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Esophageal cancer (EC) is a common malignant tumor of the digestive system. Exploring the molecular biological mechanism of
EC will help to clarify its carcinogenesis mechanism, find important molecular targets in the process of carcinogenesis, and
provide new ideas for the diagnosis and treatment of EC. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)
signaling pathway is one of the signal transduction pathways most closely related to cell proliferation and apoptosis. The
regulation of various downstream molecules affects the proliferation and growth of tumor cells. In this study, we determined
the effect of different concentrations of afuresertib on cell viability by MTT assay and determined the effect of afuresertib on
cell apoptosis by Annexin V-FITC/PI dual staining. Animal experiments verified the effects of afuresertib on VEGF, bFGF, and
PI3K/Akt. Our results indicated that afuresertib is closely related to the survival, proliferation, and apoptosis of esophageal
cancer cell lines. More importantly, we found that afuresertib could reduce tumor volume and mass in EC rats through in vivo
experiments. In conclusion, afuresertib may exert its antitumor effect by inhibiting the expression of PI3K and Akt-related
proteins in rat tumor tissues.

1. Introduction

Esophageal cancer (EC) is a common malignant tumor of
the digestive system. Epidemiological survey data show that
in 2018, the incidence of EC ranked seventh among malig-
nant tumors, and the mortality rate ranked sixth [1]. China
is a country with a high incidence of esophageal cancer, with
new cases and deaths accounting for 53.7% and 55.7% of the
global total [2]. EC is mainly divided into two subtypes,
esophageal squamous cell carcinoma and esophageal adeno-
carcinoma, among which esophageal squamous cell carci-
noma accounts for more than 95% of ES patients. EC is
extremely harmful to the human body, especially in themiddle
and late stages of EC. Surgical treatment has high risks and
many complications, which seriously affect the quality of life

of patients. The 5-year survival rate for EC is less than 20%
[3]. Surgery, chemotherapy, and radiation therapy are three
common methods of treating EC. They have certain curative
effects in inhibiting the spread of cancer cells, controlling the
rate of disease progression, improving the quality of life of
patients, and prolonging the survival time, but they have side
effects [4–6]. Surgical resection is the method of choice for
early-stage and limited-stage EC. However, due to the atypical
symptoms in the early stage, most patients have metastatic
cancer cells or are in the middle and advanced stages at the
time of diagnosis. In addition, postoperative infection can lead
to wound deterioration and increase the risk of complications
[7]. Radiotherapy and chemotherapy are effective in the treat-
ment of esophageal cancer but can cause side effects such as
gastrointestinal reactions, immunosuppression, pneumonia,
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and esophagitis-related organic damage. It not only seriously
affects the follow-up treatment effect but even accelerates the
deterioration of the disease [8, 9].

The pathogenesis of EC is complex, and studies have
found that it has the characteristics of multistage, multifactor,
and gradual evolution. The activation of oncogenes and the
inactivation of tumor suppressor genes are the basis for the
carcinogenesis of esophageal cells, and this process is usually
accompanied by the interaction of multiple genes [10]. Molec-
ular biological mechanisms such as cell signal transduction,
cycle regulation, differentiation, damage repair, and apoptosis
are indispensable factors in the occurrence and development
of malignant tumors [11]. Exploring the molecular biological
mechanism of EC will help to clarify its carcinogenesis mech-
anism and find important molecular targets in the process of
carcinogenesis, thus providing new ideas for the diagnosis
and treatment of EC. Phosphatidylinositol-3-kinase (PI3K)/
protein kinase B (Akt) signaling pathway is one of the signal-
ing pathwaysmost closely related to cell proliferation and apo-
ptosis. It can affect the proliferation and growth of tumor cells
by regulating various downstream molecules [12]. The PI3K/
Akt signaling pathway is closely related to the growth and
drug resistance of prostate cancer [13]. Downregulation of
Circ_0000376 can inhibit the signal transduction of the
PI3K/Akt pathway, thereby blocking the occurrence and
development of non-small-cell lung cancer [14]. With the
development of genomics research, inhibition of the PI3K/
Akt pathway has been shown to inhibit tumor proliferation,
but its specific mechanism in EC remains unclear [15, 16].
Afuresertib, a potent ATP-competitive and specific Akt inhib-
itor, has been shown to have good tumor-suppressive effects
on malignant pleural mesothelioma cells, but whether it is
effective against esophageal cancer cells and its mechanism
of action remain unclear [17].

