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Vector textures derived from higher 
order derivative domains for classification 
of colorectal polyps
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Abstract 

Textures have become widely adopted as an essential tool for lesion detection and classification through analysis of the 
lesion heterogeneities. In this study, higher order derivative images are being employed to combat the challenge of the 
poor contrast across similar tissue types among certain imaging modalities. To make good use of the derivative informa-
tion, a novel concept of vector texture is firstly introduced to construct and extract several types of polyp descriptors. Two 
widely used differential operators, i.e., the gradient operator and Hessian operator, are utilized to generate the first and 
second order derivative images. These derivative volumetric images are used to produce two angle-based and two vector-
based (including both angle and magnitude) textures. Next, a vector-based co-occurrence matrix is proposed to extract 
texture features which are fed to a random forest classifier to perform polyp classifications. To evaluate the performance of 
our method, experiments are implemented over a private colorectal polyp dataset obtained from computed tomographic 
colonography. We compare our method with four existing state-of-the-art methods and find that our method can outper-
form those competing methods over 4%-13% evaluated by the area under the receiver operating characteristics curves.
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Introduction
Imaging tissue textures have become a widely researched 
topic in the field of medical diagnosis within recent years. As 
machine learning methods have grown through more pow-
erful computers and computational algorithms, the research 
on tissue textures, particularly the lesion textures, has grown 
rapidly in the field because of the ever-expanding number 
of medical applications. One of the preliminary applica-
tions for texture analysis is lesion classification based on the 
heterogenous characteristics of the image contrast within 
and surrounding the lesion [1, 2]. Many studies have dem-
onstrated that textures should be an important expression 
for the heterogeneities of medical images which describe 
some distinct morphological and phenotypic profiles and 

has become a critical measure in benign and malignant dif-
ferentiability [3–8]. Using some texture measures computed 
from medical images, the tissue textures have demonstrated 
a powerful ability for computer-aided detection and diagno-
sis across a spectrum of diseases [9–11]. Among the most 
popular texture measures, some common examples include 
the gray-level co-occurrence matrix (GLCM) measure [12], 
gray-level run-length features [13], and the first order statis-
tics features [14].

Research on tissue textures has shown the importance 
of the image intensity gradient within medical images 
[14–17]. By using the derivative operator on these medi-
cal images, the gradient information can be effectively 
encoded within the texture. The most notable examples 
of using the gradient information for textures are the 
histogram of oriented gradient (HOG) features [18] and 
the co-occurrence of local anisotropic gradient orienta-
tions (CoLIAGe) features [19]. The HOG features aim 
to bin the orientations of the gradients and use each 

Open Access

Visual Computing for Industry,
Biomedicine, and Art

*Correspondence:  jerome.liang@sunysb.edu

1 Department of Radiology, State University of New York at Stony Brook, Stony 
Brook NY 11794, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-022-00108-1&domain=pdf


Page 2 of 14Cao et al. Visual Computing for Industry, Biomedicine, and Art            (2022) 5:16 

histogram bin as an input feature for classification. The 
CoLIAGe features aim to compute the local entropy 
using the co-occurrence matrix (CM) of patches of vox-
els and the gradient angular information. The computed 
local entropy values are binned in a histogram, and then 
the histogram bins are used as input features for classifi-
cation. These two methods have demonstrated a way of 
using the directional information in the gradient domain 
and coding the information into texture measures.

An alternative strategy was explored to investigate 
what additional information the higher order derivative 
images can provide beyond the original intensity image 
[20]. The idea is to magnify the original image contrast 
distribution at different orders for different texture pat-
terns, aiming to encode as much information as possible 
about the lesion heterogeneity into quantitative texture 
measures. By using the first- and second-order deriva-
tives to obtain the corresponding gradient and curvature 
images, exploratory studies [20, 21] provided an alterna-
tive way of encoding the higher order derivative image 
information into texture measures like GLCM.

While the above feature extraction methods have 
shown their potential in applications, they have their 
own limitations. For example, HOG method lacks any 
operation to extract information from the neighboring 
voxels that a CM-based method can provide. While the 
CoLIAGe method uses the CM, it limits itself only to the 
entropy values and considers only the local patches. The 
previous methods [20, 21] limit their use of GLCM to 
only the magnitude of the higher order images.

To address the limitations of the above methods, we 
further explore the use of higher order derivative informa-
tion for polyp description and classification via computed 
tomographic colonography (CTC). Colorectal cancer 
(CRC) is one of the leading causes of cancer related deaths 
worldwide and accurate diagnosis remains a challeng-
ing task for radiologists [22]. While standard endoscopic 
colonoscopy is still the most popular screening method 
for CRC, CTC has grown to become a viable screening 
option to detect and diagnose both the precursor polyps 
and cancerous lesions. CTC is a non-invasive procedure 
which often makes it more palatable for patients, but 
unlike endoscopic colonoscopy, it cannot resect any con-
cerning polyps. Accurate diagnosis through imaging tex-
tures of these polyp masses can better assist physicians 
to determine a plan of treatment while reducing costs for 
biopsy and pathology procedures [23], though computer-
aided diagnosis of CTC polyps have been studied [21, 24, 
25]. We focus on a dataset of polyp masses, or those pol-
yps which have grown to be larger than 30 mm. These pol-
yps require surgical intervention to remove, and the choice 
for how aggressively surgeons may cut into the colon for 
removal is determined by the malignancy of the lesion.

