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Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely
used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has
achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course
of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is
introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm
so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertiaweights such
as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The
experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time
of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector
is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through
statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial
weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the
parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the
optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.

1. Introduction

The number of deaths from lung cancer is as high as 137
million annually around the world, accounting for 18% of
cancer mortality ratio. Early surgical treatment is the most
effective treatment for lung cancer, but most patients are
diagnosed in the late stage of the disease. In 2015, the
EuropeanAcademyof Imaging and the EuropeanRespiratory
Society published the latest white paper on lung cancer
screening in European Respiratory Journal (ERJ) to guide
clinical lung cancer screening for early detection and early
treatment of lung cancer.

As early representation form of lung cancer in the lung
CT image, a pulmonary nodule is defined as a nearly spher-
ical opacity with a diameter smaller than 3 cm. Computed

Tomography (CT) technology is an important means of
early detection of pulmonary nodules disease. According to
the CT characterization, pulmonary nodules can be divided
into solid nodules (such as solitary pulmonary nodules,
pulmonary wall adhesion nodules, and vascular adhesion
nodules), ground glass nodules, and cavitary nodules.

Computer-Aided Detection (CAD) system of lung is
one of the applications of machine vision; it can reduce
overload visual fatigue of the radiologist and decrease the
possibility of the resulting miscarriage or omission and
also provide auxiliary diagnosis results for the doctor as
“third party.” Usually, the lung CAD system includes the
following modules: acquisition of the lung CT image data,
preprocessing of CT image, lung parenchyma segmentation,
detection of VOI (Volume of Interest) or ROI (Region of
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Interest) in candidate nodules images (mainly refers to the
extraction or segmentation), calculation and selection of ROI
or VOI features, and recognition of pulmonary nodules,
where pulmonary nodules recognition is the core module of
the CAD system. The algorithm of Support Vector Machine
(SVM) has been widely used in the detection and recognition
of pulmonary nodules (see, e.g., [1–15]). Among them, Li et
al. [1] applied mixed kernel SVM algorithm to distinguish
benign and malignant lung nodules, making the recogni-
tion accuracy (ACC) reach 92% and the sensitivity index
reach 92.59%; Wang et al. [2] detected lung lesions by use
of three-dimensional SVM with Latent Variable algorithm.
Furthermore, Demir and Çamurcu [16] and Chang et al.
[17] imported the algorithm of Particle Swarm Optimization
(PSO) into SVMand selected the optimal parameter group by
PSO and then used SVM for identification. In addition,Ma et
al. [18] adopted the method of multiple classifiers fusion for
lung disease identification.

The Multiple Kernel Learning Support Vector Machine
(MKL-SVM) algorithm has achieved good recognition accu-
racy not just in recognition of lung nodules in [1] but also
in other application fields (see [19, 20]). In [21], the Multiple
Kernel Learning (MKL)methodwas elaborated and the latest
research progresses were presented in this field. However, the
MKL-SVM algorithm involves a large number of parameters,
and the selection of parameters will have an important impact
on the actual results. In [1], the selection of the optimal
parameters is obtained by the grid search algorithm. The
advantage of the grid search algorithm is the easiness to
get the global optimal solution in the case of dense mesh
division, but the disadvantage of the method is that it has
a large amount of computation, a long time to search, and
a poor real-time performance, which is not easy to form
online identification algorithm. The selection of the relevant
parameters is an urgent problem to be solved in the MKL-
SVM, and the Particle SwarmOptimization (PSO) algorithm
based on swarm intelligence algorithm provides an idea to
solve the problem.

In this paper, the PSO algorithm and MKL-SVM algo-
rithm are combined to realize the parameter optimization
of the MKL-SVM. On this basis, the PSO algorithm with
different inertia weights was compared and analyzed in order
to obtain the parametric array similar or superior to that of
the grid search algorithm aiming at quickly searching the
optimal parametric array and the reasonable inertia weight
and then precise identification of the pulmonary nodules.

2. Multiple Kernel Learning Support Vector
Machine (MKL-SVM)

2.1. Support VectorMachine. SVM is a learningmethod using
small amount of samples, which can be applied to predict or
classify unknown samples by structural risk minimization.
The training sample is represented as follows:

𝑇 = {(𝑥𝑖, 𝑦𝑖)} , 𝑖 = 1, 2, . . . , 𝑙, (1)

where l is the number of training samples, 𝑥𝑖 denotes the
input vector of SVM, corresponding to the feature of the

above 𝑁-dimension region of interest (ROI), 𝑥𝑖 ∈ 𝑅𝑁; 𝑦𝑖 ∈{−1, +1} indicates category label; here, 𝑦𝑖 = 1 corresponds to
nodules and 𝑦𝑖 = −1 corresponds to nonnodules.