In this study, we explored whether afuresertib could
inhibit the proliferation of esophageal cancer. The results
showed that afuresertib is closely related to the survival, pro-
liferation, and apoptosis of esophageal cancer cell lines. In
vivo experiments found that afuresertib can reduce tumor
volume and mass in EC rats. Afuresertib may exert its anti-
tumor effect by inhibiting the expression of PI3K and Akt-
related proteins in rat tumor tissues.

2. Materials and Methods

2.1. Laboratory Animals, Cells, and Reagents. Sixty 8-week-
old female BALB/c mice were provided by the Animal
Experiment Center of Beijing Institute of Life Sciences. The
body weight of the rat was 200 ± 10 g. This study was
approved by the Animal Ethics Committee of the Affiliated
Huai’an Hospital of Xuzhou Medical University, and the
rat feeding process was carried out in strict accordance with
the experimental animal feeding standards. Human esopha-
geal cancer cell line (Eca109 cells) was obtained from Procell
(Wuhan, China). Afuresertib hydrochloride was provided by
Selleck Chemicals, USA.

2.2. MTT Assay. Cell viability and growth were detected by
the tetramethylazole salt colorimetric method (MTT). Cells

in logarithmic growth phase were placed in a 96-well plate
with 5 replicate wells for each group of cells at a cell density
of 2,000 cells/well. The seeded cells were placed in a constant
temperature incubator for 24 hours. Different concentra-
tions of afuresertib (20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.01, and
0μmol/L) were added to the cells and cultured for 24 h.
20μL of MTT solution with a concentration of 5mg/mL
was added to each well, and the medium supplemented with
MTT solution was placed in a constant temperature incuba-
tor for 4 hours. Add 150μL DMSO, shake gently to mix
DMSO with the cell culture medium, measure the absor-
bance at 450nm with a microplate reader, and draw the cell
growth inhibition curve according to the OD value.

2.3. Detection of Cell Growth by Plate Cloning. Cells in the
logarithmic growth phase were placed in 96-well plates with
5 replicate wells per cell. The plate was placed in a constant
temperature incubator for 7 days, and the medium was
changed every 2-3 days for 7 days. After 7 days, cells were
fixed with anhydrous methanol for 10 minutes. Methanol
was removed by suction, and 1mL of 0.005% crystal violet
was added for staining. After 20 minutes of staining, crystal
violet was removed by aspiration and cells were left at room
temperature overnight. Clonal cells were counted the next
day using a microscope.

2.4. Flow Cytometry. The cells in the logarithmic growth
phase were placed into a 96-well plate with the density of
2,000 cells/well. Cells were treated with increasing concen-
trations of afuresertib for 24 h. Subsequently, 5μL of
Annexin-FITC and 5μL of PI staining solution were added
to cells and shaken gently until the staining solution and cell
suspension are fully mixed. The mixed cell suspension was
incubated in the dark for 30min, and cell apoptosis was
detected by flow cytometry within 30min after incubation.

2.5. Western Blot. Cells were digested with 0.25% trypsin and
washed 3 times with PBS. The RIPA buffer was added into
cell pellets. The lysates were subjected to SDS-PAGE, then
transferred onto a polyvinylidene difluoride (PVDF) mem-
brane. The membrane was blocked with 5% skimmed milk
for 1 hour. After washing, the membrane was incubated with
the primary and secondary antibodies for 1 hour. The bands
were developed with enhanced chemiluminescence (ELC)
reagent and visualized by the gel imaging system (Bio-Rad,
USA). The quantitation of protein expression was deter-
mined by ImageJ.

