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Background: Liquid biomarkers have shown increasing utility in the clinical
management of airway diseases. Salivary and blood samples are particularly amenable
to point-of-care (POC) testing due to simple specimen collection and processing.
However, very few POC tests have successfully progressed to clinical application due to
the uncertainty and unpredictability surrounding their diagnostic accuracy.

Objective: To review liquid biomarkers of airway diseases with well-established
diagnostic accuracies and discuss their prospects for future POC applications.

Methodology: A literature review of publications indexed in Medline or Embase
was performed to evaluate the diagnostic accuracy of liquid biomarkers for
chronic obstructive pulmonary disease (COPD), asthma, laryngopharyngeal reflux
(LPR), and COVID-19.

Results: Of 3,628 studies, 71 fulfilled the inclusion criteria. Sputum and blood
eosinophils were the most frequently investigated biomarkers for the management of
asthma and COPD. Salivary pepsin was the only biomarker with a well-documented
accuracy for the diagnosis of LPR. Inflammatory blood biomarkers (e.g., CRP, D-dimers,
ferritin) were found to be useful to predict the severity, complications, and mortality
related to COVID-19 infection.

Conclusion: Multiple liquid biomarkers have well-established diagnostic accuracies and
are thus amenable to POC testing in clinical settings.

Keywords: biomarkers, airway diseases, point-of-care, diagnostic accuracy, COVID-19

INTRODUCTION

Rapid advancements in genomics, transcriptomics, proteomics, metabolomics, and other “-omics”
technologies have allowed for the identification of a vast array of new biomarkers that can be
used as tools for improving prevention, diagnosis, prognosis, and management of both non-
communicable and communicable airway diseases. It is postulated that this “biomarker revolution”
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has been paving the way for precision medicine (1). The
FDA-NIH Biomarker Working Group defines biomarkers as
“defined characteristics that [are] measured as indicator[s] of
normal biological processes, pathogenic processes or responses to
an exposure or intervention, including therapeutic interventions.”
(2) Biomarkers can be useful at all stages of disease progression
(Figure 1), including:

(1) For risk assessment of diseases (susceptibility biomarkers).
(2) For detection of diseases (screening and diagnostic

biomarkers).
(3) For establishing prognosis (prognostic biomarkers).
(4) For planning treatment (predictive biomarkers).
(5) For monitoring therapeutic and adverse effects related to

treatment (response or safety biomarkers).
(6) For assessment of disease status or detection of disease

recurrence (monitoring biomarkers) (2).

Point-of-care (POC) technology provides a convenient
alternative to centralized laboratory analysis of biological
samples. POC technology allows certain molecular and antigen
tests to be performed and analyzed rapidly anywhere in a near-
patient setting, such as in patients’ homes or at their bedsides
(3). Biofluids or liquid biomarkers are particularly amenable to
POC testing. Not only are biofluids a rich source of molecular
proteins and peptides, but their collection is also relatively
simple and minimally invasive. For instance, salivary biomarkers
have been proposed to detect and monitor inflammatory and
infectious diseases including chronic inflammatory disorders
(e.g., inflammatory bowel and periodontal conditions) and
sexually transmitted infections (e.g., HIV and HPV) (4–7).
The diagnostic accuracy of molecular biomarkers, however,
need to be rigorously established before they transition to the
convenience of POC testing.

A growing number of liquid biomarkers have been associated
with airway diseases. The airway tract is comprised of the organs
involved in respiration, speech, and deglutition, including the
nose, oral cavity, pharynx, larynx, trachea, bronchi, and lungs (8).
Airway and pulmonary diseases may include obstructive airway
conditions such as asthma or chronic obstructive pulmonary
disease (COPD), infectious diseases such as COVID-19, and
chronic chemical irritation such as airway reflux, also known
as laryngopharyngeal reflux (LPR). The human airway is lined
with airway surface liquid, which plays an important role
in the clearing of environmental toxins and defense against
foreign particles (9). Local biofluids (e.g., saliva, sputum, mucus,
etc.) thus naturally lend themselves as a convenient source
of airway liquid biomarkers (10–13). Peripheral biofluids (e.g.,
blood, serum, urine, etc.) may also provide valuable information
regarding systemic processes that contribute to airway diseases
(14–16) (Figure 2).

Although biofluid samples can be easily obtained in
physicians’ offices or outside of the healthcare setting (e.g.,
through sputum induction), POC testing has yet to be made
widely available for the management of airway diseases. A long-
standing and legitimate barrier to the implementation of POC
testing is the uncertainty surrounding the diagnostic accuracy

of liquid biomarker measurements (17). In this review, we aim
to provide peer-reviewed evidence regarding the clinical utility
of airway liquid biomarkers with well-established diagnostic
accuracies that would be readily translated to POC testing. We
first survey recent literature on liquid biomarkers in COPD,
asthma, airway reflux, and COVID-19 and their diagnostic
accuracies. Then, we discuss several emerging POC platforms
under development and present prospects of future POC
applications for liquid biomarkers in airway diseases.

METHODS

Selection of Airway Conditions
Four common airway and pulmonary conditions, namely
asthma, COPD, LPR, and COVID-19, were included in this
review. The biomarkers of these four conditions were the most
abundantly researched and could be tested through biomarker
detection devices available on the market.

Search Strategy
A review of the literature was performed to identify relevant
studies reporting on the diagnostic accuracy of liquid biomarkers
for airway diseases. The PRISMA (Preferred Reporting Items
for Systematic reviews and Meta-analyses) framework was
used to guide the search and the reporting of the review (18).
Two databases, namely Medline and Embase, were searched
for references published from 2000 to 2021, respectively.
The following terms were searched: “biological marker”;
“biomarker”; “biologic marker”; “diagnostic accuracy”; “sensitivity
and specificity”; “sensitivity”; “specificity”; “laryngopharyngeal
reflux”; “proximal reflux”; “hypopharyngeal reflux”; “extra-
esophageal reflux”; “reflux laryngitis”; “COVID-19”; “coronavirus
disease 2019”; “COPD”; “chronic obstructive lung disease”;
“chronic obstructive pulmonary disease”; “emphysema”; “chronic
bronchitis”, and “asthma” (Supplementary Table 1).

Inclusion Criteria
Studies were included if they reported the diagnostic accuracy of
at least one liquid biomarker by providing measures of sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and area under the ROC curve (AUC). Studies
were required to include human adult subjects with a diagnosis
of COPD, asthma, laryngopharyngeal reflux, or COVID-19
infection. Only articles written in English were included due to
limited resources for the translation of studies.

Exclusion Criteria
Studies that did not report a complete set of diagnostic accuracy
measures (i.e., sensitivity, specificity, PPV, NPV, and AUC) for at
least one liquid biomarker were excluded. Studies conducted in
animal or pediatric populations were excluded. Articles written
in languages other than English were also excluded.

Screening and Eligibility Assessment of Articles
Sources were assessed in a two steps-process to determine their
relevance to this study’s objectives. The first step (screening)
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FIGURE 1 | Types of biomarkers.

FIGURE 2 | Liquid biomarkers of airway diseases.
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included a review of titles and abstracts to discard sources that
did not match the inclusion criteria. The second step (eligibility
assessment) consisted of a full-text assessment of all remaining
articles against the eligibility criteria.

RESULTS AND DISCUSSION

Source Selection
The literature search yielded 3,628 results that were imported into
the Covidence systematic review software Version v2625 (Veritas
Health Innovation, Melbourne, Australia) for screening and
eligibility assessment (Figure 3). Nine references were identified
by hand-search or by expert recommendations. A total of 1,459
duplicates were removed by the automated software. After the
removal of duplicates, 2,178 different studies were screened.
The first step of the screening process yielded 435 studies that
were assessed for eligibility by full-text reading. After full-text
eligibility assessment, 71 studies were included for this review.

Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) refers to a
group of poorly reversible and progressive respiratory conditions,
mostly seen in patients with dyspnea, chronic cough, sputum
production, and a history of exposure to risk factors of the disease
(such as primary or secondary cigarette smoke exposure) (19, 20).
The pathophysiology of COPD is associated with multiple factors
such as genetic susceptibility, abnormal lung development,
cellular senescence, and chronic environmental insults to the
lungs, all of which can contribute to the development of chronic
pulmonary inflammation (19). Clinical diagnosis of COPD is
based on documented persistent airflow limitation on spirometry
(19). Inflammatory biomarkers such as high sensitivity C-reactive
protein (hs-CRP) have been studied for their ability to diagnose
COPD, with moderate specificities (75–83%) but low sensitivities
(42–50%) (21) (Table 1).

Various COPD classification systems have been proposed
over the years, moving away from the classical binary
classification of COPD as emphysema and chronic bronchitis

FIGURE 3 | Prisma flow diagram.
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TABLE 1 | Diagnostic accuracies of liquid biomarkers for chronic obstructive pulmonary disease (COPD).