In this study, we look forward to expand upon the vector 
model introduced in ref. [26] to more deeply evaluate the 
image textures generated from the first- and second-order 
derivative information. Two differential operators, i.e., the 
gradient and Hessian operators, are employed to extract six 
local geometric measures, three of which are from the gradi-
ent operator and the other three are from the Hessian opera-
tor. The three local geometric measures of gradient operator 
are utilized to construct an angle-based and a vector (includ-
ing both angle and magnitude)-based vector texture images 
(VTIs). Similarly, three local geometric measures of Hes-
sian operator are utilized to construct an angle-based and 
a vector-based VTIs. From each VTI, a vector-based co-
occurrence matrix (VCM) is proposed to compute a two-
dimensional (2D) texture pattern along an angle through 
the VTI space, similar to the application of GLCM to the 
intensity images [12]. A series of 2D texture patterns is then 
obtained along different angles and called VCMs hereafter. 
From the computed series of 2D texture patterns or VCMs, 
several texture features can be derived and then fed to a clas-
sifier to perform the polyp classification.

The remainder of this study is organized as follows. Meth-
ods/experimental  section describes the methods used to 
generate the new vector texture features (VTFs) and Results 
and discussion section presents the results obtained from all 
classification experiments using these new VTFs. Discus-
sions and conclusions are drawn in last section.

Methods/experimental
To overcome the challenges of limited soft tissue contrast 
from CT images, we first utilize the derivative operator to 
magnify the contrast. Then four VTIs are generated, two 
of which are from the gradient operator and the other two 
are from the Hessian operator. By applying the vector-based 
CM or VCM operator to each VTI, a series of VTFs are 
obtained and fed to a classifier. Figure 1 shows the flowchart 
of this work to outline the methods used to generate the 
derivative images, convert them into the associated vectors, 
and then input into a CM to form a set of vector-textures.

Vector texture definition in gradient domain
Suppose a scalar function or intensity image I = I(x, y, z) 
in three-dimensional (3D) space. Its gradient would be rep-
resented by the following vector function:

where ∂Ix, ∂Iy, and∂Iz are three partial differential parts. 
Since the intensity image is discrete and not continu-
ous, we employ the well-established Sobel Operator ker-
nels [27] to acquire the partial derivatives of the image. 
It is difficult to describe the object using the coordinates 
directly since the coordinate is a relative metric which 

(1)�I =
(

∂Ix, ∂Iy, ∂Iz
)
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could be changeable under different geometric trans-
forms [28, 29]. Fortunately, a vector could be expressed 
by the geometric metrics of magnitude and direction. 
In 3D space, the direction of the vector has two compo-
nents, the azimuth angle and polar angle, as shown in 
Fig. 2. To calculate the magnitude and direction of a gra-
dient vector, a common method used is to translate the 
vector from Euclidean coordinates to spherical coordi-
nates as follows:

where |�I | is the magnitude, θg is the azimuth angle and 
φg is the polar angle. Their definitions are given below:

(2)ΔI =
(
�Ix , �Iy, �Iz

)
= |ΔI|

(
cos�g cos�g , sin�g cos�g , sin�g

)
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Unlike the CoLIAGe approach [19], where the azimuth 
and polar angles are used individually to extract texture 
features, we treat these two angles together as a descrip-
tion of gradient angle vector (GAV) of unit magnitude as:

where GAV only contains partial information of gradient 
assuming unit magnitude. In addition, we further employ 
the magnitude and direction to compose a total gradient 
vector (TGV), which preserves all gradient information:

Our next step is to quantify the Formulas (6) and (7) to 
generate two VTIs. By their definitions, the range of the 
azimuth θg is [0, 2π) , and the range of the polar angle φg 
is in [0, π) . Their digitalization could be realized by:

where Qa
g  and Qp

g  denote their gray levels, respectively, 
and ⌊X⌋ represents the infimum of X.

