
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