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Quantum teleportation enables the transfer of quantum states across any distance and plays a 
prominent role in quantum communication. In this paper, we theoretically investigate the feasibility 
of quantum two-qubit teleportation through a hybrid channel consisting of thermal, magnetic, and 
local components. To study this process, we check the success probability of quantum teleportation 
and address the quality of the teleported quantum state using fidelity and average fidelity concepts. 
Furthermore, we examine a crucial quantum aspect of the system, such as the non-Markovianity of the 
dynamics, by utilizing success probability witness related to the teleported state. Our findings show 
that this hybrid channel has a good potential to be successful in quantum teleportation.
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Abbreviations
Alice	� Sender
Bob	� Receiver
NMR	� Nuclear magnetic resonance
DM	� Dzyaloshinskii-Moriya interaction
KSEWA	� Kaplan-Shekhtman-Entin-Wohlman-Aharony interaction
SP	� Success probability
TD	� Trace distance
HSS	� Hilbert-Schmidt speed
CSS	� Classical statistical speed
POVM	� Positive operator-valued measure
QSS	� Quantum statistical speed
f	� Fidelity
fav	� Average fidelity
CT	�  Classical threshold

One key protocol in quantum information is quantum teleportation, which is used to transmit a quantum 
state1–3. By utilizing entanglement as a physical resource, quantum teleportation plays a crucial role in various 
quantum information tasks and serves as a fundamental component of quantum technologies. It plays a key role 
in the advancement of quantum communication4, quantum computing5, and quantum networks6,7. In principle, 
quantum teleportation which was first proposed by Bennett and et. al.1, refers to a method to transfer quantum 
information from a sender (Alice) at one location to a receiver (Bob) some distance away sharing a classical 
or non-classical channel8–12. The quantum information that is transmitted, for instance, could be an unknown 
quantum state where the information is encoded in the phase of its initial state11,12.

Today, quantum teleportation is recognized as a vital tool for various quantum protocols. So, for example, 
measurement-based quantum computing13, quantum repeaters14, and fault-tolerant quantum computation15. 
This process has been implemented in laboratories the world over employing many different substrates and 
technologies, including photonic qubits (e.g., light polarisation2,3,16–20, time-bin21–23, dual rails on a chip24, 
spin-orbit qubits25), nuclear magnetic resonance (NMR)26, optical modes27–35, atomic ensembles36–39, trapped 
atoms40–44, solid-state systems45–48, high-frequency phonons49, and several others8,50–54.

Quantum communication protocols’ performance can be categorized into five distinct stages11: quantum 
state preparing, channel sharing, information encoding, quantum state transmitting, and received information 
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decoding. To be communicated, quantum states need to interact with an external environment50,55,56. The impact 
of different environmental noises on quantum teleportation57–61 has been reported.

The interaction between a system and its surrounding environment is an inevitable phenomenon. These 
systems are not isolated and are referred to as open quantum systems in quantum information theory62–67. 
The dynamics of open quantum systems are categorized into Markovian and non-Markovian scenarios based 
on the system’s interaction with its environment. In Markovian dynamics, information consistently flows from 
the system to the environment. Conversely, in non-Markovian dynamics, information periodically returns to 
the system from the environment due to quantum memory effects68–70. In open quantum systems, quantum 
teleportation is affected by the kind of system evolution.

The model examined in this study for quantum teleportation is a hybrid channel71 consisting of thermal, 
magnetic, and local components. Also, we consider the effect of the classical static noise on the time-evolved 
state of the spin system. In more detail, the hybrid channel includes a two-qubit spin state affected by a thermal 
and magnetic field72. The spin system is considered to be characterized by the Dzyaloshinskii-Moriya interaction 
(DM), Kaplan-Shekhtman-Entin-Wohlman-Aharony interaction (KSEWA), and the anisotropic interaction73,74. 
The above-mentioned items indicate that the two-spin system is simultaneously affected by a thermal, magnetic, 
and classical channel.

In Ref.71, the quantum correlations and dynamics of coherence of a simple two-qubit Heisenberg spin 
state were investigated to study the symmetry of this hybrid channel. In this context, the thermal interaction 
picture of channels has been examined using the concept of Gibb’s density matrix operations75. Additionally, 
magnetic fields have been utilized to explicitly illustrate the dynamics of quantum correlations76. Local channels 
have demonstrated their effectiveness for information transmission over the years77. On the other hand, non-
local channels have been explored, and significant efforts have been made recently to enhance their practical 
applications78. Classical channels, in contrast to non-local channels, offer the advantage of easy implementation 
without requiring intricate designs. However, pure classical channels are susceptible to various flaws and 
disturbances, such as the influence of surface charge carriers79, and electronic currents80, among others.