The range of the gradient magnitude tends to be very 
wide, however most of that information is clustered within 
a narrow region. This can be seen in the distribution of mag-
nitudes for our polyp dataset in Fig. 3b. Moreover, the CM 
is very sparse when computed from the unbalanced value 
distribution. A non-uniform sampling based on histogram 
equalization [30] can be a solution, which would generate 
very flat histogram as shown in Fig. 3c. This type of sam-
pling methods treats every image component or region 
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Fig. 1  Flowchart of the proposed vector-texture method, showing the steps for either the gradient vector or Hessian vector approach

Fig. 2  Diagram showing the azimuth and polar angles θg and φg 
respectively from a vector �I =

(

∂ Ix , ∂ Iy , ∂ Iz
)



Page 4 of 14Cao et al. Visual Computing for Industry, Biomedicine, and Art            (2022) 5:16 

equally and ignores the different contributions from image 
component in different polyp subtypes. Hence, before quan-
tification on the gradient image, we use a one-to-one map-
ping to change the pixel/voxel magnitude distribution by:

where |�I | is the gradient magnitude of the original 
gradient image and t is an integer. Then a uniform gray 
scaling method is applied on �Ig by:

where �Ig was defined before as the re-mapped gradi-
ent magnitude, �Imax

g  and �Imin
g  are the maximum and 

minimum of �Ig , and Qm
g  is its maximum gray level num-

ber. Its histogram is shown in Fig. 3d.
After the quantification via Formulas (8, 9, 10 and11), 

we obtain two VTIs, corresponding to the definitions of 
GAV and TGV in the gradient image domain, as follows

Vector texture definition in Hessian domain
In mathematics, Hessian operator of a scalar function or 
intensity image I = I(x, y, z) in 3D space could be defined 
by a 2nd order derivative matrix as the follows:

(10)�Ig = t
√

|�I |
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⎨
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(12)T1 =
(

�g ,�g

)

(13)T2 =
(

Ig ,�g ,�g

)

where Ixx, Ixy, Ixz, Iyy, Iyz, and Izz are the 2nd order deriva-
tives of I(x, y, z) . To compute these partial derivatives of 
the polyp images, we use the well-established Deriche fil-
ters [31] with parameter α = 1.

Due to the number of unique variables in the Hes-
sian matrix we use matrix decomposition to reduce 
the dimensionality and extract the three eigenvalues 
�1 ≥ �2 ≥ �3 . Since the Hessian matrix is a real symmet-
ric matrix, this guarantees its eigenvalues and eigenvec-
tors are all real values. We compose a 3D vector field, 
similar to the vector image construction in the gradient 
domain, as follows:

Like the gradient, this vector could be expressed by 
spherical coordinates as below:

where | � | is the magnitude, θh and φh are two angles 
representing the direction as shown in Fig.  4. They are 
defined as follows:

(14)H =
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(17)|�| =
√
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Fig. 3  Gradient magnitude histogram with 256 Gy levels. (a): One slice from a 3D polyp volume; (b): Gradient magnitude under uniform gray 
scaling; (c): Gradient magnitude under non-uniform gray scaling; (d): Histogram after t-th root mapping with t = 3
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Again, the Hessian angle vector (HAV) is defined as:

The magnitude, azimuth angle and polar angle com-
pose the total Hessian vector (THV) given by:

Similar to the presentation in the gradient domain, we 
use the same method to perform the digitalization of θh 
and φh in the Hessian domain by:

where Qa
h and Qp

h denote their gray levels or quantifica-
tion numbers, respectively, and ⌊X⌋ was defined before as 
the infimum of X.
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The gray scaling of Hessian magnitude is implemented by:

where �Ih = t
√
|�| is the re-mapped Hessian magni-

tude similar to Formula (10), �Imax
h  and �Imin

h  are the 
maximum and minimum of �Ih , and Qm

h  is the maximum 
gray level number.

Thus, another two VTIs, corresponding to the defini-
tions of HAV and THV in the Hessian image domain, are 
obtained as follows:

Vector‑based CM or VCM
Given above vector discretization, we present a new 
method based on the traditional GLCM called the vec-
tor-based CM, or VCM, and is expressed below as:

where Ti represents the VTIs in 3D space, 
i ∈ {1, 2, 3, 4} , (R, C, S) is the volume size, V1 and 
V2 are a vector pair in  Ti , and d is the displace-
ment between two voxels along the direction(α,β) , 
and d ∗ (α,β) = (d ∗ cosαcosβ , d ∗ sinαcosβ , d ∗ sinβ).

Given each of the four VTIs from Formulas (12), (13), 
(25), and (26), the Formula (27) generates a VCM along a 
direction in a similar way as the Haralick method [12] does. 
The Haralick method generates a GLCM along a direction 
from the original intensity image and our proposed method 
generates a VCM along a direction from the higher order 
VTIs. Because of this similarity, the Haralick method will 
be implemented as reference for comparison purpose.