When SVM is used in the two classification problems,
the original model can be written as the following nonlinear
optimization problem:

min
𝑤,𝑏,𝜉

12 ‖𝑤‖2 + 𝐶
𝑙∑
𝑖=1

𝜉𝑖
s.t. 𝑦𝑖 ((𝑤 ∙ Φ (𝑥𝑖)) + 𝑏) ≥ 1 − 𝜉𝑖, 𝑖 = 1, 2, . . . , 𝑙

𝜉𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑙,
(2)

where 𝑤 is the weight vector and 𝑏 is the threshold, and
the aim of SVM is to maximize the classification interval2/‖𝑤‖, that is, minimization of ‖𝑤‖2. C is the regularization
coefficient or penalty parameter, which describes the degree
of penalty for misclassification samples. The greater 𝐶 is, the
more obvious the penalty for misclassification is. When the
data cannot be completely separated, the maximum interval
will be negative, thus introducing slack variables 𝜉𝑖 which can
measure the distance between the actual output 𝑦𝑖 and the
Support Vector Machine output.

In the feature space, SVM is used to map the input data(𝑋𝑖) into a high-dimensional feature space 𝑍 by nonlinear
transformation Φ(𝑋), and then the optimal classification
hyperplane is constructed in the high-dimensional feature
space𝑍 to realize the SVM. In the process of constructing the
hyperplane in the feature space𝑍, the training algorithm uses
the dot product and the kernel function𝐾(𝑥𝑖, 𝑥𝑗) to represent
the inner productsΦ(𝑥𝑖) andΦ(𝑥𝑗); that is, a function𝐾 can
be found to form the next formula:

𝐾(𝑥𝑖, 𝑥𝑗) = Φ (𝑥𝑖) ⋅ Φ (𝑥𝑗) . (3)

Thus, it is not necessary to construct and solve the convex
quadratic programming problem for a given training sample,
and the problem is transformed into the following optimiza-
tion problem by using Lagrange multiplier:

min
𝛼

12
𝑙∑
𝑖−1

𝑙∑
𝑗=1

𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) 𝛼𝑖𝛼𝑗 − 𝑙∑
𝑗=1

𝛼𝑗

s.t.
𝑙∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0,
0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑙.

(4)

The offset 𝑏 in (2) can be solved by means of the following
equation:

𝑏 = 𝑦𝑗 − 𝑙∑
𝑖=1

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑗) . (5)

The decision function is constructed as follows:
𝑓 (𝑥) = sgn (𝑔 (𝑥)) , (6)

where

𝑔 (𝑥) = 𝑙∑
𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏. (7)
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2.2. Multiple Kernel Learning SVM (MKL-SVM). Various
kernel functions have diverse advantages. One of the keys to
improve the performance of SVM is to design an appropriate
kernel function for a given problem. The common basic
kernel functions are polynomial kernel function and radial
basis function (RBF), which are presented, respectively, as
follows:

𝐾poly (𝑥, 𝑦) = (𝑥𝑡𝑦 + 1)𝑑

𝐾rbf (𝑥, 𝑦) = exp(−󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩22𝑔2 ) , (8)

where the parameter 𝑑 represents the order of the polynomial
kernel, the parameter 𝑔 denotes the width of the RBF kernel,
and d and 𝑔 need to be given in advance.

Proposition 1. The convex combination form of the kernel
function is still a kernel function:

𝐾mix (𝑥, 𝑥󸀠) = 𝑈∑
𝑝=1

𝑚𝑝𝐾𝑝 (𝑥, 𝑥󸀠) , (9)

where
𝑈∑
𝑝=1

𝑚𝑝 = 1, 0 < 𝑚𝑝 < 0, 𝑝 = 1, . . . , 𝑈, (10)

and 𝐾𝑝 is the pth species of basic kernel function and 𝑚𝑝
corresponds to the weights of the pth species of basic kernel
function in the total multiple kernel function. U species basic
kernel functions are used in the multiple kernel function, and
the weight sum of various basic kernel functions is one so as to
limit the weight proportion of various basic kernel functions in
the multiple kernel functions in proportion.