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Blood

Agapakis et al. (33)
Greece

81 AECOPD patients 81 Same patients in the stable
phase of the disease

Diagnostic biomarker of
AECOPD

MPVf 0.818 8.2 fL 80 76 78 76

Akiki et al. (45)
Lebanon

90 COPD patients 180 Healthy controls Diagnostic biomarker of
COPD

Score based on
seven variables

0.890 15.5 76.4 89.3 81 74
68 Ever smoker COPD patients 180 Healthy controls 0.895 18.5 77.8 88.5 70 82

Andrijevic et al. (34)
Serbia

47 AECOPDg patients with left
ventricular systolic failure

162 AECOPD patients without
left ventricular systolic
failure

Diagnostic biomarker of
AECOPD complications

NT-proBNP 0.809 1,505 pg/ml 76.6 83.33 57.14 92.47

Antus et al. (25)
Hungary

13 Eosinophilic COPD patients 40 Non-eosinophilic COPD
patients

Diagnostic biomarker of
phenotype

Eosinophils 0.82 0.20 × 109/L 77 76 53 91
0.78 2.5% 77 63 42 89

Ergan et al. (40)
Turkey

15 Bacterial infection in patients
with severe AECOPD
requiring mechanical
ventilation

48 Bacterial infection in
patients with severe
AECOPD not requiring
mechanical ventilation

Prognostic biomarker PCTh on day 0
(D0)

0.65 0.25 ng/ml 0.65 63 67 45

PCT on D0 and
D3

0.73 0.25 ng/ml 0.73 87 59 52

Li et al. (27)
China

48 ACOSi patients 134 COPD patients Diagnostic biomarker of
phenotype

Eosinophils 0.640 0.34 × 109/L 39.6 90.3 59.4 80.7
24 Steroid-naïve ACOS patients 69 Steroid-naïve COPD

patients
0.693 0.29 × 109/L 41.7 94.5 71.4 83.1

24 ACOS patients ever ICSj

users
61 COPD patients ever ICS

users
0.588 0.34 × 109/L 41.7 80.3 45.5 77.8

28 ACOS patients never
smokers

55 COPD patients never
smokers

0.617 0.29 × 109/L 35.7 92.7 16.4 81.8

20 ACOS patients ever
smokers

79 COPD patients ever
smokers

0.692 0.36 × 109/L 45.0 73.4 52.9 86.6

Milkowska-
Dymanowska et al.
(28)
Poland

5 Frequent exacerbator
phenotype

14 Non-frequent exacerbator
phenotype

Diagnostic biomarker of
phenotype

sRAGEk 0.81 851 pg/ml 80 93 80 93

Mouronte-Robias
et al. (37)
Spain

109 COPD patients with lung
cancer

83 COPD patients with no lung
cancer

Diagnostic biomarker of
AECOPD complications

Score based on
3 variables

0.78 3.5 points 80 65.1 43.5 90.7

Sato et al. (41)
Japan

27 AECOPD patients with
30-day mortality

168 AECOPD patients with
30-day survival

Prognostic biomarker MCHCl 0.688 31.6 g/dl 59.3 81.0 33.3 92.5

Takayama et al. (26)
Japan

56 ACOS patients 65 COPD patients Diagnostic biomarker of
phenotype

Eosinophils 0.637 250/µL 50 82.3 68.6 68.0

33 Steroid-naïve ACOS patients 57 Steroid-naïve COPD
patients

0.677 250/µL 51.4 81.5 65.5 71.0

Taylan et al. (32)
Turkey

100 AECOPD patients 100 Same patients in a stable
phase of the disease

Diagnostic biomarker of
AECOPD

NLR 0.894 3.29 80.8 77.7 72.1 85.1
CRP 0.814 1.17 mg/dl 71.4 82.3 72.6 81.4

ESR 0.670 20.5 mm/h 49.2 86.2 69.4 72.9

Leucocytes 0.771 7,880/µL 71.7 71.2 63.9 77.9

Tilemann et al. (21)
Germany

36 COPD patients 174 Healthy controls and
non-COPD obstruction

Diagnostic biomarker of
COPD

Hs-CRP 0.651 2.39 mg/L 50 75 30 88
3.5 mg/L 42 83 33 87

(Continued)
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TABLE 1 | (Continued)

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Titova et al. (36)
Norway

38 AECOPD patients with
pulmonary infiltrate

80 AECOPD patients without
pulmonary infiltrate

Diagnostic biomarker
AECOPD complications

PCT 0.67 0.08 µg/L 63 68 49 79
CRP 0.73 37 mg/L 66 65 46 81

45 mg/L 66 71 50 82

40 mg/L 66 68 48 82

Leucocytes 0.67 11.0 × 109/L 60 60 40 77

Wang et al. (38)
China

90 Non-invasive mechanical
ventilation (NIMV) failure in
AECOPD patients

286 NIMV success in AECOPD
patients

Prognostic biomarker PCT 0.854 0.31 ng/ml 83.3 83.7 61.61 94.10

CRP 0.849 15 mg/ml 75.6 93.0 77.23 92.39

Yamaji et al. (42)
Japan

31 COPD patients
non-responsive to ICS

12 COPD patients responsive
to ICS

Prognostic biomarker Eosinophils 0.65 100/µL 100.0 25.8 34.3 100.0
200/µL 83.3 37.0 37.0 87.5

300/µL 50.0 33.3 33.3 76.0

400/µL 25.0 33.3 33.3 73.5

Yao et al. (39)
China

37 AECOPD patients with
in-hospital mortality

266 AECOPD patients who
survive

Prognostic biomarker NLR 0.803 6.24 81.08 69.17 26.78 96.34
PLR 0.639 182.68 64.86 58.27 17.78 92.27

CRP 0.703 16.45 mg/L 78.39 52.25 18.59 94.56

NLR +PLR 0.800 – 91.89 60.15 24.29 98.16

NLR +CRP 0.785 – 89.19 53.01 20.89 97.24

PLR +CRP 0.694 – 70.27 60.52 19.85 93.60

NLR +PLR
+CRP

0.783 – 89.19 56.77 22.29 97.42

Yilmaz et al. (35)
Turkey

19 AECOPD patients with right
ventricular failure

40 AECOPD patients without
right ventricular failure

Diagnostic biomarker of
AECOPD complications

CA-125 0.902 35 U/ml 89.5 85.7 85 90

Zuo et al. (16)
China

101 AECOPD patients with
pulmonary hypertension

84 AECOPD patients without
pulmonary hypertension

Diagnostic biomarker
AECOPD complications

NLR 0.701 4.659 81.2 59.5 70.7 72.5

Platelet:
lymphocyte
ratio (PLR)

0.669 160.0 77.2 53.6 66.7 66.2

NT-proBNP 0.776 384 pg/ml 58.4 92.9 90.8 65.0

aAUC: Area under the ROC curve.
bSens.: Sensitivity.
cSpec: Specificity.
dPPV: Positive predictive value.
eNPV: Negative predictive value.
f MPV: Mean platelet volume.
gAECOPD: Acute exacerbation of COPD.
hPCT: Procalcitonin.
iACOS: Asthma-COPD overlap syndrome.
j ICS: Inhaled corticosteroids.
ksRAGE: soluble receptor for advanced glycation end products.
lMCHC: Mean corpuscular hemoglobin concentration.
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(22). Some of these phenotypes include the asthma-COPD
overlap syndrome (ACOS), the non-exacerbator phenotype,
the frequent exacerbator with emphysema phenotype, and the
frequent exacerbator with chronic bronchitis phenotype (22–
24). Blood eosinophils can be used to diagnose ACOS and
eosinophilic COPD, with sensitivities of 29–55% and 77%,
respectively, and specificities of 71–95% and 63–76%, respectively
(25–27). Blood sRAGE has been studied for its ability to
distinguish the frequent exacerbator COPD phenotype from non-
frequent exacerbator COPD phenotype and was found to have a
moderate sensitivity of 80%, with a high specificity of 93% (28).

The natural history of COPD is punctuated by periods of acute
worsening of respiratory symptoms called acute exacerbations
(AECOPD), and a gradual decline in lung function, all of which
can eventually lead to death (29). In the US and Canada, the
average cost of a severe COPD exacerbation was estimated to be
over $18,000 and $9,500, respectively (30, 31). For this reason,
there has been a growing interest in identifying biomarkers
allowing for early diagnosis of COPD exacerbations. Blood
biomarkers, such as neutrophil to lymphocyte ratio (NLR),
C-reactive protein (CRP), leukocyte counts, and mean platelet
volume, have all been identified as promising biomarkers of
COPD exacerbations, with moderate sensitivities (71–80%) and
specificities (71–82%) (32, 33).

Other blood biomarkers have been studied for their ability to
diagnose complications among AECOPD patients, such as left
and right ventricular failure and pulmonary hypertension (34–
37). CA-125 was found to be highly accurate for the diagnosis
of right ventricular failure, while NT-pro BNP was found to be
moderately accurate for the diagnosis of left ventricular systolic
failure, with sensitivities of 90 and 70%, and specificities of 86 and
83%, respectively (34, 35). Several other peripheral biomarkers
such as procalcitonin, CRP, mean corpuscular hemoglobin
concentration (MCHC), and blood cell count ratios have been
identified as potential prognostic biomarkers for AECOPD
patients (38–41). CRP, neutrophil to lymphocyte ratio (NLR),
platelet to lymphocyte ratio (PLR), and MCHC can all be used
to predict in-hospital mortality among AECOPD patients with
sensitivities ranging from 59 to 89% and specificities ranging
from 52 to 81% (38, 39, 41). Procalcitonin can be used to predict
non-invasive mechanical ventilation (NIMV) failure in AECOPD
patients with a sensitivity of 83% and a specificity of 84% (38).
More multicentric research is needed in order to confirm the
clinical utility of these biomarkers.