In this paper, we address the two-qubit quantum teleportation via a hybrid channel consisting of a two-
qubit spin state influenced by a thermal and magnetic field under DM interaction, KSEWA interaction, and 
the anisotropic interaction by considering the classical static noise. To investigate the feasibility of quantum 
two-qubit teleportation through a hybrid channel, we examine the success probability (SP)69 of the process and 
evaluate the quality of the teleported quantum state by fidelity (f) and average fidelity (fav) criteria. Moreover, we 
analyze the non-Markovianity of the system dynamics, using several important well-known witnesses associated 
with the teleported state like the trace distance (TD)68,69,81, success probability, and fidelity82. The applications of 
the results of this work can be mentioned in the practical implementation of improved quantum teleportation. 
The key element in quantum teleportation is the quantum channel. Consequently, numerous approaches have 
been explored to implement and evaluate efficient channels for this purpose. In this work, we assess a hybrid 
channel for quantum teleportation that has not yet been addressed in the quantum communication literature. 
Additionally, we propose a novel method to easily detect non-Markovian effects and the influence of quantum 
memory by analyzing the success probability of quantum teleportation. This concept could pave the way for new 
research into the dynamics of open quantum systems.

The paper’s structure consists of four parts: Following the introduction, the preliminaries of quantum 
teleportation are outlined in Sec. 2. In Sec. 3, the theoretical model is presented as a resource for quantum 
teleportation. Lastly, Sec. 4 concludes by summarizing and discussing the key findings.

Preliminaries
Quantum teleportation
To better comprehend the process of quantum teleportation, we initially offer a concise explanation. Consider 
the quantum teleportation protocol between Alice and Bob, who are spatially separated and simultaneously 
share two qubits (A and B) prepared in a pure entangled state (as shown in Fig. 1)1,8,83. In the ideal protocol, 
this is considered maximally entangled, for example, |Φ⟩ = 1√

2

(
|00⟩ + |11⟩

)
 which is known as a Bell pair. 

At the input, Alice is given an additional qubit (a) with an unknown state ρin. Then, Alice applies a joint 
quantum measurement (well-known Bell detection), which projects her qubits a and A into one of the four 
Bell states (Pk ⊗ I)|Φ⟩ with k = 0, ..., 3 where Pk and I represent a qubit Pauli operator and identity matrix, 
respectively. Hence, the state of Alice’s input qubit has been changed due to measurement while Bob’s qubit (B) 
is simultaneously projected onto P†

kρinPk. Note that, this process preserves the no-cloning theorem of quantum 
mechanics84. In the next stage, Alice transfers the classical outcome k of her measurement to Bob. In the final 
step of the process, Bob performs Pk (conditional unitary) to recover the original input state ρin.

Some components, such as the Bell measurement and unitary transformation, are essential for quantum 
teleportation. However, the approach to achieving teleportation may vary when different setups are implemented.

In the standard protocol85, the remote transmission is achieved using a two-qubit mixed state ρch, acting as a 
channel or resource, and is prepared by a generalized depolarized quantum channel Λ(ρch), according to a two-
qubit input state ρin. Alice intends to transmit the encoded two-qubit state to Bob using this method. One can 
assume the unknown input (initial) state of teleportation for an arbitrary pure two-qubit state as:

	
|ψin⟩ = cos

(θ
2

)
|10⟩ + eiϕsin

(θ
2

)
|01⟩,� (1)
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in which θ and ϕ are the amplitude and phase of the initial state of teleportation, respectively. In the transfer of 
an arbitrary two-qubit state (input state ρin = |ψin⟩⟨ψin|)), one can define the output state of the teleportation 
as57,86:

	
ρout =

3∑
i,j=0

pij

(
σi ⊗ σj

)
ρin

(
σi ⊗ σj

)
.� (2)

where 
∑

pij = 1 and pij = Tr[Biρch]Tr[Bjρch]. that Λ(ρch) represents a generalized depolarized channel and Bi 
denotes the Bell state corresponding to the Pauli matrix σi and is given by:

	
Bi =

(
σ0 ⊗ σi

)
B0

(
σ0 ⊗ σi

)
, i = 1, 2, 3,� (3)

in which σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz and I represents the identity matrix. Moreover, for any two arbitrary 
qubits, each given in base {|0⟩, |1⟩}, we have B0 =

1
2

(
|00⟩ + |11⟩

)(
⟨00| + ⟨11|

)
.