Proof. Let {𝑥1, 𝑥2, . . . , 𝑥𝑙} be a set of 𝑙 points in any given 𝑅𝑁;
we just need to prove that the Gram matrix in (9) is positive
semidefinite matrix.

Let 𝐾1, 𝐾2, . . . , 𝐾𝑃 be the Gram matrix of 𝐾1(𝑥, 𝑥󸀠),𝐾2(𝑥, 𝑥󸀠), . . . , 𝐾𝑃(𝑥, 𝑥󸀠) for {𝑥1, 𝑥2, . . . , 𝑥𝑙}; for any 𝛼 ∈ 𝑅𝑙, we
obtain

𝛼𝑇𝐾mix (𝑥, 𝑥󸀠) 𝛼 = 𝛼𝑇( 𝑈∑
𝑝=1

𝑚𝑝𝐾𝑝 (𝑥, 𝑥󸀠))𝛼
= 𝛼𝑇 (𝑚1𝐾1 (𝑥, 𝑥󸀠) + 𝑚2𝐾2 (𝑥, 𝑥󸀠) + ⋅ ⋅ ⋅
+ 𝑚𝑈𝐾𝑈 (𝑥, 𝑥󸀠)) 𝛼 = 𝑚1𝛼𝑇𝐾1 (𝑥, 𝑥󸀠) 𝛼
+ 𝑚2𝛼𝑇𝐾2 (𝑥, 𝑥󸀠) 𝛼 + ⋅ ⋅ ⋅ + 𝑚𝑈𝛼𝑇𝐾𝑈 (𝑥, 𝑥󸀠) 𝛼 ≥ 0.

(11)

So 𝐾mix(𝑥, 𝑥󸀠) = ∑𝑈𝑝=1𝑚𝑝𝐾𝑝(𝑥, 𝑥󸀠) is positive semidefinite
matrix; that is, 𝐾mix(𝑥, 𝑥󸀠) is a kernel function, and the
evidence is proven.

It is proven that the kernel function expressed by (9)
satisfies theMercer condition and can be used for the training

and classification of SVM. By using the above MKL-SVM,
we can use nonlinear transformation of the sample points
to get the corresponding kernel matrix so as to obtain
the classification results during the training of SVM classi-
fier.

RBF kernel has a strong ability to learn, and polynomial
kernel has strong generalization ability; thus the combination
of the two can take into account the ability of both learning
and generalization. If we use only two kinds of basic kernel
functions of both RBF kernel and polynomial kernel, that is,𝑈 = 2,𝐾1 =𝐾poly, and𝐾2 =𝐾rbf , themultiple kernel function
of (12) is able to be formed. Compared with the single kernel
function, we need to estimate a set of kernel parameters and
a weight coefficient 𝑚. The weight coefficient 𝑚 can regulate
freely the proportion of different kernel functions mixed in
multiple kernels, adjust flexibly the ability of learning and
generalization, and make the results unbiased towards the
promotion of a particular target.

𝐾(𝑥, 𝑥󸀠) = 𝑚𝐾poly (𝑥, 𝑥󸀠) + (1 − 𝑚)𝐾rbf (𝑥, 𝑥󸀠) . (12)

In [1], the grid search algorithm in the sense of CV is used
to find the optimal regularization coefficient C, the order𝑑 of the polynomial kernel, the kernel width 𝑔 of the RBF
kernel, and the weight coefficient 𝑚 of the multiple kernels.
The optimal parameter group can be obtained by the grid
search algorithm during the CV process corresponding to
the highest classification accuracy. Lots of parameters and
short step length of mesh induce large amount of calculation
and long running time. The global optimal solution could be
found by the heuristic algorithm, not needing to traverse all
the parameter points in the grid.

2.3. MKL-SVM Based on Modified Particle Swarm Optimiza-
tion Algorithm. Particle Swarm Optimization (PSO) is a
typical heuristic algorithm on the basis of swarm intelligence
optimization theory. In 1955, PSO was first proposed by
Kennedy and Eberhart in [22], whose basic principle was
originated from the research on the predation behavior of
artificial life and birds. When birds prey upon food, the
simplest and most effective method of finding food is to
search the current area around the food nearest to birds.
Compared with Generic Algorithm (GA), PSO searches the
optimal particles by tracking the particles in the solution
space without selection, crossover, and mutation.