The measurement of COPD exacerbation biomarkers is not
yet employed in routine clinical practice. Aside from lung
function parameters, very few biomarkers are routinely used
for the clinical management of COPD (19). The 2021 GOLD
guidelines recommend the utilization of blood eosinophil counts
to guide the prescription of inhaled corticosteroids (ICS) for
COPD patients (19). Blood eosinophils are among the biomarkers
with the best-established diagnostic accuracies in COPD: A blood
eosinophil count <100 cells/µL can help to identify patients who
are unlikely to respond to treatment with ICS, with a sensitivity
of 100%, while a blood eosinophil count >300 cells/µL can help
to identify patients with the greatest likelihood of benefiting from
treatment with ICS (19, 42).

To date, the implementation of biomarkers in clinical practice
for COPD has proven to be difficult, with available data on
COPD biomarkers being complex to interpret, largely as a
result of weak associations and lack of reproducibility between
large patient cohorts (19). Studies varied greatly in terms of
sample size, ranging from 5 to 101 COPD cases, biomarker
studied (14 different biomarkers or scores evaluated across 18
studies), and biomarker utility (n = 2 studies assessing diagnostic
biomarkers for COPD, n = 2 studies for AECOPD, n = 5
studies for AECOPD complications, n = 4 studies for COPD
phenotype, and n = 5 studies for COPD prognostics). The
collection of a plethora of detailed genetic and biochemical
data from large cohorts (such as COPDGene and SPIROMICS
cohorts) have led to an explosion of smaller studies investigating
newer biomarkers (e.g., CC16, SP-D, IL-6, fibrinogen, etc.),
which unfortunately often remain with uncertain diagnostic
accuracies (43–45). Fibrinogen and IL-6, in particular, have
been the subject of increasing research interest. However, no
studies provided a complete set of diagnostic accuracy measures
(i.e., sensitivity, specificity, PPV, NPV, and AUC) at the time
of this review. Rigorous and exhaustive diagnostic accuracy
studies are warranted to confirm the clinical utility of these
biomarkers. In addition, the COPD Biomarker Qualification
Consortium has identified several other promising biomarkers,
such as desmosine and sRAGE, which can be prioritized for
future COPD biomarker research (46). It is hoped that the
discovery and implementation of appropriate COPD biomarkers
will lead to improved diagnosis, risk stratification, management,
and prognosis, thus enabling personalized medicine and leading
to better outcomes in COPD patients.

Asthma
Asthma is one of the most prevalent chronic diseases worldwide
(47). Diagnosis is conventionally established based on suggestive
clinical symptoms and the evidence of variable expiratory airflow
limitation on pulmonary function testing (47).

Although the use of biomarkers for the diagnosis of asthma
is rather limited in clinical practice, related studies have
been flourishing over the past few years. For instance, atopy-
related biomarkers, such as eosinophils, periostin, IgE, and
thymus, and activation-regulated chemokine (TARC), and others
were proposed for the diagnosis of asthma (12–14, 48–50)
(Table 2). For the diagnosis of occupational asthma (OA),
sputum eosinophilia following specific inhalation challenges
demonstrated high specificities (86–97%) but low sensitivities
(57–67%) (51, 52).

Asthma is now recognized as a heterogeneous disease
characterized by distinctive endotypes and phenotypes. Asthma
endotypes can be broadly categorized into T2-high and non-T2
asthma (53). Airway eosinophilia is typically associated with T2-
high asthma, while airway neutrophilia is more commonly seen
in non-T2 asthma (47). Asthma phenotypes often falling under
the T2-high category include early-onset atopic asthma, late-
onset eosinophilic asthma, and aspirin-exacerbated respiratory
disease (AERD) (53). Asthma phenotypes often falling under the
non-T2 category have been categorized according to associated
clinical characteristics and include smoking-related asthma,
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TABLE 2 | Diagnostic accuracies of liquid biomarkers for asthma.

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Sputum

Berthon et al. (70)
Australia

29 Asthma patients
unresponsive to oral steroids

25 Asthma patients responsive
to oral steroids

Predictive biomarker Eosinophils 0.776 2.5% 79.2 69.2 70.4 78.3

4.8% 66.7 76.9 71.4 69.0

Six-gene
signature

0.905 0.36 86.7 76.2 70.6 84.2

0.63 73.3 95.2 90.1 80.0

Fortuna et al. (13)
Spain

22 Asthma patients 28 Non-asthmatic patients Diagnostic biomarker of
non-OAf

Eosinophils 0.58 3% 41 75 56 61

Racine et al. (51)
Canada

152 Patients with OA (Before
SIC)g

229 Patients with non-OA
(before SIC)

Diagnostic biomarker of
OA

Eosinophils 0.61 3% 31 85 41 79

Patients with OA (After SIC) Patients with non-OA (After
SIC)

Eosinophils 0.82 ↑≥3% 57 90 68 85

Smith et al. (12)
New-Zealand

17 Asthma patients 30 Symptomatic
non-asthmatic patients

Diagnostic biomarker of
non-OA

Eosinophils 0.861 3% 86 88 80 92

Suzuki et al. (61)
Japan

19 Eosinophilic asthma patients 23 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Basophils 0.896 0.05% 78.9 87 83.4 83.3

0.10% 63.2 95.7 92.4 75.9

Tsilogianni et al. (15)
Greece

31 Patients with ACTh < 20 139 Well-controlled asthma
(ACT ≥ 20)

0.65 4% 69 61 88 32

9 Patients with mild to
moderate asthma +
ACT < 20

114 Well-controlled asthma
(ACT ≥ 20)

Monitoring biomarker Eosinophils 0.58 3% 63 55 94 11

22 Patients with severe
refractory asthma +
ACT < 20

25 Well-controlled asthma
(ACT ≥ 20)

0.64 4% 68 68 70 65

Vandenplas et al. (52)
Belgium

6 Patients with a first – SIC
and a second + SIC

29 Patients with a first and
second – SIC

Diagnostic biomarker of
OA

Eosinophils 0.81 ↑ > 3% 67 97 80 93

Neutrophils 0.74 ↑>4% 83 62 31.3 94.7

Blood

Ahmad Al Obaidi
et al. (14)
Iraq

562 Asthma patients 132 Healthy controls Diagnostic biomarker of
non-OA

IgE 0.96 200 U/ml 93 91 97 86

Berthon et al. (70)
Australia

29 Asthma patients
unresponsive to oral steroids

25 Asthma patients responsive
to oral steroids

Predictive biomarker Eosinophils 0.775 0.3% 70.8 66.7 68.0 69.6

0.4% 50 91.7 85.7 64.7

Chang et al. (67)
Korea

117 AERDi patients 685 Aspirin-tolerant asthma Diagnostic biomarker of
phenotype

Score based on
14 SNPsj

0.821 1.01328 64.7 85 42.1 93.4

Coumou et al. (63)
Netherlands

7 Eosinophilic asthma patients 39 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Eosinophils 0.89 0.46 × 109/L 57 97 80 93

Hilvering et al. (66)
Netherlands

11 Eosinophilic asthma patients 23 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Model based
on 12 variables

0.73 – 76.9 71.4 62.5 83.3

Jia et al. (65)
United States

35 Eosinophilic asthma patients 13 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Periostin 0.84 – 57 85 93 37

(Continued)
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TABLE 2 | (Continued)

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Kim et al. (50)
Korea

61 Patients with
isocyanate-induced OA

180 Asymptomatic exposed
controls

Diagnostic biomarker of
OA

Vit. D binding
protein

0.765 311 µg/ml 69 81 55 88

Liang et al. (59)
China

124 Eosinophilic asthma patients 68 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Eosinophils 0.698 0.21 × 109/L 67.7 66.2 78.5 52.9

93 Steroid-naïve eosinophilic
asthma patients

46 Steroid-naïve
non-eosinophilic asthma
patients

0.730 0.19 × 109/L 76.3 67.4 82.6 58.5

Liu et al. (60)
China

62 Eosinophilic asthma patients 64 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

T2-ILCk 0.88 0.076% 67.7 95.3 93.3 75.