A voxel within a 3D volume consists of 26 nearest neigh-
bor voxels from which the VCM directions can be derived 
from. However, half of these directions produce redun-
dant information as a transpose of their opposite direction. 
Therefore, only 13 directions are used for the VCM calcula-
tion and are denoted as: (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), 
(1, 0, 1), (1, 1, 0), (-1, 1, 0), (0, 1, -1), (1, 0, -1), (1, 1, 1), (-1, 1, 
1), (1, 1, -1) and (-1, 1, -1). Thus, using the VCM definition 
of Formula (27), we will compute 13 VCMs along 13 direc-
tions through a polyp volume [20]. By the use of the 28 tex-
ture measures from each direction [21], we will have total 
of 364 (= 13 × 28) texture measures per polyp. Since these 
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Fig. 4  Diagram showing the azimuth and polar angles θh and φh 
respectively from a eigenvalue vector H = (�1, �2, �3)
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364 texture measures are derived from a 3D VTI of a polyp, 
they will be called VTFs hereafter. Classifying these VTFs 
and evaluating the classification outcomes are presented in 

the following section. The summary algorithm of generat-
ing these VTFs from for either the gradient vector or Hes-
sian vector can be found below in Algorithm 1.
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Classification of the VTFs
Once the VTFs are computed for each polyp’s TVI, we 
use the R package ‘randomForest’ to perform classifi-
cation using random forest (RF) [32, 33], as it has been 
shown to be effective in previous polyp classification 
experiments [34, 35]. Due to the limited data size of 
only 63 polyps, the RF method (and all machine learning 
algorithms) is susceptible to bias from the input data, or 
overfitting, depending on how it is divided into training 
and testing datasets. To reduce this overfitting effect, we 
utilize two different cross-validation methods to measure 
the robustness of the model. The first is a common two-
fold cross-validation method where we randomly divide 
the total dataset into equally sized testing and training 
sets, with the criteria that the ratio of benign and malig-
nant lesions are maintained in each set. For a small data-
set such as the one we are using, this method uses the 
least amount of training data and can therefore still lead 
to overfitting of the classification model. To alleviate this 
issue, we generate the random training and testing sets 
100 times, and all results reported in Sect. 3 are the listed 
averages across all 100 randomly generated sets. For the 
second cross-validation scheme, we utilize a leave-one-
out style approach where all except one polyp is used in 
the testing set, and the “left out” polyp is tested. This is 
repeated until all polyps have been left out of the train-
ing set and the final classification results summarize all 
iterations of the leave-one-out models. The results of the 
leave-one-out cross validation method are detailed in the 
Appendix.

To perform classification, we use the function ‘ran-
domForest’ with the settings “ntreetry = 5000” and 
“doBest = True.” To perform the forward stepwise fea-
ture selection [36], we first do a preliminary classification 
using all available features and obtain the importance 
value for each feature by its GINI index [32]. The fea-
tures are then sorted based on a decreasing GINI index 
value. The RF classification is then run with the 3 high-
est importance features, and repeated with iteratively 
increasing number of features added in importance order 
[21]. This procedure is repeated for each of the 100 ran-
domized sets of testing and training data. The results are 
evaluated for each group, and the reported values show 
to average maximum area under the curve (AUC) of 
the receiver operating characteristic (ROC) curve. The 
results for the leave-one-out cross-validation method use 
this same feature selection procedure, only the distribu-
tion of training and testing sets are different.

Lastly, we note our choice of using RF classifier com-
pared to other classifiers such as support vector machine 
(SVM) [37] or K-nearest neighbors [38]. Through inter-
nal experiments, we have generally found that we achieve 
better classification through RF over the other two 

methods. RFs have shown good classification in a vari-
ety of applications [39], and has been found that they 
tend to outperform SVM in instances of low resolution, 
such as for the dataset of polyp images used in this study 
[40]. Further, RF is probabilistic in its design, and is not 
under the same linear constraints required by SVM for 
its hyperplane segmentation. This work demonstrates the 
feasibility and efficacy of these proposed vector textures 
through RF classification, and comparisons across multi-
ple classification modalities are subjects of future works.

Results and discussion
In this section, we first describe the dataset and evaluate 
two parameters for gradient and Hessian magnitude to 
obtain some preliminary results for further experiments. 
Then polyp classification is performed using the VTFs 
extracted from the four VTIs. At the end, we compare 
our classification results with four existing methods.

Polyp dataset
The data set used for these experiments consisted of 59 
patients with a total number of 63 polyps found through 
CTC screening. These polyps were all at least 30  mm 
or larger that were scheduled for surgical removal later. 
When they were removed, the pathology reports were 
obtained to verify whether the polyps were indeed 
cancerous as an adenocarcinoma or were benign/pre-
malignant as an adenomatous polyp. The breakdown of 
the dataset can be seen in Table 1. For classification, the 
dataset was divided into binary categories of malignant 
(adenocarcinoma) and pre-malignant (all others).