It is assumed that the population 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)
consists of 𝑛 particles in a 𝐷-dimensional search space,
where 𝑋𝑖 represents the position of the 𝑖th particle in 𝐷-
dimensional search space and also is a candidate solution of
problem denoted by a vector of 𝐷 dimensions as 𝑋𝑖 = (𝑋𝑖1,𝑋𝑖2, . . . , 𝑋𝑖𝐷)𝑇. According to the objective function, we can
calculate the fitness value of each particle position 𝑋𝑖. The
speed of the 𝑖th particle is 𝑉𝑖 = (𝑉𝑖1, 𝑉𝑖2, . . . , 𝑉𝑖𝐷)𝑇, and its
individual extreme value and group extreme value are 𝑃𝑖 =(𝑃𝑖1, 𝑃𝑖2, . . . , 𝑃𝑖𝐷)𝑇 and 𝑃𝑔 = (𝑃𝑔1, 𝑃𝑔2, . . . , 𝑃𝑔𝐷)𝑇, respectively.
During each iteration, the particle updates its velocity and
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position by the individual extrema and the group extrema,
which are given, respectively, as follows:

𝑉𝑘+1𝑖𝑑 = 𝜔𝑉𝑘𝑖𝑑 + 𝑐1𝑟1 (𝑃𝑘𝑖𝑑 − 𝑋𝑘𝑖𝑑) + 𝑐2𝑟2 (𝑃𝑘𝑔𝑑 − 𝑋𝑘𝑖𝑑) ,
𝑋𝑘+1𝑖𝑑 = 𝑋𝑘𝑖𝑑 + 𝑉𝑘+1𝑖𝑑 , (13)

where 𝜔 is an inertia weight; 𝑑 = 1, 2, . . . , 𝐷; 𝐷 represents
the number of parameters to be searched; 𝑘 is the number
of the present iterations;𝑉𝑖𝑑 is the velocity of particles, 𝑐1 and𝑐2 are acceleration factors, which are nonnegative constants,
and 𝑟1 and 𝑟2 are random numbers distributed within the
interval [0, 1]. In order to prevent the blind search of particles,
the position and velocity are usually limited to the range of[−𝑋max, 𝑋max] and [−𝑉max, 𝑉max].

The PSO algorithm is applied into MKL-SVM algorithm
of (12). Because the corresponding order of polynomial kernel
is defined as positive integer for 𝑑 ⩾ 2 and with the increase
of 𝐷, generalization ability of polynomial kernel decreases
gradually, so only the two values 𝑑 = 2 and 𝑑 = 3 were
calculated, and there is no need to search other parameters.
Here the dimension of the search space of the particle is set
to 𝐷 = 3; 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3)𝑇 represents the solution of the𝑖th particles, where 𝑋𝑖1, 𝑋𝑖2, and 𝑋𝑖3 of each dimension are
corresponding to the regularization coefficient C, the kernel
width 𝑔 of RBF, and the multiple kernel weight 𝑚 to be
searched, respectively.

3. Application of MKL-SVM-PSO Algorithm in
Pulmonary Nodule Recognition

After introducing the classic PSO algorithm, the recognition
accuracy rate (ACC) of pulmonary nodules in the sense of CV
is regarded as the final target and determined as the fitness
function value of PSO, and then ACC is defined as follows:

ACC = (TP + TN)
TP + TN + FP + FN

, (14)

where TP denotes the detected true positive nodule; FP is the
detected false positive nodule; FN indicates the undetected
false negative nodule; TN is the detected true negative nodule,
that is, nonnodule. ACCmeasures total recognition accuracy
to measure the actual detection rate of pulmonary nodules;
the SEN is defined as follows:

SEN = TP(TP + FN) . (15)

The parameter optimization algorithm of MKL-SVM-PSO
algorithm is described in Figure 1.

4. Experimental Results and Analysis

4.1. The Experimental Data and the Results Analysis of MKL-
SVM-PSO Algorithm. The experimental data were collected
from 20 groups from a third-grade class A hospital in Jilin
province with a total of about 700 images, and each group
was diagnosed with the diagnostic criteria of doctor. The size
of each CT image was 512 × 512, and the slice thickness is
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Figure 1: The diagram of MKL-SVM-PSO algorithm.

5.0mm. 270 ROI are extracted: 80 pulmonary nodules and
190 false positive nodules. After feature selection, the data
samples were randomly divided into two groups: the training
group including 170 samples and the testing group including
100 samples.