Eosinophils 0.84 55 IU/ml 56.5 70.3 64.8 62.5

IgE 0.60 0.33 × 109/L 71 85.9 83 75.3

Racine et al. (51)
Canada

152 Patients with OA (before
SIC)

229 Patients with non-OA
(before SIC)

Diagnostic biomarker of
OA

Eosinophils 0.61 0.3 × 109/ml 35 79 36 79

Shabana et al. (69)
Egypt

N/a Patients responsive to
vitamin D

N/a Patients non-responsive to
vitamin D

Predictive biomarker IL-17A: IL-10
ratio

0.806 2.66 72.2 83.3 81.25 76.92

Shin et al. (68)
Korea

165 AERD patients 397 Aspirin-tolerant asthma
patients

Diagnostic biomarker of
phenotype

Seven SNPs 0.75 – 34 93 68.2 77.1

Soma et al. (57)
Japan

13 Eosinophilic asthma patients 23 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Eosinophils 0.82 0.27 × 109/L 80.0 68.7 76.2 73.3

0.30 × 109/L 75.0 68.8 75.0 68.8

Suzuki et al. (61)
Japan

19 Eosinophilic asthma patients 23 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Eosinophils 0.765 0.25 × 109/L 78.9 69.2 68.2 80

0.35 × 109/L 47.4 65. 52.9 60

0.45 × 109/L 26.3 91.3 71.4 60

Tilemann et al. (21)
Germany

86 Asthma patients 124 Healthy controls and
non-asthmatic obstruction

Diagnostic biomarker of
non-OA

Eosinophils 0.602 4.15% 36 83 59 65

IgE 0.584 90 U/ml 47 73 54 66

Tsilogianni et al. (15)
Greece

31 Patients with ACT < 20 139 Well-controlled asthma
(ACT ≥ 20)

0.92 156 pg/ml 94 81 95 76

9 Patients with mild to
moderate asthma +
ACT < 20

114 Well-controlled asthma
(ACT ≥ 20)

Monitoring biomarker IL-13 0.80 117 pg/ml 88 67 97 32

22 Patients with severe
refractory asthma +
ACT < 20

25 Well-controlled asthma
(ACT ≥ 20)

0.98 156 pg/ml 92 95 95 91

Vandenplas et al. (49)
Belgium

82 Patients with latex-induced
OA

25 Symptomatic patients with
non-latex induced OA

Diagnostic biomarker of
OA

IgE against:
NRL extract
(K82)

0.84 0.35 kUA/L 94 48 86 71

1.12 kUA/L 85 76 92 61

5.41 kUA/L 49 92 95 35

rHev b 5 0.79 0.35 kUA/L 63 88 94 42

0.51 kUA/L 62 92 96 43

rHev b 6.01 0.81 0.35 kUA/L 78 68 89 49

0.86 kUA/L 68 88 95 46

(Continued)
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TABLE 2 | (Continued)

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

rHev b 6.02 0.82 0.35 kUA/L 78 76 91 51

0.31 kUA/L 79 76 92 53

rHev b 11 0.72 0.35 kUA/L 34 96 95 28

0.08 kUA/L 43 92 95 33

Wagener et al. (58)
Netherlands

30 Eosinophilic mild to
moderate asthma patients

80 Non-eosinophilic mild to
moderate asthma patients

Diagnostic biomarker of
phenotype

Eosinophils 0.89 0.22 × 109/L 86 79 60 93

Periostin 0.55 0.25 × 109/L 79 84 64 91

0.27 × 109/L 78 91 79 91

26 ng/ml 54 57 29 77

Westerhof et al. (64)
Netherlands

116 Eosinophilic asthma patients 220 Non-eosinophilic asthma
patients

Diagnostic biomarker of
phenotype

Eosinophils 0.83 0.09 × 109/L 96 26 40 92

0.41 × 109/L 36 95 79 74

Total IgE 0.69 13.5 kU/L 96 28 41 92

763.5 kU/L 8 95 47 66

Yormaz et al. (48)
Turkey

87 Asthma patients 42 Healthy controls Diagnostic biomarker of
non-OA

TARCl 0.934 713.7 ng/L 94.25 85.71 93.2 80

Periostin 0.792 31.0 ng/ml 91.95 52.38 87.8 75.9

Zhang et al. (62)
Australia

Eosinophils 0.898 0.26 × 109/L 83 83 81 85

71 Eosinophilic asthma patients 67 Non-eosinophilic asthma
patients

Eosinophil:
lymphocyte
ratio (ELR)

0.907 2.7% 92 76 76 92

25 Diagnostic biomarker of
phenotype

Eosinophil:
neutrophil ratio
(ENR)

0.892 0.10 89.6 74.4 75.8 88.9

Neutrophilic asthma patients 0.891 0.05 89.6 77.0 77.5 89.3

113 Non-neutrophilic asthma
patients

Eosinophil:
macrophage
ratio (EMR)

0.898 0.26 98.7 49.4 63.3 97.7

Neutrophils 0.623 61.5 × 109/L 61.5 63.2 38.1 81.7

Lymphocytes 0.385 2.54 × 109/L 65.9 48.0 23.8 85.2

Neutrophil:
lymphocyte
ratio (NLR)

0.612 1.74 76.9 41.6 29.1 85.3

aAUC: Area under the ROC curve.
bSens.: Sensitivity.
cSpec: Specificity.
dPPV: Positive predictive value.
eNPV: Negative predictive value.
f OA: Occupational asthma.
gSIC: Specific inhalation challenge.
hACT: Asthma control test.
i Aspirin-exacerbated respiratory disease.
jSNP: Single nucleotide polymorphism.
kT2 ILC: Type 2 Innate Lymphoid cell.
lTARC: thymus and activation regulated chemokine.
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obesity-related asthma, and elderly asthma (53). Of note, this
asthma classification model is based on frequent associations
between endotypes and clinical manifestations (phenotypes) with
known exceptions. A better understanding of asthma biomarkers
and the mechanism to which they are a testimony in the
pathogenesis of the disease could eventually allow for a more
precise classification of asthma and subsequent phenotypes.

Asthma biomarkers have been proposed to classify the disease
according to endotypes and phenotypes. Being able to make
such classification is notably useful in the health care setting
due to their inherent therapeutic and prognostic implications
and may provide the basis for personalized medicine (54). While
peripheral neutrophil counts are not routinely used in clinical
practice, the current international Global Initiative for Asthma
(GINA) guidelines recommends the use of eosinophils in the
diagnosis and management of moderate or severe asthma to:

(1) Confirm refractory type 2 inflammation (blood or
sputum eosinophils).

(2) Assess severe asthma phenotypes (blood or
sputum eosinophils).

(3) Adjust treatment for adults with persisting symptoms
and/or exacerbations despite high dose ICS or ICS-LABA
in the presence of sputum eosinophilia (>3%).

(4) Increase ICS dose independently of the level of symptom
control in adults with sputum eosinophilia (>3%).

(5) Guide treatment for adults with moderate to severe asthma
who are treated or can be referred to centers experienced
with sputum induction testing.

(6) Confirm type-2 inflammatory phenotype in patients
refractory to high dose ICS-LABA before prescribing type-
2 biologic targeted therapy, such as anti-IL5, anti-IL5R, or
anti-IL4R (must have blood eosinophilia but cut-off points
may vary according to location) (47).

Sputum eosinophils are generally considered to be reliable
biomarkers of Th2 airway inflammation in asthma (47). In order
to perform sputum induction, the patient is required to inhale
a hypertonic solution by nebulization, which helps to produce
sputum that can then be expectorated (55). However, sputum
induction testing has the disadvantage of not being readily
available in primary care (47). Moreover, sputum induction’s
success rate is only around 80%, due to difficulties that may arise
during the sampling process (56). For instance, certain patients
may experience bronchoconstriction due to the inhalation of
hypertonic saline, and others may be unable to produce sufficient
saliva for sputum analysis (55).

Blood eosinophils were thus proposed as peripheral surrogate
biomarkers for sputum eosinophilia. Overall, studies evaluating
the accuracy of blood eosinophils to detect sputum eosinophilia
have found moderate to high sensitivities and specificities,
ranging from 68 to 86% and 66 to 91%, respectively, for cut-off
values between 0.19×109/L and 0.33×109/L (57–62). The use of
higher cut-off values for blood eosinophils was associated with
higher specificities (91–97%) but lower sensitivities (26–57%)
(61, 63, 64). Some other diagnostic biomarkers that have been
investigated for T2-high asthma include sputum basophil counts,

serum periostin, blood IgE, type-2 innate lymphoid cell counts,
and blood cell count ratios (58, 60–62, 64–66).

In addition to asthma endotyping, liquid biomarkers are
also used for asthma phenotyping. For the diagnosis of AERD,
a T2-high asthma phenotype, it was observed that different
combinations of single-nucleotide polymorphism (SNPs) found
in blood could differentiate AERD patients from aspirin-tolerant
asthma patients with relatively low sensitivities of 34–65%,
but high specificities of 85–93% (67, 68). Regarding non-T2
asthma phenotypes, peripheral neutrophil counts, and peripheral
lymphocyte counts were found to predict airway neutrophilia
with a 61.5 and 65.9% sensitivity, respectively, and a 63.2 and
48% specificity, respectively (62). Their combined ratio, i.e.,
neutrophil to lymphocyte ratio (NLR), presented a slightly better
sensitivity (76.9%) but lower specificity (41.6%) for the prediction
of airway neutrophilia (62).

Asthma biomarkers can also be used to predict response
to pharmacological treatments (69, 70). Sputum and blood
eosinophils have demonstrated sensitivities of 50–79% and
specificities of 69–92% for the prediction of responsiveness to
oral steroid treatment (70). Finally, asthma biomarkers, such
as blood Il-13 and sputum eosinophils, were also proposed to
monitor disease state, with highly variable sensitivities (63–94%)
and specificities (55–95%) (15).