The similarity between the input state and the teleported state can be assessed using the fidelity criterion. 
Therefore, the quality of the teleported state is determined by the fidelity f

(
ρin(t), ρout(t)

)
, which is given by84,87:

	
f
(
ρin(t), ρout(t)

)
=

(
Tr

(√√
ρin(t)ρout(t)

√
ρin(t)

))2

,� (4)

where the limit for fidelity is 0 ≤ f
(
ρin(t), ρout(t)

)
≤ 1. For f = 1, the optimum fidelity that leads to optimum 

teleportation can be obtained. Furthermore, one can define the average fidelity of teleportation fav as:

	
fav :=

1

4π

∫ 2π

0

dϕ

∫ π

0

f
(
ρin(t), ρout(t)

)
sin(θ)dθ.� (5)

Attention must be paid to the fact that the threshold of the maximum classical average fidelity is at fav = 2/3. If 
fav = 1, then, the optimum quantum teleportation can be achieved and depicts that less information is leaked.

Figure 1.  The schematic of the quantum teleportation protocol.
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Trace distance (TD) and success probability (SP)
The distinguishability of two evolving states of the quantum system ρin and ρout, which is one of the most well-
known approaches to identifying the non-Markovianity of the system dynamics which was suggested by Breuer 
et al.68,88, is trace distance (TD)68,69,81:

	
D (ρin, ρout) =

1

2
Tr|ρin − ρout|.� (6)

where the modulus of the operator is defined by |A| =
√
A†A. The bounds of TD are 0 ⩽ D (ρin, ρout) ⩽ 1, 

where D (ρin, ρout) = 0 if and only if ρin = ρout, and D (ρin, ρout) = 1 if and only if ρin and ρout are orthogonal. 
It can be proved that the maximum success probability (SP) Bob can achieve through an optimal strategy that is 
directly linked to the TD and is given by69:

	
SPmax =

1

2
[1 +D (ρin, ρout)] .� (7)

If we assume the states prepared by Alice are orthogonal such that D (ρin, ρout) = 1 then we have SPmax = 1 so 
that orthogonal states can be distinguished with certainty by a single measurement. It should be noted that we 
can calculate the success probability of quantum two-qubit teleportation by using Eq. 7 with the input (Eq. 1) 
and output (Eq. 2) states of the channel.

Hilbert-Schmidt speed (HSS) as phase estimator
Hilbert-Schmidt speed (HSS) is recognized as a potent tool for estimating the quantum parameters in quantum 
information theory. Assuming the quantum state ρ(ϑ), the HSS can be determined as89–91:

	
HSS(ϑ) = max

{Πx}
s[p(ϑ)] =

√
1

2
Tr
[dρ(ϑ)

dϑ

]2
.� (8)

which does not require diagonalizing dρ(ϑ)/dϑ.

Non-Markovianity measure with respect to the information backflow based on success 
probability
It is well known that non-Markovian effects can lead to quicker quantum evolution from an initial state to a 
subsequent state92–97. The success probability can effectively determine memory effects in system dynamics. 
Here, we emphasize exploiting the success probability as a valuable witness of the non-Markovian aspect of 
quantum evolutions, leading to practical benefits in analysis.

Following what was reported for the trace distance in Ref.68 and according to the formulation of the success 
probability (Eq. 7), another non-Markovian witness can be introduced based on the success probability SP. 
Regarding the idea that a nonmonotonic speed (positive acceleration) of quantum dynamics indicates memory 
effects in the system dynamics, a non-Markovianity witness based on SP can be introduced as

	
I(t) := dSP (t)

dt
> 0,� (9)

If the system interacts with its surrounding environment, i.e. there is a system-environment information 
exchange, the SP decreases monotonically, then dynamics is known as Markovian. So, we have for some time 
intervals I(t) < 0. In contrast, every positive value of I(t) > 0 denotes a witness of non-Markovianity.

According to this witness, similar to what has been done for other measures68,82,88,91,98, a determiner of the 
degree of non-Markovianity can be defined as

	
N := max

∫

I(t)>0

I(t)dt,� (10)

where the maximization is carried out over all possible parameterizations of the initial state. It is essential to note 
this point that in this article we evaluate the quantity presented in Eq. 10 according to the quantities of success 
probability, and fidelity, which expresses the degree of non-Markovian system dynamics.