The simulation experiments are carried out using the
platform MATLAB with libsvm toolbox. In the process of
model parameter optimization, 5-fold cross-validation is
used to obtain the optimal parameter set corresponding to
the highest ACC. Let the number 𝑛 of cluster particles be
20, that is, 𝑛 = 20 in the MKL-SVM-PSO algorithm, and
the dimension 𝐷 of each particle be 3, that is, D =3, and
then the maximum number of iterations maxgen of the
algorithm is set to be 200, and the inertia weight is constant,
that is, 𝜔 = 1. The simulation experiment will show the
convergence performance through the optimal fitness curve
and the average fitness curve as in Figure 2.

The optimal individual fitness curve of MKL-SVM-PSO
algorithm is obtained as shown in Figure 2.Themost optimal
individual fitness value, namely, the nodule recognition accu-
racy, is 94.1176% through 5-fold cross-validation in training
set; and the correspondent optimal particle position is 𝐶
= 29.7267, 𝑔 = 19.0653, and 𝑑 = 2, 𝑚 = 0.8, respectively.
In this case, the running time of the proposed MKL-SVM-
PSO algorithm is 363.4640 s, less than 2815.0786 s compared
with 3178.5426 s of the grid search algorithm [1], and it
accounts for just 11.43% of the grid search algorithm running
time. Applying the proposed method to the test set, the
test results of ACC reached 91% and those of SEN reached
88.89%.
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Figure 2: The fitness curve of the MKL-SVM-PSO algorithm with
constant inertia weight.

4.2. The Influence and Comparison of Different Inertia Weight
on Lung Nodule Recognition. Compared with the grid search
algorithm, the computational time of MKL-SVM-PSO algo-
rithm requires shorter time, but as the iteration times
gradually increase, the shock amplitude of average fitness
value in each generation is more severe, and a certain gap
exists with the optimal fitness value, which can be found in
Figure 2.

In [23], the inertia weight𝜔was first introduced into PSO
algorithm, and the larger inertia weight value that was con-
ducive to the global search was pointed out, and the smaller
inertia weight that was more conducive to the local search
was also presented, and, moreover, the inertia weight that
can reflect the ability of the particle to inherit the previous
speedwas also discussed. In order to balance the global search
ability and local search ability of the algorithm, the linear
decreasing inertia weight (LDIW) method proposed by Shi
and Eberhart [23] will be used to reassign 𝜔 as follows:

𝜔 (𝑘) = 𝜔start (𝜔start − 𝜔end) (𝑇max − 𝑘)𝑇max
, (16)

where 𝜔start is the initial inertia weight; 𝜔end is the inertia
weight of the iteration to the maximum number of times; 𝑘
is the number of the current iteration generations; 𝑇max is the
maximal iteration number. In order to ensure that the above
iteration algorithm not only has better global search ability in
initial phase but also has strong local search ability to obtain
the optimal solution in later iterations, commonly let 𝜔start =0.9 and 𝜔end = 0.4; the inertia weight decreases linearly from
initial 0.9 to 0.4, and this is also an empirical approach. The
fitness curve of the optimal parameters obtained by theMKL-
SVM-PSO algorithm is shown in Figure 3.

It can be seen from Figure 3 that the shock amplitude is
reduced by using the inertia weight of (16) rather than using
constant inertia weight, close to the optimal solution in the
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Figure 3: The fitness curve of MKL-SVM-PSO algorithm of (16).
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Figure 4: The fitness curve using the MKL-SVM-PSO algorithm of
(17).

early stage. Besides, commonly used linear inertia weight is
shown in the following equation:

𝜔 (𝑘) = 𝜔end + (𝜔start − 𝜔end) (𝑇max − 𝑘𝑇max
) . (17)

Figure 4 shows the fitness curve corresponding to (17). In
Figure 4, the shock amplitude induced by inertia weight of
(17) is slightly larger, but it quickly converges to the optimal
individual fitness value.The linear inertia weight represented
by (16) and (17) can make the average fitness curve smooth,
though it is easy to fall into local optimum in the early stage.

In order to ensure obtaining the global optimal solution,
the following three kinds of nonlinear inertia weight are
adopted to control convergence precision and convergence
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(a) The fitness curve corresponding to 𝜔 of (18)
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(b) The fitness curve corresponding to 𝜔 of (19)
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(c) The fitness curve corresponding to 𝜔 of (20)

Figure 5: The fitness curve of optimal parameters group searching by MKL-SVM-PSO algorithm.

speed, so that the average fitness values reach the best fitness
value index quickly and smoothly.