The regions of interest (ROIs), used to compute the 
VTFs described below, were manually selected around 
the polyp region of the CTC image. For each polyp, a 3D 
volume was extracted, which was confirmed by radiolo-
gists to ensure accuracy for the manual procedure. We 
note that a thresholding preprocessing step was used to 
discard all voxels below -450 HU within these ROIs as 
being predominately air from the lumen of the colon. 
The information encoded in these voxels from partial 
volume effects is mostly air and therefore contributes 
more noise to the polyp features for classification. Since 
the first and second order derivatives apply kernels to 
the polyp images, the border voxels still use the inten-
sity values provided outside of the ROI from the original 
CTC image. Examples of a polyp ROI slice are shown in 
Fig. 5 with each of the different image metrics used, i.e., 
the images in the original intensity domain, the gradi-
ent domain, and the Hessian (eigenvalue) domain. From 
the images, it is clear that each of the azimuth, polar, 
and magnitude images from the two derivative orders 
provide different types of information or different tex-
ture patterns. We hypothesize that given the same polyp 
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descriptor or VCM in this study, the extracted VTFs 
from the gradient domain would be different from the 
Hessian domain, reflecting the polyp information at dif-
ferent orders.

While this dataset is small, we note the medical appli-
cation to these polyp masses can still be quite signifi-
cant. These polyp masses are large enough that removal 
will always be necessary, but the type of treatment may 
change based on the pathology. For example, accu-
rate classification may help guide physicians to prevent 

unnecessary biopsy procedures which can help reduce 
medical costs and potential risks to the patient.

Experimental results
Two parameters of magnitude images
Gradient magnitude and Hessian eigenvalue magnitude 
are two kinds of geometric measurements which repre-
sent the vector length. Since gradient and Hessian images 
both contain image edge information, they could enhance 
the contrast of the image to some extent, most notably at 

Fig. 5  Sample slices of one polyp showing the different output variables with gray scale 256. (a): Original intensity; (b): Gradient magnitude; (c): 
Gradient azimuth angle; (d): Gradient polar angle; (e): Eigenvalue magnitude; (f): Eigenvalue azimuth angle; (g): Eigenvalue polar angle

Table 1  Characteristics of polyp data set

Class Pathology Total count Male/female Average 
size 
(mm)

Benign (0) Serrated adenoma 3 2:1 34.3

Tubular adenoma 2 2:0 35.0

Tubulovillous adenoma 21 11:10 37.6

Villous adenoma 5 4:1 55.0

Malignant (1) Adenocarcinoma 32 12:20 43.9
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the boundaries. Therefore, their magnitude might vary in 
an interval with a wide range. However, most of the infor-
mation is clustered in a very narrow interval as shown 
in Fig. 3. So, when we employ the t-th root mapping of 
Formula (10) to alleviate the issue, it is necessary to make 
sure how to set the value of t to obtain a top performance. 
To this goal, t is changed from 1 to 8 by the interval of 1 
to calculate the polyp descriptors according to Formulas 
(5) and (12) while the gray level is kept 32. Table 2 lists 
the AUC scores of magnitudes of gradient and three Hes-
sian eigenvalues. By consideration of their averages and 
their stabilities, we find t = 2 and t = 4 should be reason-
able choices for gradient and Hessian magnitude images 
in the following experiments.

The second important parameter of magnitudes is its 
gray levels which determine the magnitude images and 
the VCM size. A larger gray level will demonstrate more 
details of metric images while smaller gray levels will 
over smooth the VCMs which will affect the discrimina-
tion of the texture features. Therefore, it is necessary to 
test the gray level’s influence in the polyp classification as 
shown in Table 3.

Outcomes of angle‑based VCM
Both GAV and HAV are angle-based vector images 
which could be fed to VCM using Formula (27) to cal-
culate the eHMs after digitalization. GAV represents 
the gradient angle vector image while HAV reflects the 
novel angle vector image derived from the Hessian eigen-
value vector. Both contain the two components of the 
azimuth and polar angles. In the angular vector digitali-
zation, there are four parameters corresponding to the 
four angles, via Qa

g ,Qp
g ,Qa

h and Qp
h of Formulas (8), (9), 

(22) and (23). To avoid the matrix sparsity, we calculate 
the VCMs while Qa

g ∈ {7, 8, 9, 10, 11} , Qp
g ∈ {4, 5, 6} , and 

Qa
handQ

p
h ∈ {5, 6, 7, 8} . After classification via the RF clas-

sifier, their AUC scores are listed in Tables 4 and 5.

Table 4 illustrates that the GAV is very robust when the 
gray level varies from 28 to 66. The mean of AUC is about 
0.94 while its standard deviation is almost less than 0.03. 
Comparatively, AUC scores of HAV in Table 5 show that 
its fluctuation of their averages is a little wider than GAV, 
which varies from 0.897 to 0.949. Meanwhile, most of the 
standard deviations are in the range of [0.03, 0.04]. From 
the best results of GAV and HAV, both could reach a sim-
ilar classification level as high as 0.949.