2.6. Real-Time PCR. The total mRNA was extracted by Tri-
zol reagent (Invitrogen). The cDNA was synthesized using
the reverse transcription kit (TaKaRa, Japan) following the
instructions. The real-time PCR was performed on the ABI
7500 system (ABI, USA). The reaction system in this study
was as follows: 10μL of 2 × SYBR Premix Taq II, 0.4μL of
forward primer and 0.4μL of reverse primer (both at a con-
centration of 10μmol/L), and 2μL of cDNA template. The 2-
△△Ct formula was used to calculate the relative expression of
the target gene with the average Ct value obtained. The
experiment was repeated three times. The primers used in
this study are summarized in Table 1.
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2.7. Animal Experiments. Twelve rats were randomly selected
as blank control group, and the rest were used to prepare EC
models. The specific operation steps were as follows: subcuta-
neously inject 1 × 105 Eca109 cell suspension into the axilla of
the rats, and the tumor volume was 100mm3 to indicate
modeling success. The 48 successfully modeled rats were ran-
domly divided into a model group, afuresertib high-dose
group (20μmol/L), afuresertib medium-dose group
(10μmol/L), and afuresertib low-dose group (2μmol/L) by
random number method (12 in each group). The rats in each
group were intervened on the next day after the successful
modeling: the high-dose, medium-dose, and low-dose groups
were injected with 2mL of afuresertib with different concen-
trations, and the blank control group and the model group
were injected with the same volume of normal saline, once a
day, continuous injection for 8 weeks. After 8 weeks, the rats
were anesthetized with 1% sodium pentobarbital solution
(6mL/kg) and sacrificed by cervical dislocation. The tumor
was removed and placed in 4% formalin solution for fixation
and placed in liquid nitrogen for freezing for future use.

2.8. Observation of Tumor Growth in Rats. The long diame-
ter (a) and short diameter (b) of the rat tumor were mea-
sured with an electronic digital vernier caliper, and the
tumor volume (V , mm3) was calculated (the calculation
method is shown in formula 1). The tumor mass was
weighed (g), and the tumor growth inhibition rate was calcu-
lated (the calculation method was shown in formula 2).
Formula 1 is as follows: tumor volume = a × b × 2 × π/6.
Formula 2 is as follows: tumor growth inhibition rate = ð
tumormass of model group − tumormass in different doses of
afuresertib groupÞ/tumormass of model group × 100%.

2.9. Observation of Pathological Tissue Sections. The esopha-
geal mucosa of normal rats and the tumor tissue of model
rats were embedded to prepare tissue paraffin sections. The
sections were then dehydrated using xylene and different
concentration gradients of ethanol solutions (4 gradients of
70%, 80%, 90%, and 95%, each gradient 10min). The sec-
tions were counterstained in eosin solution for 5min,
washed with water, dehydrated with absolute ethanol, and
then transparentized with xylene. The slides were mounted
with neutral gum, dried, and observed under a microscope.

2.10. Statistical Analysis. The data were analyzed using SPSS
23.0 statistical software (IBM SPSS Statistics, Armonk, NY).
Quantitative data conforming to a normal distribution were
expressed as mean ± standard deviation (SD), t test was used
for comparison between two groups, analysis of variance was
used for comparison between multiple groups, and LSD test
was used for pairwise comparison between multiple groups.
The two-sided P < 0:05 indicates a significant difference.

3. Results

3.1. Cell Viability Correlates with Afuresertib Concentration.
The results of MTT assay showed that when the concentra-
tion of afuresertib was 0, the survival rate of Eca109 cells was
98:0 ± 1:0%. When the concentration was 2μmol/L, the cell
viability was 73:0 ± 4:0%. When the concentration was
10μmol/L, the cell viability was 41:0 ± 4:0%. When the con-
centration was 20μmol/L, the cell viability was 22:0 ± 2:0%.
As can be seen, the viability of Eca109 cells decreased with
increasing concentrations of afuresertib (Figure 1).

3.2. Cell Proliferation Decreased with Increasing
Concentration of Afuresertib. The results of plate cloning
experiments showed that the proliferation of Eca109 cells

Table 1: Primers used in this study.