𝜔 (𝑘) = 𝜔start − (𝜔start − 𝜔end) ( 𝑘𝑇max
)2 (18)

𝜔 (𝑘) = 𝜔start − (𝜔start − 𝜔end) ( 2𝑘𝑇max
− ( 𝑘𝑇max

)2) (19)

𝜔 (𝑘) = 𝜔end (𝜔start𝜔end
)1/(1+𝑐𝑘/𝑇max) . (20)

Using the nonlinear parameter of the above three methods,
respectively, the fitness function curve represents total recog-
nition accuracy of pulmonary nodules as shown in Figure 5.

In order to compare the influence of different kinds
of inertia weight on the parameter optimization, Figure 6
describes the curve of five kinds of dynamic weight corre-
sponding to (16)–(20) changing along with the number of
iterations. In the early stage of iteration, the larger inertia
weight can make the algorithm maintain a strong global
search ability, and the small inertia weight can make the
algorithm search precisely in the late stage of iteration. As we
know from the variation curve of several dynamic weights,
the dynamic weight of (18) changes slowly in the early stage,
and the value is larger so as to maintain the global search
ability of the proposed algorithm; moreover, the dynamic
weights change rapidly in the late stage and improve greatly
the local searching ability of the algorithm; furthermore, the
parameter optimization has also got a good result with the
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Table 1: Comparison of various indexes in parameter optimization stage of different algorithms.

Different inertial
weight algorithm

Average parameter
optimization time (s)

Average optimal
fitness value

Average ACC value
obtained from test set

Average SEN value
obtained from test set

1 The constant is 1 370.7950 94.1176% 90.45% 86.85%
2 (16) 462.4134 94.1176% 91% 88.89%
3 (17) 457.0022 94.1176% 91% 88.89%
4 (18) 416.0204 94.1176% 91% 88.89%
5 (19) 448.1536 94.1176% 91% 88.89%
6 (20) 450.4456 94.1176% 91% 88.89%
7 Grid search algorithm 3096.1427 94.1176% 91% 88.89%
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Figure 6: The variation curves of several dynamic inertia weights.

corresponding fitness curve, which is the optimal way of
dynamic weights.

In summary, the Particle Swarm Optimization algorithm
with constant weight has a fast convergence speed, but in
the later stages it is easy to fall into local optimal solution
with little accuracy. The linear inertia weights of (16) and
(17) are easy to fall into local optimum. If we adopt several
dynamic nonlinear inertia weight methods from (18) to (20),
the algorithm converges slowly in initial stage, but in the
later period local search ability is enhanced, which makes
the algorithm jump out of local optimum and get the global
optimal solution, so as to improve the accuracy of the
algorithm. The form in (18) is the optimal nonlinear inertia
weight.

In order to compare several kinds of Particle Swarm
Optimization algorithms with different inertial weights and
the parameters optimization time and recognition results of
grid search algorithm, each algorithm is operated 20 times,
and the average results of 20 times are listed in Table 1.

From the experimental results in Table 1, it can be seen
that the parameter optimization time of the MKL-SVM grid
search algorithm is the longest, which is almost 7 times
of that of the MKL-SVM-PSO algorithm, and the running
speed is much slower than that of the MKL-SVM-PSO
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Figure 7: The statistical boxplot of parameter optimization time.

grid search algorithm. In the MKL-SVM-PSO algorithm,
the inertia weight is, respectively, set to a constant value,
a linear dynamic weight, and a nonlinear dynamic weight,
and the parameter optimization time has a little difference
as well. When the inertia weight is set to a constant value,
the average running time is the shortest, and the optimum
fitness is 94.1176% in the training stage, but its generalization
ability is not as good as the experimental result obtained by
dynamically searching the inertia weight. The average ACC
value obtained from the test set is 90.45% and the average
SEN is only 86.85%. The optimal fitness value is always
94.1176% during each operation process in the training stage
using dynamic inertia weight from (16) to (20). The same
results of every test are obtained on the test set. The ACC
value is 91% and the SEN is 88.89%; only the training times
are different. Among them, the average running time of (18)
is the shortest, that is, 416.0204 s, which is the best among
all the algorithms. The nonlinear inertial weight algorithm is
faster than the linear inertial weight algorithm, which should
be due to the fast convergence of the dynamic inertial weight
algorithm.