Outcomes of vector (angle and magnitude)‑based VCM
Dissimilar to GAV and HAV which only contain angles, 
TGV and THV consist of all information including both 
gradient and Hessian eigenvalues, i.e., the magnitudes 
and the azimuth and polar angles. Both vector images 

Table 2  AUC scores of gradient magnitude and Hessian magnitude 
under different t-th root mappings

t-th root 
degree

Gradient magnitude Hessian magnitude

1 0.882 ± 0.006 0.914 ± 0.006

2 0.898 ± 0.007 0.912 ± 0.004

3 0.899 ± 0.011 0.911 ± 0.005

4 0.893 ± 0.005 0.912 ± 0.004

5 0.892 ± 0.009 0.911 ± 0.005

6 0.891 ± 0.006 0.910 ± 0.005

7 0.886 ± 0.009 0.909 ± 0.005

8 0.885 ± 0.008 0.909 ± 0.005

Table 3  AUC scores of gradient magnitude and Hessian magnitude 
under different gray levels while the t-th root is set to be 2

Gray level Gradient magnitude Hessian magnitude

28 0.909 ± 0.046 0.929 ± 0.035

32 0.898 ± 0.007 0.912 ± 0.004

36 0.891 ± 0.041 0.924 ± 0.037

40 0.916 ± 0.038 0.923 ± 0.035

44 0.886 ± 0.042 0.921 ± 0.038

48 0.891 ± 0.043 0.940 ± 0.033

52 0.891 ± 0.043 0.926 ± 0.035

56 0.891 ± 0.039 0.938 ± 0.031

60 0.894 ± 0.043 0.930 ± 0.033

64 0.891 ± 0.042 0.938 ± 0.033

68 0.891 ± 0.040 0.922 ± 0.034

Table 4  AUC scores of GAV (or T1) with quantization between 28 
and 66 and the t-th root is set to be 2

Qa
g Q

p
g AUC (mean ± SD)

7 4 0.941 ± 0.025

7 5 0.930 ± 0.035

7 6 0.930 ± 0.027

8 4 0.943 ± 0.027

8 5 0.922 ± 0.030

8 6 0.934 ± 0.026

9 4 0.946 ± 0.027

9 5 0.944 ± 0.030

9 6 0.941 ± 0.033

10 4 0.946 ± 0.026

10 5 0.948 ± 0.029

10 6 0.946 ± 0.030

11 4 0.943 ± 0.028

11 5 0.943 ± 0.031

11 6 0.934 ± 0.032
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have six parameters in their quantization, i.e., Qm
g  , Qa

g ,Qp
g  , 

Qm
h ,Qa

h and Qp
h . Like the angle-based VCM, we set some 

reasonable quantification levels for these parameters to 
generate non-sparse VCMs based on the best results of 
GAV and HAV. We hereby test TGV by changing Qm

g  in 
the range {1, 2, 3, 4} while Qa

g  keeps 10 and Qp
g  varies in 

the range {4, 5} as shown in Table 6. Dissimilarly, we test 
Qm
h  in {4, 5},Qa

h in {3, 4} and Qp
h in {2, 3, 4, 5, 6, 7, 8} as 

shown in Table 7 where t-th power is equal to 4. To meas-
ure the classification performances, their AUC scores are 
obtained to show their effectiveness.

Table  6 demonstrates that TGV improves the average 
AUC scores and decreases their standard deviation com-
pared with GAV’s classification results. That means all 
geometric components of gradient could provide some 
contribution to enhance the discrimination in polyp 

classification. Additionally, we find the similar trend for 
THV’s results in Table 7 which exceeds more than 1% by 
their best AUC scores.

Comparison to other methods
For reference on how well our proposed method per-
forms, we compare our results to some similar texture 
extraction methods and a state-of-the-art deep learning 
method as follows.

•	 Extended Haralick features (eHF) – this method 
extracts a set of 60 texture features from the GLCMs 
of the intensity image [21].

•	 HoG3D – this method counts the occurrences of 
gradient orientation in some cropped portions of 
the intensity image and generates some histograms 
which are joined to form gradient features [18].

•	 CoLIAGe – this model employs gradient angles 
to extract the entropy of every local patch to form 
global texture features by two joint histograms [19].

•	 VGG-16 – it is a widely cited deep learning method. 
Total of 20 salient slices were extracted from each 
polyp volume to feed to the VGG-16 pipeline for 
polyp classification [41].