Included studies were highly heterogenous in terms of
population studied, with sample sizes ranging from 6 to 562
cases, and studies including patients with various degrees of
asthma control and subtypes of disease, e.g., occupational, and
non-occupational, eosinophilic, neutrophilic, or AERD asthma
phenotypes, etc. Moreover, few studies evaluated the same
biomarkers for the exact same purposes. Overall, 23 different
biomarkers or biomarker scores were evaluated across 29 studies.
While eosinophils were some of the most frequently studied
biomarkers (n = 17 studies), they were evaluated for a wide
range of clinical purposes ranging from diagnosis of occupational
asthma, non-occupational asthma, and asthma phenotype to the
prediction of responsiveness to oral steroids, and the monitoring
of disease control. This heterogeneity likely contributed to the
high degree of variability in diagnostic accuracies reported
across the literature.

In recent years, considerable progress has been made in our
understanding of asthma with respect to its mechanistic pathways
(endotypes) and clinical manifestations (phenotypes). However,
these advances have predominantly been made in T2-high
asthma, which is reflected in our literature search highlighting
mainly type 2 inflammatory biomarkers such as eosinophils, IgE,
periostin, T2-ILC, and IL-13. New serum biomarkers such as
IL-17, chitinase-3-like protein 1, and ceramide to sphingosine-
1-phosphate ratio are also proposed as diagnostic biomarkers for
T2-low asthma (71). Large cohort studies have also investigated
other T2-high biomarkers such as CCL26, eosinophil-derived
neurotoxin, and IL-4, which unfortunately still have uncertain
diagnostic accuracies (71). More comprehensive research is
still needed to ascertain the diagnostic accuracy, and thus,
the clinical utility of these novel biomarkers. Biomarkers in
other forms, e.g., the fraction of nitric oxide (FeNO) from
exhaled breaths, have well-researched diagnostic accuracies for
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T2-high asthma. However, gas biomarkers are out of the
scope of this review.

Nevertheless, current research is increasingly shifting away
from the evaluation of single diagnostic biomarkers toward the
multidimensional assessment of a combination of biomarkers
(72). New diagnostic algorithms and tools composed of multiple
biomarkers can be developed to better classify asthma according
to endotype and phenotype, which would considerably increase
diagnostic accuracies and be possible via microfluidic POC
platforms with multiplex capability (72).

Laryngopharyngeal Reflux
Laryngopharyngeal reflux refers to the retrograde flow of
stomach contents into the laryngopharynx, where the
refluxate meets the upper aerodigestive tract (73). LPR can
be conceptualized as a supra-oesophageal manifestation of
gastroesophageal reflux disease (GERD). However, LPR has
recently been recognized as a distinct clinical entity from GERD,
due to the numerous differences in the pathogenesis, clinical
presentation, and outcomes between both diseases (73).

Three different constituents of refluxate are thought to
mediate the majority of laryngeal symptoms seen in LPR:
hydrochloric acid, pepsin, and bile salts (74). While intragastric
pH can be as low as 1.5, the pH of the healthy laryngopharynx
is neutral, and its epithelium can easily be damaged by gastric
acidity (74). In contrast with the resistant epithelium of the
oesophageal mucosa, laryngeal and pharyngeal epitheliums are
significantly more vulnerable to damage from gastric acidity.
Even a short exposure to gastric refluxate could lead to significant
laryngopharyngeal damage (74).

The diagnosis of LPR is usually based on clinical symptoms,
suggestive laryngoscopy findings, or 24-h pH monitoring, with
or without multichannel intraluminal impedance (MII) (75).
The 24-h combined hypopharyngeal-oesophageal multichannel
intraluminal impedance with dual pH probe (24h-HEMII-pH)
is often considered to be the diagnostic gold standard for LPR
for its ability to detect both acid and nonacid reflux (74). It is
generally preferred over stand-alone 24-h pH monitoring because
approximately half of the patients with LPR may suffer from non-
acidic reflux (74, 76). Moreover, when used independently, the
proximal and distal oesophageal pH monitoring probes can be
unreliable, with at best, a 75 and 50% sensitivity, respectively
(76). The oesophageal pH monitoring test, with or without
oesophageal impedance, is also not readily available in clinical
practice, expensive, and not always tolerated by the patients due
to its invasive nature (77, 78).

Laryngoscopic examination is more readily available than
24h-HEMII-pH and is considered to be an important screening
tool for the diagnosis of LPR (79). However, laryngoscopic
examination for the diagnosis of LPR has been associated with
poor sensitivity and specificity of 40 and 50%, respectively (80).
Indeed, the laryngoscopic signs associated with LPR are often
nonspecific and can also be found in patients with other causes
of laryngeal irritation such as phonotrauma, smoking, allergy,
infection, and even in healthy individuals (75). Laryngoscopic
findings of LPR can also be highly subjective with poor inter-
rater reliability between examiners (75, 81). Belafsky’s reflux

finding score (RFS), a standardized 8-item scoring system for
laryngoscopy findings of LPR, was developed in an attempt to
overcome this issue (82). Belafsky’s RFS has shown an increased
sensitivity of 87.8% for detecting LPR in comparison with
laryngoscopic examination, but its specificity was not improved
(37.5%) (74, 83). As for the use of questionnaires, studies have
shown variable RSI scores with a specificity ranging between
20 and 83% when used independently for the diagnosis of LPR
(84, 85).

It has thus been argued that there is currently no ideal
procedure for the diagnosis of LPR, with each existent diagnostic
method involving its own limitations (74). For this reason, the use
of biomarkers to diagnose LPR has gained considerable attention.
Salivary pepsin, in particular, has been identified as a promising
diagnostic biomarker for LPR.

Pepsin is a proteinase secreted by the chief cells of the gastric
fundus and body (74). It is first secreted as an inactive zymogen
called pepsinogen, which gets subsequently activated by gastric
acidity (78). In patients with LPR, pepsin is often detectable in the
saliva, which is an indicator of recent refluxate in the oropharynx
or in the oral cavity where salivary samples are collected (83).
However, the sensitivity and specificity of salivary pepsin for
the diagnosis of LPR is highly variable and depends on which
“gold standard” diagnostic methods were used to establish the
corresponding diagnostic accuracy.

When 24-h pH monitoring is used as a gold-standard method
to establish the diagnosis of LPR, the sensitivity and specificity of
salivary pepsin vary between 42–85% and 28–86%, respectively
(86). When establishing the diagnosis of LPR based on clinical
symptoms only, the detection of salivary pepsin has a sensitivity
of 40–48% and a specificity of 95–98% (11) (Table 3). The limited
number of studies focusing on salivary pepsin, their variability
in control groups (symptomatic patients vs. otolaryngology clinic
patients) and reference tests employed may explain the wide
range of reported diagnostic accuracies.

Due to the imperfect sensitivities and specificities of the
gold-standard diagnostic methods used for comparison in these
studies, the true diagnostic accuracy of salivary pepsin is
difficult to determine. At the same time, the wide variability
of salivary pepsin diagnostic accuracy values reported in the
literature may complicate the interpretation of test results and
may justify advocating for its use in combination with other
biomarkers or diagnostic methods. Other emergent biomarkers,
such as carbonic anhydrase type III, e-cadherins, mucins,
and interleukins were also suggested as potential diagnostic
biomarkers for LPR (74). However, to our best knowledge, the
diagnostic accuracy of these new biomarkers has not yet been
established in large patient cohorts. More research on the role
of individual biomarkers and their multidimensional assessment
in association with clinical signs, symptoms, and pH impedance
is needed in order to develop a robust diagnostic algorithm
for LPR (87).

COVID-19
Since the onset of the COVID-19 pandemic in March 2020,
nearly 280 million people have contracted the disease and
nearly 5.5 million COVID-19-related deaths have been recorded
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worldwide (as of January 10th, 2022) (88). In an effort to curb the
spread of the disease, unprecedented scholarly efforts have been
mobilized to investigate the pathophysiology of the viral infection
and to develop rapid diagnostic methods for early detection of the
disease. The diagnosis of COVID-19 infection is most commonly
made on the basis of nucleic acid amplification testing (NAATs),
antigen testing, or serology testing (89). To date, over 1,150
COVID-19 diagnostic tests have been commercialized, among
which over a thousand have been approved by regulatory agencies
in Europe or North America (90). Of these, 23% are serological
tests, 45% are NAAT-based methods for RNA detection, and
31% are antigen detection tests (90). Most of these diagnostic
tests have high diagnostic accuracies. A 2021 meta-analysis
revealed that combined IgG and IgM serological testing yielded
a sensitivity and specificity of 84.5 and 91.6%, respectively (89).
Sputum PCR testing presented a sensitivity of 97.2%, with the
specificities of most PCR tests being 100%, regardless of sample
type (89). Interestingly, peripheral non-specific markers, such
as CD169Mo ratio, CRP, and neutrophils have also shown high
sensitivities (81–91%) for the diagnosis of COVID-19 infection,
but highly variable specificities (55–90%) (91–93) (Table 4).

While the development of a vast array of diagnostic tests
has allowed for increased rapidity and accuracy of diagnosis,
significant progress remains to be made when it comes to
the risk-stratification of infected patients. COVID-19 is not
only a localized respiratory infection, but also a multisystem
inflammatory disease involving complex immunological,
inflammatory, and coagulative cascades (94). Of patients
contracting COVID-19, a significant proportion will require
hospitalization, intensive care unit (ICU) admission, and
invasive mechanical ventilation (95). A significant proportion of
COVID-19 patients will also develop severe and life-threatening
complications such as acute kidney injury, coagulopathies,
myocardial infarction, stroke, venous thrombosis, and
acute respiratory distress syndrome (95). Our ability to
predict which patient will develop severe COVID-19 disease
remains limited. Several biomarkers of COVID-19 infection
have thus been identified for their ability to predict disease
progression and mortality.