Figure 7 shows the 20 times statistical results correspond-
ing to parameter optimization times. The statistical values of
the boxplot are listed in Table 2.
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Table 2: Statistical indexes corresponding to Figure 7.

Different inertial
weight algorithm Upper adjacent(s) Lower adjacent(s) Median value(s) Number of outliers

1 The constant is 1 369.049 364.151 366.343 3
2 (16) 468.018 446.098 459.983 3
3 (17) 468.646 446.225 459.6345 2
4 (18) 443.129 394.638 148.49 0
5 (19) 455.38 443.456 448.798 2
6 (20) 461.342 451.524 455.122 3

From the data in Figure 7 and Table 2, it can be seen that
when the inertia weight is constant, the box is located at the
bottom, and the three outliers are also very low, and also
the training time is the shortest. Combined with Figure 2,
the convergence rate of the algorithm is much slow, and no
obvious generation number of convergence can be found.
From the test results of test set in Table 1, the generalization
ability is not as good as that of the dynamic inertial weight
algorithm, so it is not the optimal one.When dynamic inertial
weight algorithm is adopted, the boxplot of the model train-
ing time corresponding to the three nonlinear inertial weight
algorithms is located under the boxplot corresponding to the
linear inertial weight. It means that the training time (i.e.,
parameter optimization time) of nonlinear inertial weight is
less than that of linear inertial weight, and the parameter
optimization time obtained by (18) is the shortest and there
are no outliers in it. The upper adjacent was 443.129 s, the
lower adjacent was 394.638 s, and the median value was
418.49 s, respectively. The lower adjacent optimization time
of the inertia weight obtained by (19) is 443.456 s, which

is close to the upper adjacent value of the box obtained by
(18). Furthermore, the training time of the former method
is second only to that of (18). The position of box obtained
by (20) is superior to that of linear inertial weight, but it is
not good at nonlinear weight. The positions of the two boxes
obtained by the data of both (16) and (17) are very close. The
upper adjacent and lower adjacent of the box corresponding
to (17) are all higher than those of (16), but the median value
of (17) box is lower than that of (16) box. Therefore, the
parameter optimization time of (18) is optimal.

Since the value of each inertial weight is different, the
maximum number of convergence generations is different
in various algorithms. Therefore, it is not reasonable to
compare the Euclidean norm error between the optimal
fitness value and the average fitness value after convergence,
because it is difficult to express the merits and demerits of
each algorithm. In order to reasonably express the Euclidean
distance between the optimal fitness curve and the average
fitness curve after convergence, we define the normalized
Euclidean norm error as follows:

𝐹𝑔𝑦 = 󵄩󵄩󵄩󵄩󵄩𝑉best (𝑡 : max gen) − 𝑉Average (𝑡 : max gen)󵄩󵄩󵄩󵄩󵄩2
= √(𝑉best (𝑡) − 𝑉Ave (𝑡))2 + (𝑉best (𝑡 + 1) − 𝑉Ave (𝑡 + 1))2 + ⋅ ⋅ ⋅ + (𝑉best (max gen) − 𝑉Ave (max gen))2

max gen − 𝑡 + 1 ,
(21)

where the average fitness curve converges from the tth
generation. 𝑉best and 𝑉ave are both maxgen dimensional
vectors and represent the optimal and average fitness value,
respectively. Here the normalized Euclidean norm error is
defined as 𝐹𝑔𝑦 and used to express the Euclidean distance
between the average fitness value and the optimal fitness value
of each generation after convergence.

The average values of the indexes obtained after 20
operation times are shown in Table 3. We compared and
analyzed several key parameters such as the convergence
generation number of the average fitness curve, the normal-
ized Euclidean distance between the average fitness value
and the optimal fitness value after reaching the convergence
generation number, the median value, the maximum, the
mean value, and total Euclidean norm of error vector with
200 generations in the average fitness curve. Each index is the
statistical average of 20 operation results.

From above experimental results, it can be seen that when
the inertia weight is constant, it is very difficult to find which
generation of curves converges obviously in Table 3, so it is
impossible to calculate the Euclidean norm of normalized
error vector after reachingmaximumnumber of convergence
generations. The median and mean value of the average
fitness curve are also the lowest among all the algorithms,
which further indicates that the effect of the constant inertia
weight is not as good as that of dynamic inertia weight. In
the dynamic inertial weight algorithm, the maximum, mean,
andmedian values of the average fitness curve are the highest
in all the algorithms, and the Euclidean distance between
the mean fitness curve and the optimal fitness curve is the
smallest; that is, the least squares norm of the error vector is
the smallest. The convergence is earlier, and the normalized
Euclidean norm of the error vector is the smallest. However,
there exists the particle premature phenomenon, so it is easy
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Table 3: Comparison of various indexes under different inertia weights.