Table 8 shows the results of comparison to the similar 
texture extraction methods listed above, where the same 
RF classifier was used, and the deep learning method. 
Our proposed method performed the best. We can 
see quite clearly that when comparing to the extended 
Haralick feature method, the T4 derived texture features 
outperformed the Haralick texture features with an AUC 
of 0.962 against 0.876. Comparing against other gradient 
angular features, our proposed angular texture features 
improved the performance substantially over the 3D 
HOG features (AUC = 0.804) and the CoLIAGe angu-
lar features (AUC = 0.923). The gain is also substantially 
higher over the VGG-16 outcome (AUC = 0.833). We 

Table 5  AUC values of HAV (or T3) with total quantization from 
25 to 64 and the t-th root is set to be 2

Qa
h Q

p
h

AUC (mean ± SD)

5 5 0.912 ± 0.042

5 6 0.898 ± 0.039

5 7 0.915 ± 0.034

5 8 0.949 ± 0.026

6 5 0.920 ± 0.039

6 6 0.897 ± 0.038

6 7 0.927 ± 0.030

6 8 0.936 ± 0.033

7 5 0.933 ± 0.032

7 6 0.915 ± 0.037

7 7 0.926 ± 0.036

7 8 0.903 ± 0.037

8 5 0.921 ± 0.036

8 6 0.922 ± 0.040

8 7 0.937 ± 0.036

8 8 0.914 ± 0.039

Table 6  AUC scores of TGV (or T2) under different combinations 
of gradient magnitude, gradient azimuth and gradient polar 
angle where t-th root is set to be 2

Qm
g Qa

g Q
p
g AUC (mean ± SD)

1 10 5 0.948 ± 0.029

2 10 5 0.941 ± 0.033

3 10 5 0.934 ± 0.032

4 10 5 0.919 ± 0.035

1 10 4 0.946 ± 0.026

2 10 4 0.950 ± 0.025

3 10 4 0.949 ± 0.027

Table 7  AUC scores of THV (or T4) under different combinations 
of Hessian magnitude, Hessian azimuth and Hessian polar angle 
where the t-th root is set to be 4

Qm
h Qa

h Q
p
h

AUC (mean ± SD)

4 3 6 0.913 ± 0.044

4 4 3 0.939 ± 0.034

4 4 4 0.951 ± 0.033

4 4 5 0.931 ± 0.036

4 4 8 0.954 ± 0.031

5 3 8 0.962 ± 0.027

5 4 2 0.912 ± 0.041
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note that deep learning methodologies such as VGG-
16 have a much higher data requirement than conven-
tional machine learning approaches. While we include 
the comparison to the VGG-16 model for comparison, 
we expect that the results of VGG-16 and other deep 
learning models such as those presented in refs. [42, 43] 
would be more comparable on a much larger dataset. 
Therefore, the eHF, HOG3D, and CoLIAGe models pro-
vide a more representative comparison and evaluation of 
the proposed vector-textures since they may be utilized 
under the same circumstances of fewer data entries.

Using a Wilcoxin ranked t-test, we obtained the quan-
titative measures for significant difference between 
the results of our proposed method and those of the 

reference methods as listed in Table 9. In all except one 
instance, we find that our results performed significantly 
better (p < 0.05) than the comparison methods.

Conclusions
To enhance the image contrast of the original CTC polyp 
images, this study utilizes gradient operator and Hessian 
operator to generate the corresponding gradient image 
and Hessian image. The gradient image is represented 
by a vector field. The Hessian image is represented, 
according to the definition, by a matrix field. To avoid 
the difficulty of manipulating matrices, we take the three 
eigenvalues of the Hessian matrix at each image voxel as 
a vector and reduce the matrix field as a vector field sim-
ilar to gradient field, thus all operations in the gradient 
domain are adapted to the Hessian domain. In addition, a 
novel concept of VTIs is proposed by the use of the vec-
tor geometric measures through the two vector fields in 
the corresponding gradient and Hessian domains, i.e., 
the GAV images (T1), the TGV images (T2), the HAV 
images (T3) and the THV image (T4). Moreover, another 
novel concept of vector-based CM or VCM is introduced 
to extract 2D texture patterns from these 2D/3D VTIs. 
These 2D texture patterns or VCMs can be viewed as the 
projection of the 2D/3D VTIs at different angles. From 
the projected VCMs, texture measures can be extracted 
as VTFs and classified by an existing classifier, such as 
RF as an example. Experimental outcomes demonstrated 
that the proposed VTF extraction method can outper-
form the state-of-the art feature extraction methods for 
polyp classification.

The novel textures introduced in this work are based on 
the CM. We had chosen to focus on the CM as previous 
studies demonstrated GLCM textures had typically out-
performed those of related matrix-based textures such 
as those from gray-level run-length matrices. While we 
only focused on the co-occurrence-based matrices here, 
we believe these other matrices can be another avenue 
to explore these vector-textures and will be considered 
in our future works. We also note that these vector-tex-
tures place an emphasis on characterizing more micro-
scopic properties of the lesions since they are based on 
the higher order derivative information. For classification 

Table 8  AUC, accuracy, sensitivity, and specificity values from 
comparative methods and our proposed method where HF 
represents Haralick feature