Various peripheral blood biomarkers such as serum CRP,
D-dimers, fibrinogen, procalcitonin, cytokines, electrolytes,
blood cell counts, and blood cell count ratios have been studied
for their ability to predict disease progression from non-severe
COVID-19 to more severe forms of the disease (96–105).
D-dimers have demonstrated moderate to high sensitivities of
82–91% and specificities of 66–88% to predict disease progression
(100, 102). Similarly, CRP values between 3.69 and 22.41 mg/dl
have been shown to predict disease severity with high sensitivities
(83–93%), but inconsistent specificities (50–91%) (96, 98–100).
Across different studies, CRP’s sensitivity for the prediction of
mortality ranged from 42 to 97%, and its specificity ranged from
23 to 83% (104, 106–108).

Other candidate biomarkers for the prediction of mortality
include ferritin, inflammatory cytokines (i.e., IL-2R, IL-6, IL-
8, IL-10, TNF-a), troponin 1, mid-regional proadrenomedullin,
blood cell counts, and blood cell count ratios (101, 102, 106–117).
High levels of ferritin (1,288.5–1,799 ng/ml) have demonstrated
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TABLE 4 | Diagnostic accuracies of liquid biomarkers for COVID-19 infection.

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Blood

Ahnach et al. (96)
Morocco

44 Severe COVID-19 infection 101 Non-severe COVID-19 infection Prognostic biomarker of
severity

CRP 0.872 10 mg/L 86.36 70.3 55.8 92.21

Albarrán-Sánchez et al.
(109)
Mexico

83 Death from COVID-19
infection

111 Survival from COVID-19
infection

Prognostic biomarker of
mortality

NLRf 0.728 12 70.27 69.39 63.41 75.56

Bi et al. (97)
China

22 Severe COVID-19 infection 91 Non-severe COVID-19 infection Prognostic biomarker of
severity

Fibrinogen to
albumin ratio +
platelet count

0.754 – 86.3 59.3 33.9 94.74

Booth et al. (113)
United States

43 Death from COVID-19
infection

355 Survival from COVID-19
infection

Prognostic biomarker of
mortality

Model based on 5
variables

0.93 – 91 91 62.5 98.4

Chen et al. (102)
China

30 Severe COVID-19 infection 58 Mild COVID-19 infection Prognostic biomarker of
severity

PTg 0.804 13.35 s 50 92.9 80 76.8
Thrombin time 0.613 19.85 s 39.1 96.4 81.8 70.5

D-dimer 0.910 821 ng/ml 84.2 88.2 88.9 88.2

Chen et al. (117)
China

104 Death from COVID-19
infection

577 Survival from COVID-19
infection

Prognostic biomarker of
mortality

cTn1h + NLR 0.914 – 84 77 46 96

Comins-Boo et al. (91)
Spain

24 COVID-19 patients 12 Patients with acute bacterial
infections

Diagnostic biomarker CD169Mo ratio 0.92 3.3 91.67 89.83 78.57 96.36
CRP 0.758 1.0 mg/dl 91.70 68.50 56.41 94.87

Neutrophils 0.745 66.5% 91.67 56.52 26.83 97.50

Lymphocytes 0.770 0.001 × 109/L 73.68 83.87 58.33 91.23

Comins-Boo et al. (91)
United States

27 COVID-19 patients who
develop VTEi

88 COVID-19 patients without VTE Prognostic biomarker of
complications

Maximal D-dimer
(J1-J7 of
hospitalization)

0.72 1,500 ng/ml 95 37.9 34.5 95.7

2,000 ng/ml 75 53.4 35.7 86.1

3,000 ng/ml 70 63.8 40 86.1

5,000 ng/ml 55 69 38 81.6

Demelo-Rodriguez et al.
(119)
Spain

23 COVID-19 patients who
develop DVTj

133 COVID-19 patients without DVT Prognostic biomarker of
complications

D-dimer 0.72 1,570 ng/ml 95.7 29.3 19 97.5

De Michieli et al. (114)
Italy

52 Death from COVID-19
infection

374 Survival from COVID-19
infection

Prognostic biomarker of
mortality

Model comprised of
8 variables

0.942 – 88.8 88.4 54.4 98

Ding et al. (98)
China

30 Severe/ life-threatening
COVID-19 infection

281 Mild/ordinary COVID-19
infection

Prognostic biomarker of
severity

hsCRPk

Fibrinogen
degradation
products

0.850 22.41 mg/L 84.00 73.49 28.1 97.4

46.42 mg/L 52.00 91.72 40.9 93.9

0.766 0.95 µg/ml 86.21 53.24 18.6 96.9

2.57 µg/ml 41.38 91.37 37.2 92.7

Dogan et al. (103)
Turkey

20 ICU COVID-19 patients 131 Non-ICU COVID-19 patients Prognostic biomarker of
severity

Procalcitonin 0.86 0.109 ng/ml 85 76 41 96
Glucose 0.84 114 mg/dl 90 74 34 98

Urea 0.80 45.7 mg/dl 75 87 47 96

Creatinine 0.77 1.19 mg/dl 60 92 55 94

LDH 0.83 315 U/L 69 88 45 96

Calcium 0.79 8.51 mg/dl 70 86 44 95

Albumin 0.79 4.13 g/dl 82 69 28 97

Na+ 0.69 137 mmol/L 70 73 28 94

Cl- 0.65 97 mmol/L 44 89 36 92

CRP 0.85 2.19 mg/dl 95 65 30 99

Ferritin 0.80 648 ng/ml 75 95 60 97

Leucocytes 0.73 8.51 × 103/µL 55 85 36 93

Neutrophils 0.78 4.951 × 103/µL 75 76 32 95
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TABLE 4 | (Continued)

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Lymphocytes 0.66 1.69 × 103/µL 85 48 20 96

NLR 0.80 2.73 90 59 25 98

MPVl 0.65 10.9 fl 55 74 24 92

D-dimer 0.86 4,233 ng/ml 79 76 33 96

Fibrinogen 0.73 354 mg/dl 100 43 16 100

Dujardin et al. (121)
Netherlands

53 COVID-19 patients who develop
VTE

74 COVID-19 patients without VTE Prognostic biomarker of
complications

D-dimer 0.640 2,000 ng/ml 80 29 53 60
11,000 ng/ml 37 94 84 63

CRP 0.752 70 mg/dl 87 49 59 81

245 mg/dl 43 97 93 67

Feld et al. (115)
United States

265 Death from COVID-19 infection 677 Survival from COVID-19 infection Prognostic biomarker of
mortality

Ferritin (day 1) 0.638 799 ng/ml 55.7 60.3 35.6 77.6
Max. ferritin 0.677 862 ng/ml 74.0 36.4 36.4 82.9

Gregoriano et al. (110)
Switzerland

17 Death from COVID-19 infection 72 Survival from COVID-19 infection Prognostic biomarker of
mortality

Mid-regional
pro-adrenomedullin

0.78 0.75 nmol/L 92.9 33.3 24.5 95.2
0.87 nmol/L 92.9 55.0 32.5 97.1

0.93 nmol/L 92.9 60.0 35.1 97.3

1.5 nmol/L 42.9 86.7 42.9 86.7

2.5 nmol/L 21.4 98.3 75.0 84.3

Laguna-Goya et al. (106)
Spain

36 Death from COVID-19 infection 465 Survival from COVID-19 infection Prognostic biomarker of
mortality

IL-6 0.74 86 pg/ml 52 89 26 96
CRP 0.80 8.75 mg/dl 97 53 14 99

Albumin 0.81 3.4 g/dl 74 78 17 97

ALT 0.69 25 U/L 80 53 16 96

LDH 0.78 424 U/L 72 71 16 97

Ferritin 0.74 1,799 ng/ml 70 75 14 97

D-dimer 0.75 1,386 ng/ml 62 84 23 96

Platelet 0.63 245 × 103/µL 63 61 11 95

Monocyte 0.71 0.4 × 103/µL 77 67 11 96

Neutrophils 0.76 5.1 × 103/µL 86 62 15 98

Lymphocytes 0.79 0.9 × 103/µL 63 83 13 98

NLR 0.83 6.5 86 68 17 98

Model based on 5
variables

0.94 0.07 88 89 38 99

Li et al. (93)
China

458 COVID-19 patients 531 Patients with fever and/or
respiratory symptoms

Diagnostic biomarker Leucocytes 0.539 9.5 × 109/L 95.0 12.8 48.4 74.775.9
Eosinophils 0.717 0.02 × 109/L 74.7 68.7 67.3 82.7