Gene Primer sequences (5′-3′)

Bcl-2
F: CATGTGTGTGGAGAGCGTCAAC

R: CAGATAGGCACCCAGGGTGAT

Bax
F: TTTGCTTCAGGGTTTCATCCA

R: CTCCATGTTACTGTCCAGTTCGT

Caspase-3
F: GGAAGCGAATCAATGGACTCTGG

GCATCGACATCTGTACCAGACC

GAPDH
F: GGCCAAGATCATCCATGACAACT

R: ACCAGGACATGAGCTTGACAAAGT
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Figure 1: The effect of different concentrations of afuresertib on
the viability of Eca109 cells.
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Figure 2: The effect of different concentrations of afuresertib on
the OD value of Eca109 cells.
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decreased with the increasing concentration of afuresertib
(Figure 2).

3.3. EC Apoptosis Rate Increased with Increasing
Concentration of Afuresertib. The results of flow cytometry
showed that with the increase of afuresertib concentration,
the apoptosis rate of Eca109 cells increased gradually
(Figure 3). It was found by WB detection that with the
increase of the concentration of afuresertib, the protein
levels of Bax and Caspase-3 in Eca109 cells increased, and
the protein level of Bcl-2 decreased. The mRNA transcrip-
tion of Bax, Bcl-2, and Caspase-3 was detected by qPCR. It
was found that with the increase of afuresertib concentra-
tion, the mRNA levels of Bax and Caspase-3 in Eca109 cells
increased, and the mRNA level of Bcl-2 decreased
(Figures 4(a) and 4(b)).

3.4. Observation Results of Tumor Growth in Rats. Rats in
the blank control group had no tumors, and the rats in the
other groups all had mastoid tumor-like appearance with
the naked eye, and the tumor formation rate was 100%.
Compared with the rats in the model group, the tumor mass
and volume of each group treated with afuresertib were sig-
nificantly reduced (P < 0:05), and the effect of afuresertib
was dose-dependent (Figures 5(a) and 5(b)). After calcula-
tion, the inhibition rates of afuresertib at concentrations of
2, 10, and 20μmol/L on rat tumors were 15:91 ± 4:90%,
25:59 ± 4:09%, and 36:84 ± 3:64%, respectively.

3.5. Effects of Afuresertib on Tumor Histopathology in EC
Rats. The staining of rat tumor tissue showed that the esoph-
ageal mucosa epithelial layer of normal rats was thin, the
squamous epithelial cells were tightly spaced, and there were
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Figure 3: Effects of afuresertib on apoptosis of Eca109 cells. Flow cytometry with Annexin V-FITC/PI dual staining of Eca109 cells treated
with increasing concentrations of afuresertib.
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no obvious inflammatory cell infiltration and squamous epi-
thelial hyperplasia. In the tumor tissue of the model group,
the cells were irregularly arranged, the nuclei were larger,
the nucleoli were deeply stained, the blood sinuses were
abundant, and the squamous cell tissue was severely hyper-
plastic. Compared with the rats in the model group, most
of the cells in the tumor tissue of the rats in the low-dose
and middle-dose afuresertib groups were lightly stained,
and a small number of necrotic areas were seen, and the pro-
liferation was weakened. Compared with the low-dose and
medium-dose groups of afuresertib, the nuclei of the high-
dose group were lightly stained, many necrotic areas were
seen, the proliferation was significantly weakened, and there
were fewer nuclei.

3.6. Effects of Afuresertib on VEGF and bFGF Proteins in Rat
Tumor Tissue. Compared with the model group, the expres-
sions of VEGF and bFGF proteins in the tumor tissues of the
rats in each group were significantly decreased after afure-

sertib intervention (P < 0:05) and in a dose-dependent man-
ner (Figures 6(a) and 6(b)).

3.7. Effects of Afuresertib on PI3K and Akt Proteins in Rat
Tumor Tissue. Compared with the model group, the expres-
sion levels of PI3K, p-PI3K, Akt, and p-Akt proteins in the
tumor tissues of the rats in each group were decreased in a
dose-dependent manner after afuresertib intervention.