Different inertial
weight algorithm

Maximum of𝑉best

Mean value of𝑉ave

Median value of𝑉ave

The Euclidean
norm of the
global error

vector

Convergence
generation
number

The Euclidean norm of
the normalized error

vector after reaching the
convergent generation

number
The constant is 1 93.6044% 90.1465% 63.3698% 90.6721 — —
(16) 94.0279% 93.6873% 93.7169% 8.4488 9 0.0294
(17) 93.9941% 93.2348% 93.6419% 28.2732 30 0.0348
(18) 94.0290% 93.2050% 93.6719% 31.5911 36 0.0320
(19) 94.0044% 93.2996% 93.6618% 27.2316 22 0.0324
(20) 93.9926% 93.2350% 93.6206% 28.1948 27 0.0341

to fall into the local optimal solution. It is further proven that
the global search performance in the early stage is limited.
Themean value of average fitness corresponding to nonlinear
inertial weight of (18) is 93.2050%, and the maximum is
94.0290%; the median value is 93.6719%. The mean value is
low, and also the convergence generation number is large,
and the Euclidean normof global error vector is large because
of the sharp oscillation in the initial iteration. It also reflects
that the global search ability of the algorithm in the initial
iteration prevents fully the particle premature convergence.
Thus, the three indexes, the maximum, the median value,
and the Euclidean norm of the normalized error vector after
reaching convergence, are able to reflect better convergence
performance after convergence. The indexes obtained by (19)
and (20) are basically superior to that of (17); that is, the
nonlinear inertial weight algorithm is superior to the linear
inertial weight algorithm generally.

In summary, the Particle Swarm Optimization algorithm
with dynamic inertia weight is better than the one with
constant inertia weight, and the algorithm using nonlinear
inertia weight is better than that one using linear inertia
weight. The MKL-SVM-PSO algorithm has gained good
results by use of dynamic nonlinear inertial weight of (18) in
this paper. The algorithm has the ability of global searching
at the beginning of iteration. After reaching the convergence
generation number, the average fitness value can approach
the optimal fitness value more smoothly and quickly, which
makes it easier to find the global optimal solution.

5. Conclusion

In this paper, a MKL-SVM-PSO algorithm with nonlinear
inertial weight is proposed to search the optimal parameter
set of hybrid kernel Support Vector Machine quickly and
accurately and achieved better effects in pulmonary nodule
recognition. The main innovative work goes as follows:

(1) The PSO algorithm is introduced into the mixture
Kernels SVM algorithm and used for the discrimina-
tion of benign and malignant pulmonary nodules.

(2) On the basis of changing dynamic weights, the sim-
ilarities and differences between linear weights and
nonlinear weights are discussed, and the optimal
dynamic nonlinear weights are obtained.The average

fitness value of the algorithm is close to the optimal
fitness value quickly and smoothly, so that the global
optimal solution is easy to be obtained.

(3) The Euclidean norm index of normalized error vector
is proposed to measure the difference between the
optimal fitness curve and the average fitness curve
after convergence with different inertial weights. The
index solves the problem that different convergence
generations of different algorithms result in different
dimensions of error vectors in various algorithms,
and it is difficult to compare the discrepancy. The
validity of dynamic inertial weight algorithm is ver-
ified from the point of view of statistics.

The experimental results show that the model training time
of MKL-SVM-PSO algorithm is only 1/7 of the training time
of MKL-SVM grid search algorithm with better recognition
effect. It can be seen that the dynamic inertia weight is better
than constant inertia weight in the MKL-SVM-PSO algo-
rithm from Table 3. Compared with the linear inertial weight
algorithm, the parameter optimization speed of nonlinear
inertial weight algorithm is rapid, and the average fitness
value after convergence is much closer to the optimal fitness
value. The dynamic inertial weight corresponding to (18) is
the optimal method in this paper.

Although ACC, as a fitness value, has obtained good
experimental results in this method, medical attention is
often paid to the SEN index to prevent missed detection. Our
next job is to extend the proposedMKL-SVM-PSO algorithm
to multitarget search in order to achieve accurate identifica-
tion and nonmissed detection of pulmonary nodules.
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