Overall, the T1, T2, T3 and T4 derived texture features of our method achieved 
much higher AUC values than the four typical methods. The ROC curves of 
our four angular texture feature extraction methods are shown Fig. 6, which 
provides a visual assessment on their performances with comparison to other 
four references of HF, HOG, CoLIAGe and VGG-16

Method AUC​ Accuracy Sensitivity Specificity

eHF 0.876 0.807 0.858 0.757

HOG3D 0.804 0.713 0.726 0.700

CoLIAGe 0.923 0.836 0.839 0.833

VGG-16 0.833 0.740 0.709 0.771

T1 0.948 0.868 0.883 0.853

T2 0.950 0.868 0.823 0.913

T3 0.949 0.863 0.847 0.879

T4 0.962 0.922 0.884 0.960

Fig. 6  The ROC curves presented for each comparative method and 
our proposed method. For visual clarity, only the highest performing 
gradient vector and Hessian vector curves are shown where HF 
represents the Haralick features

Table 9  P-values comparing proposed methods to comparison 
methods using Wilcoxin ranked sum test

Texture 
descriptor

CoLIAGe HF HOG3D VGG-16

T1  <  < 0.05  <  < 0.05  <  < 0.05  <  < 0.05

T2  <  < 0.05  <  < 0.05  <  < 0.05  <  < 0.05

T3  <  < 0.05  <  < 0.05  <  < 0.05  <  < 0.05

T4  <  < 0.05  <  < 0.05  <  < 0.05  <  < 0.05
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with handcrafted features, it is important to introduce as 
much relevant information to the classifier while mini-
mizing redundant information. Another topic for our 
future works will be looking into the integration of these 
vector-textures with other textures that emphasize more 
macroscopic lesion properties, such as the gray level 
size matrix. Appropriate feature selection methods will 
also be examined on how best to integrate these novel 
textures into the already existing library of handcrafted 
features.

Appendix
Some experimental results using leave‑one‑out scheme
The results of using a leave-one-out cross validation 
method are presented below. For each model training 
instance in a leave-one-out method, only a single polyp 
is removed for the testing set at a time. The process is 
repeated until each polyp has been removed once, and 
the output classification probability from each polyp 
can be used to evaluate the overall performance. Since 
the leave-one-out method uses all but one polyp each 
instance, there is much more training data available to 
generate a model. This is especially important when the 
dataset used is already small with only 63 polyps. As can 
be seen in the tables below, the repeated experiments 
with a leave-one-out classifier generally perform better 
than the two-fold cross validation equivalent since there 
is more data in the training set each time.

The experiments for the results of Tables 4, 5, 6 and 7 
of the two-fold cross validation method were repeated 
using the leave-one-out validation method and the 

Table 10  AUC scores of GAV (or T1) with quantization between 
28 and 66 using a leave-one-out cross validation

Qa
g Q

p
g AUC score

7 4 0.960

7 5 0.949

7 6 0.936

8 4 0.956

8 5 0.928

8 6 0.950

9 4 0.950

9 5 0.958

9 6 0.947

10 4 0.956

10 5 0.954

10 6 0.953

11 4 0.951

11 5 0.951

11 6 0.951

Table 11  AUC values of HAV (or T3) with total quantization from 
25 to 64 using leave-one-out cross validation

Qa
h Q

p
h

AUC score

5 5 0.941

5 6 0.961

5 7 0.917

5 8 0.975

6 5 0.956

6 6 0.971

6 7 0.947

6 8 0.954

7 5 0.921

7 6 0.918

7 7 0.938

7 8 0.939

8 5 0.973

8 6 0.943

8 7 0.960

8 8 0.941

Table 12  AUC scores of TGV (or T2) under different combinations 
of gradient magnitude, gradient azimuth and gradient polar 
angle using leave-one-out cross validation

Qm
g Qa

g Q
p
g AUC score

1 10 5 0.954

2 10 5 0.948

3 10 5 0.921

4 10 5 0.924

1 10 4 0.956

2 10 4 0.970

3 10 4 0.953

Table 13  AUC scores of THV (or T4) under different combinations 
of Hessian magnitude, Hessian azimuth and Hessian polar angle 
using leave-one out cross validation

Qm
h Qa

h Q
p
h

AUC score

4 3 6 0.922

4 4 3 0.966

4 4 4 0.982

4 4 5 0.957

4 4 8 0.961

5 3 8 0.968

5 4 2 0.936
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outcomes are shown in Tables 10, 11, 12 and 13 respec-
tively. We find for the GAV (or T1) model and the HAV 
(or T3) model, we can achieve AUC values of up to 0.960 
and 0.975 respectively by changing the scaling param-
eters. We similarly find the TGV (or T2) and the THV (or 
T4) models can achieve AUC values up to 0.970 and 0.982 
respectively. When comparing these values to those in 
Tables  4, 5, 6 and 7, we do find that the leave-one-out 
cross validation is able to obtain better overall classifica-
tion performance by virtue of having more data available 
at each training instance.
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