Hs-CRP 0.707 4 mg/L 86.7 54.8 62.3 92.5

99.1 9.2 48.5

Eosinophils +
leucocytes

0.714 0.02 × 109/L +
9.5 × 109/L

70.5 72.3 68.7 74.0

Luo et al. (104)
China

91 Severe/ critical COVID-19
infection

59 Ordinary COVID-19 infection Prognostic biomarker of
severity

CRP 0.783 41.3 mg/L 65.0 83.7 81.6 68.2

Luo et al. (104)
China

84 Death from COVID-19 infection 214 Survival from COVID-19 infection Prognostic biomarker of
mortality

CRP 0.896 4.14 90.5 77.6 61.3 95.4

Luo et al.
China (111)

51 Death from COVID-19 infection 688 Survival from COVID-19 infection Prognostic biomarker of
mortality

IL-2R 0.814 1,220 U/ml 41.18 92.15 28.00 95.48
IL-6 0.901 39.5 pg/ml 68.63 90.41 34.65 97.49

IL-8 0.808 30 pg/ml 54.90 90.26 29.47 96.43

TNF-a 0.724 14.4 pg/ml 33.33 90.12 20.00 94.80

B cells 0.757 63/µL 39.22 90.70 23.81 95.27

CD4+ T cells 0.906 323/µL 78.43 90.41 37.74 98.26

CD8+ T cells 0.905 148/µL 72.55 90.99 37.37 97.81

NK cells 0.888 81/µL 66.67 90.55 34.34 97.34

Model based on 3
variables

0.956 0.075 90.20 90.26 40.71 99.20
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TABLE 4 | (Continued)

Study and country No of
cases

Type of cases No of
controls

Type of controls Type of biomarker Biomarker AUCa Cut-off Test accuracy indices (%)

Sens.b Spec.c PPVd NPVe

Outh et al. (92)
France

57 COVID-19 patients 64 Hospital patients with negative
COVID-19 tests

Diagnostic biomarker CRP 0.759 36 mg/L 80.7 64.5 67.6 78.4
Eosinophils 0.852 0.010 g/L 86 79.7 79 86.4

ENRm 0.846 3.344 87.7 73.4 74.6 87.0

Lymphocytes 0.754 1.520 g/L 91.2 56.3 65 87.8

LNRn 0.621 203.98 59.6 64.1 59.6 64.1

Özyilmaz et al. (116)
Turkey

9 Death from COVID-19
infection

96 Survival from COVID-19
infection

Prognostic biomarker of
mortality

Troponin 1 0.832 7.8 pg/ml 78 86 77 85

Qin et al. (108)
China

178 Death from COVID-19
infection

3,120 Survival from COVID-19
infection

Prognostic biomarker of
mortality

Hs-cTn 1 0.78 0.490a 63.27 91.06 34 97

CK-MBo 0.71 0.491a 60.67 71.82 12 97

NT-pro BNP 0.81 0.189a 91.73 58.80 16 99

CK 0.67 0.448a 64.42 64.24 11 96

Myoglobin 0.83 0.498a 75.00 75.62 21 97

CRP 0.81 6.545a 81.30 66.25 18 98

D-dimer 0.81 1.126a 74.68 72.26 19 97

Rasyid et al. (101)
Indonesia

45 ICU COVID-19 patients 250 Non-ICU COVID-19 patients Prognostic biomarker of
severity

Ferritin 0.719 1,288.5 ng/ml 70.5 67 78.8 92.7
NLR 0.776 4.96 79.5 63.5 81.6 91.3

Rasyid et al. (101)
Indonesia

31 Death from COVID-19
infection

264 Survival from COVID-19
infection

Prognostic biomarker of
mortality

Ferritin 0.703 1,288.5 ng/ml 69 63.7 78.9 95.1
NLR 0.764 4.96 67.7 68.9 70.5 94.9

Sharifpour et al. (107)
United States

67 Death from COVID-19
infection

201 Survival from COVID-19
infection

Prognostic biomarker of
mortality

CRP 0.69 Max. value:
150 mg/L 0.955 0.259 0.3 0.95

350 mg/L 0.418 0.826 0.45 0.81

Tan et al. (99)
China

6 Severe COVID-19 infection 21 Mild COVID-19 infection Prognostic biomarker of
severity

Leucocytes 0.51 4.61 × 109/L 83 38 63 89
Neutrophils 0.57 3.15 × 109/L 83 43 29 90

Lymphocytes 0.40 1.49 × 109/L 33 67 22 78

NLR 0.61 2.41 83 43 29 9

CRP 0.87 20.42 mg/L 83 91 71 95

ESRp 0.78 19.50 mm/L 83 81 56 94

Tang et al. (100)
China

28 Severe COVID-19 infection 60 Mild COVID-19 infection Prognostic biomarker of
severity

IL-10 0.53 2.40 pg/ml 42.90 66.70 37.55 71.45
Leucocytes 0.61 7.08 × 109/L 50 81.70 56.04 77.78

IL-6 0.67 0.64 pg/ml 89.30 40 40.99 88.90

Procalcitonin 0.68 0.08 ng/ml 46.40 90.70 97.22 19.47

Neutrophils 0.69 5.38 × 109/L 57.10 86.70 66.71 81.24

D-dimer 0.75 238.00 ng/ml 82.10 66 58.99 86.09

SAAq 0.78 17.28 mg/L 96.20 61.70 52.12 97.40

CRP 0.83 12.26 mg/L 92.9 67.80 57.79 95.27

Superoxide
dismutase

0.89 156.00 kU/L 88.30 89.30 94.65 78.08

Voicu et al. (118)
France

40 COVID-19 patients who
develop VTE

52 COVID-19 patients without VTE Prognostic biomarker of
complications

D-dimer 0.779 3,300 ng/ml 78 69 66 80
1,730 ng/ml 100 45 58 100

Wang et al. (112)
China

24 Death from COVID-19
infection

175 Survival from COVID-19
infection

Prognostic biomarker of
mortality

FAD-85 score based
on 3 variables

0.871 85 86.4 81.8 39.6 97.6

Yang et al. (105)
China

36 Severe/ critical COVID-19
infection

68 Moderate COVID-19 infection Prognostic biomarker of
severity

Calcium 0.59 – 20.0 98.5 87.5 70.2
Phosphorus 0.71 57.1 84.8 66.7 78.9

Lymphocytes 0.77 83.3 77.9 66.7 89.8
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a moderate diagnostic accuracy for the prediction of mortality
with a sensitivity of approximately 70% and a specificity of 64–
75% (101, 104). Lower ferritin cut-off values were less promising
in terms of sensitivity (56–74%) and specificity (36–60%) (115).
Increased serum D-dimers were also able to predict COVID-19
mortality with moderate sensitivities of 62–75% and specificities
ranging from 72 to 84% (106, 108). Additionally, D-dimer levels
between 1,500 and 3,300 ng/ml have shown moderate to high
sensitivities (70–96%) for the prediction of thrombotic events
in COVID-19 patients. However, the associated specificities
remained low to moderate, ranging from 22 to 69% (118–121).

To date, most risk-stratification clinical tools for the
prediction of COVID-19 severity have used an imperfect
combination of few clinical and biological variables. There
is an urgent need for the development of accurate risk-
stratification algorithms allowing for the early identification of
patients at risk of severe COVID-19 disease, particularly in a
context of limited human and material resources. More research
on prognosis biomarkers of COVID-19 will allow for better
integration of clinical and laboratory data and the creation
of comprehensive and accurate risk-stratification algorithms.
These risk-stratification systems could play a decisive role in
the planning of patient management and future utilization of
available resources.

Challenges in Translating Biomarkers
From Discovery to Clinical Use
As the field of liquid biomarkers continues to advance, novel
biomarkers are discovered with uncertain diagnostic accuracies
or cohort reproducibility (17). In the past, very few guidelines
or protocols have been developed to oversee the direction
of such research. Scientific data is still considered relatively
insufficient to fully support the use of most biomarkers in clinical
settings. In light of these challenges, health regulatory bodies
(e.g., the U.S. Food and Drug Administration) and funding
agencies (e.g., the Foundation for the National Institutes of
Health) have developed a Biomarker Qualification Program and
a Biomarkers Consortium, respectively, to facilitate biomarker
development and standardization for clinical diagnostics and
drug monitoring (122, 123). For translation into clinical practice,
a biomarker needs to fulfill specific clinical and industrial
standards through a process of discovery, analytical validation,
clinical validation, and be reviewed by relevant health authorities
for qualification (124). A rigorous validation and qualification
process is necessary, but also leads to multiple scientific
and institutional challenges for clinical translation (Figure 4).
Nevertheless, relevant stakeholders (e.g., researchers, clinicians,
patients) should be made aware of these limitations and ensure
that practical steps (e.g., reporting both positive and negative
findings, using robust analytical techniques) are taken in the
early development phase of biomarkers (17, 125–127). For
instance, analytical validation involves the assessment of the test
platform used to measure the biomarker in terms of accuracy,
reproducibility, dynamic range, and variability (124). Clinical
validation is needed to ensure the consistency and accuracy of the
test in predicting the clinical outcome that it is intended to reflect
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FIGURE 4 | Challenges in biomarker discovery, validation, and qualification for clinical translation.

and further characterizes diagnostic accuracy (124). Qualification
allows for the identification of biomarkers that can be relied
on for a specific interpretation and application within a specific
context of use by relevant health authorities (124, 128). As such,
a prioritization of biomarkers to be used with defined purposes
(e.g., disease phenotyping vs. risk stratification) in specific
contexts is recommended at an early stage of the biomarker
development process to facilitate validation and qualification.