4. Discussion

To reveal the specific mechanism of the PI3K/Akt signaling
pathway in the occurrence and development of EC, in this
study, human esophageal cancer cell line Eca109 was cul-
tured in vitro, and the cells were treated with PI3K/Akt sig-
naling pathway inhibitor afuresertib to observe cell survival,
proliferation, and apoptosis. The results showed that afure-
sertib can reduce the survival rate of Eca109 cells and inhibit
the proliferation of Eca109 cells. At the same time, afureser-
tib can reduce the protein level of Bcl-2 by increasing the
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protein levels of Bax and Caspase-3 in Eca109 cells. Proa-
poptotic Bcl-2 and Bax proteins can induce programmed cell
death by permeating the outer mitochondrial membrane
and subsequently initiating a caspase cascade [18, 19].
Therefore, it is preliminarily identified that the PI3K/Akt
signaling pathway plays an important role in the prolifera-
tion and apoptosis of esophageal cancer cells [20].

During in vivo experiments, it was found that except for
the blank group, all the other groups had papillary tumor-
like appearance. After intervention with afuresertib, the
tumor mass and tumor volume in rats were significantly
reduced in a dose-dependent manner. The above results
indicate that afuresertib may have a certain inhibitory effect
on EC rat tumors, and this effect was confirmed by observ-
ing the stained sections of rat tumor tissue. The staining of
rat tumor tissue showed that the esophageal mucosa epithe-
lial layer of normal rats was thin, the squamous epithelial

cells were tightly spaced, and there were no obvious inflam-
matory cell infiltration and squamous epithelial hyperplasia.
In the tumor tissue of the model group, the cells were irreg-
ularly arranged, the nuclei were larger, the nucleoli were
deeply stained, the blood sinuses were abundant, and the
squamous cell tissue was severely hyperplasia. Compared
with the rats in the model group, most of the cells in the
tumor tissue of the rats in the low-dose and middle-dose
afuresertib groups were lightly stained, and a small number
of necrotic areas were seen, and the proliferation was weak-
ened. Compared with the low-dose and medium-dose
groups of afuresertib, the nuclei of the high-dose group were
lightly stained, many necrotic areas were seen, the prolifera-
tion was significantly weakened, and there were fewer nuclei.

Tumor growth and metastasis are closely related to
tumor angiogenesis. VEGF and bFGF are important tumor
angiogenesis promoters. VEGF is the hub connecting
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various networks of neovascularization, and it is also the
most powerful and specific stimulator of vascular endothelial
cell proliferation found so far and is closely related to the
growth, metastasis, and prognosis of various tumors [21,
22]. bFGF is another important proangiogenic growth factor
produced by tumor cells and macrophages, and it is also the
first proangiogenic growth factor to be identified. bFGF not
only participates in tumor angiogenesis but also promotes
tumor cell growth while inhibiting tumor cell apoptosis
[23, 24]. Currently, the use of anti-VEGF therapy to block
angiogenesis in tumors or other pathological processes is
very important, and bFGF plays an important role in this
process [25, 26]. In this study, compared with the model
group, the expressions of VEGF and bFGF proteins in the
tumor tissues of the rats in each group were significantly
decreased after afuresertib intervention in a dose-
dependent manner. These results indicated that afuresertib
could inhibit tumor cell growth by downregulating the
expression of VEGF and bFGF proteins, thereby exerting a
protective effect on rats.

Studies have shown that the PI3K/Akt signaling pathway
is involved in the occurrence and development of various
human cancers and is closely related to tumor growth,
angiogenesis, patient prognosis, and treatment. At present,
PI3K/Akt has become a research hotspot in tumor-targeted
therapy [27–29]. PI3K can directly cause phosphorylation
of the downstream effector molecule Akt. When the PI3K/
Akt pathway is activated, the Akt phosphorylation level
increases, and when the PI3K/Akt pathway is inhibited, the
Akt phosphorylation level decreases [30–32]. In this study,
compared with the model group, the expression levels of
PI3K, p-PI3K, Akt, and p-Akt proteins in the tumor tissues
of the rats in each group were decreased in a dose-
dependent manner after afuresertib intervention. These
results suggest that afuresertib may inhibit tumor growth
by downregulating the expression of PI3K/Akt signaling
pathway-related proteins.

5. Conclusions

In conclusion, our findings suggest that afuresertib may play
a role in EC cell proliferation and apoptosis through the
PI3K/Akt signaling pathway. Our study provides new ideas
and insights for understanding the development of EC.
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