Future Prospect of Liquid Biomarkers in
Airway Diseases Point-of-Care
Applications
Current clinical biomarker detection methods vary based on
the health condition tested for and the specific markers
of interest. For example, LPR detection commonly utilizes
enzyme-linked immunosorbent assays (ELISAs) and lateral flow
assays (LFAs) such as the Peptest R© to monitor pH levels
and pepsin concentration (129). Similarly, COVID-19 diagnosis
relies primarily on various NAATs such as real-time reverse-
transcription PCR or loop-mediated isothermal amplification
(LAMP), but also leveraging antigen/antibody testing via
ELISAs, LFAs, neutralization bioassays, and chemiluminescent
immunoassays (130, 131). Each format has associated advantages
(e.g., speed, multiplexing, automation) and disadvantages (e.g.,
trained personnel and dedicated laboratories). For instance,
traditional ELISAs take several hours to complete and require
dedicated equipment and trained personnel, which limits same-
day diagnosis capacity for clinics lacking such resources. In
contrast, LFAs offer rapid testing but suffer from reduced
sensitivity and accuracy that may necessitate further validation
for a reliable diagnosis (132, 133). Additionally, LFAs results

are generally qualitative or semi-quantitative, which can be
problematic for diseases that require accurate, quantitative
results to provide a correct diagnosis and treatment plan (134–
136). Irrespective of the test format, the sample requirements
(acquisition/preparation/volume) can vary significantly. In some
cases, sample acquisition can cause notable patient discomfort
such as the mid-turbinate swab required for certain COVID-
19 tests (131). The physical properties of a sample may also
dictate the speed of the assay with, for example, viscous samples
prolonging analysis (137).

To address the limitations of current methods, novel
microfluidic detection devices are being actively explored to
develop POC testing capable of delivering accurate, rapid,
inexpensive diagnoses (138–142). Microfluidic devices include
microfabricated fluid channels capable of efficiently manipulating
small amounts of fluids for biochemical reactions (143). It should
be acknowledged that although LFAs do not fit this conventional
definition, they do have a root in microfluidics (144). These
microfluidic platforms possess several critical advantages for in-
vitro diagnostics over conventional clinical practices (including
LFAs). Firstly, they can handle small sample volumes with
significant spatial-temporal accuracy in a high-throughput
manner—notable criteria of major diagnostic companies (130,
145). The improved sensing parameters those microfluidic
devices provide are partly attributable to the precise control
of fluid quantities and sample/reagent flow rates, which enable
the separation and detection of analytes with high accuracy
and sensitivity (146). Furthermore, these systems can deliver
diagnostic results within minutes and are generally fabricated
from inexpensive polymers (e.g., PDMS or polycarbonate) or
cellulose (e.g., paper or thread) substrates (147–150). Finally,
microfluidic platforms offer the distinct benefit of having
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multiplexing capacity. For example, multiple biomarkers of a
given disease or infection can be detected simultaneously through
several channels of a single device, which could significantly
enhance the accuracy of diagnosis and reduce the risk of
false-positive and false-negative results (151). An alternative
multiplexing method developed combined bead capture and
sonic mixing technology into a single device to detect cancer
biomarkers within 20 min at a sensitivity level up to 0.028 ng/mL
(147). Notably, this device had the capacity to analyze up to
500 biomarkers simultaneously (147, 152). A further multiplex
microfluidic detection system used microfluidic cassettes, in
combination with microarray technology, to detect tumor
markers and demonstrated comparable results with standard,
slower clinical instruments (148). As no liquid exchange occurs
between the disposable cassette and handheld device, cross-
contamination between samples is minimized. Fundamentally,
these examples demonstrate the significant scope and flexibility
of different microfluidic technologies that can be harnessed to
develop multiplexed detection systems.

Microfluidic devices have been proposed to analyze
biomarkers present in various biofluids including saliva,
sputum, and blood (153–156). Blood has traditionally been the
predominantly studied fluid in biomarker research due to the
simplicity of sample collection and analysis. Most biomarkers
with well-established diagnostic accuracy for COPD, asthma,
LPR, and COVID-19 are thus still from blood, rather than from
saliva, sputum, or other local surface fluids, with the exception
of a few sputum biomarkers in asthma, and saliva biomarkers
in LPR. In fact, saliva- and sputum-based biomarkers have
been increasingly recognized as “a window on health status”
in molecular diagnostics (157). For instance, laryngeal surface
secretions have been evaluated for injury-induced inflammation
of vocal folds in humans (158). Further efforts to establish the
reliability and accuracy of saliva and sputum-based biomarkers
of airway diseases will fulfill a true promise of point-of-care
diagnosis for patients and clinicians.

By analyzing specific biomarkers, several devices have been
applied for diagnosing asthma, COPD, and COVID-19 (156, 159,
160). For instance, a recently developed COVID-19 diagnostic
tool utilized a microfluidic chip and Raman spectroscopy to
provide an integrated platform that can trap viruses from
biological fluids and identify patient infection status within
minutes (161). A notable advantage of this system is that, as
the detection is based upon the physical properties of the virus,
accurate COVID-19 detection is possible across multiple variants.
Equally, the platform could be readily adjusted to capture other
viruses or bacteria relevant for other infections. Comprehensive
reviews of the growing number of microfluidic devices applied for
biomarker analysis are available elsewhere with an understanding
that very limited products reached commercialization standards
(139, 141, 145, 162–165).

Limitations to Point-of-Care
Implementation
The simplicity of POC technology is critical to promoting its
accessibility and devolving testing away from laboratories to help

streamline the future of diagnostic technology (166). As these
devices are intended to be operable by both patients and clinicians
alike, it is critical that no convoluted training and equipment
is required for their use (167). Research efforts continue to
target the development of devices capable of delivering accurate
results in a compressed timescale. For instance, the SARS-CoV-2
lateral flow rapid tests that have become widely available enable
users to perform a simple self-test at home and achieve a result
within 15 min. However, it should be noted that whilst huge
advances have been made in rapid, self-testing since the onset of
the SARS-CoV-2 pandemic, RT-PCR analysis remains the gold
standard for diagnosis. In the case of SARS-CoV-2 testing, one
study found that four different kits reported sensitivity values
only in the range of 44.6–54.9% (168). In comparison, RT-
PCR has previously been found to have a sensitivity of 97.2%
when testing sputum samples (89). As such, the sensitivity of
rapid testing currently limits it to functioning as an initial
diagnosis that requires further confirmation via conventional
laboratory testing.

Point-of-care research also aims to diversify the output
that a single sample can provide by expanding the multiplex
capacity of testing platforms (169). If multiplex devices with
high fidelity become widely available, POC technology can
help minimize diagnostic wait times and enable patients to
receive treatment far sooner than sequential, lengthy testing
procedures would otherwise allow (170). The access of multiplex
POC technology will be a gamechanger for chronic and
complex disease diagnosis and monitoring. Unfortunately, a
drawback of multiplex devices is that they are much more
susceptible to cross-contamination, which could severely impair
the accuracy of the result (171). To address this, device
architecture can be modified with, for example, hydrophobic
barriers that ensure reagents and analytes are restricted
to flow along a defined path only that prevents mixing
(172, 173).

Aside from the technical challenges that remain for POC
testing, administrative obstacles must be realized and overcome
to deploy POC devices to the general public. A top-down
approach driven by a limited number of health professionals has
proven ineffective in practice (174). Establishing an effective POC
testing network requires a well-structured, multi-disciplinary
governance encompassing both clinical and managerial support.
For instance, allocating human resources of staff training on POC
devices is needed to keep the POC testing network sustainable.
Communicating the availability of POC testing to patients is also
critical in ensuring a high uptake of community use. This is
notably true for promoting its use in isolated rural areas where
the introduction of POC testing is predicted to have the greatest
impact (175).

CONCLUSION

The landscape of biomarkers for airway diseases remains
extremely vast and highly heterogeneous. Nonetheless, research
efforts and financial investments have facilitated the discovery
of a variety of promising biomarkers, among which a few
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have well-circumscribed diagnostic accuracies and can reliably be
used clinically. For communicable airway diseases like COVID-
19, diagnosis is largely based on direct detection of the viral
load whilst supplementary biomarkers are needed for risk
stratification and severity prediction. For non-communicable
airway diseases, liquid biomarkers have various clinical
applications. For instance, sputum and blood eosinophils can
be used for the phenotyping and endotyping of asthma, blood
eosinophils to guide management of COPD, and salivary pepsin
to diagnose LPR.

Despite considerable progress, the majority of microfluidic
POC devices remain at a pre-clinical, developmental stage.
The lack of standardization across device fabrication and the
difficulty in incorporating multiple testing components into a
single device present obstacle for manufacturing and scaling-up
production. From a testing standpoint, the technical complexity
and validation challenges remain limiting factors for device
translation to clinical settings. That said, the field of diagnostics
continues to transition toward detection devices based on ease
of use, low sample volume, and rapid results. Given the ongoing
drive to develop microfluidic systems that are simple to use
and sensitive, microfluidic systems will continue to trend toward
becoming an indispensable part of the healthcare industry as a

critical element of POC-based disease diagnosis and pathogen
detection in airway diseases.
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