Theoretical model
Consider a paradigmatic open quantum system including two-spin-1/2 of XXZ Heisenberg chain that is influenced by 
an external homogeneous magnetic field characterized by the Dzyaloshinskii-Moriya (DM) and Kaplan-Shekhtman-
Entin-Wohlman-Aharony (KSEWA) coupling interactions along the z-direction71,99 (as illustrated in Fig. 2). The 
Hamiltonian of this model in the standard basis {|00⟩, |01⟩, |10⟩, |11⟩} can be expressed as:
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H =




2B +∆z 0 0 −2iKz

0 −∆z 2iDz + 2J 0

0 −2iDz + 2J −∆z 0

2iKz 0 0 −2B +∆z


 .� (11)

in which ∆z is the real anisotropy coupling constant depicting the symmetric exchange spin-spin interaction in 
the z-direction, Dz the strength of the DM interaction that regulates the spin-orbit antisymmetric coupling, and J 
expresses the Heisenberg exchange interaction between the spins. Furthermore, Kz denotes the KSEWA interaction 
strength along the z-direction corresponding to symmetric spin-orbit coupling, while B represents the homogeneous 
component of the assumed magnetic field.

Given Gibbs’s density operator ρ(0, T ) = 1
Z

(
exp(−βH)

)
= 1

Z

∑
n exp(−βϵn)|ψn⟩⟨ψn| in which 

Z = Tr[exp(−βH ] represents the partition function, and β = 1/(kBT ) (where the kB is the Boltzmann constant 
with setting kB = 1 and T is temperature) and considering the Hamiltonian in Eq. 11 at thermal equilibrium with 
a thermal reservoir at temperature T, one can determine the thermal state density matrix in terms of eigenvalues 
ϵn and eigenvectors |ψn⟩ in the standard basis {|00⟩, |01⟩, |10⟩, |11⟩} as follows:

	

ρ(0, T ) =




ρ11 0 0 ρ14
0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ∗41 0 0 ρ44


 .� (12)

where corresponding elements of this matrix are obtained as

	

ρ11 =
1

Z
e−

∆z
T

(
cosh(φ)− B sinh(φ)√

B2 +K2
z

)
,

ρ14 = ρ∗41 =
1

Z
√

B2 +K2
z

iKze
−∆z

T sinh(φ),

ρ22 = ρ33 =
1

Z
e
∆z
T cosh(ω),

ρ23 = ρ∗32 =
1

Z
√

D2
z + J2

(−J − iDz) e
∆z
T sinh(ω),

ρ44 =
1

Z
e−

∆z
T

(
B sinh(φ)√
B2 +K2

z

+ cosh(φ)

)
,

� (13)

Figure 2.  The physical model of the hybrid channel with thermal, magnetic, and classical dephasing parts 
including the two-qubit Heisenberg spin state characterized by spin-spin, DM, and KSEWA interactions under 
classical static noise.
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in which φ = 1
T

(
2
√
B2 +K2

z

)
, ω = 1

T

(
2
√
D2

z + J2
)

 and | partition function is Z = 2e−
∆z
T

(
e
2∆z
T

cosh(ω) + cosh(φ)
)

.

We apply a common classical environment characterized by static noise to the two-qubit spin state. In the current 
scenario, the Hamiltonian that dictates the present physical model is expressed as71,100:

	
HXY = HX ⊗ IY + IX ⊗HY , with Hk =

(
∆kλ + ϵ 0

0 ϵ−∆kλ

)
,� (14)

in which Hk(k = X, Y ) represents the Hamiltonian state of the sub-system k, ϵ denotes the equal energy splitting 
between the sub-systems, I signifies the 2× 2 identity matrix, λ refers the coupling constant, ∆k detunes the 
stochastic behavior of the classical field and its value is flipping between ±1. The Hamiltonian in relation (14) 
commutes at different times, eliminating the need for the Dyson series101.

To evolve the two-qubit state in the classical field, we employ the time unitary operation UXY (t) = exp
[
−i

∫ t

t0
H(z)dz

]

102 with setting ℏ = 1. Then, the time-evolved state of the two qubits initially prepared in thermal state ρ(0, T ), when 
exposed to an identical channel, i.e., ∆X = ∆Y , can be calculated as:

	

ρ(t, T ) = UXX(t)ρ(0, T )U
†
XX(t) =




ρ11 0 0 e−4i∆Xλtρ14
0 ρ22 ρ23 0

0 ρ∗32 ρ33 0

ρ∗41e
4i∆Xλt 0 0 ρ44


 .� (15)

Here, the impact of static noise on the time-evolved state of the spin system is discussed. Accordingly, static noise 
is commonly determined by ∆Q which is the disorder parameter that has the probability distribution function 
O(δ) = 1/∆Q and depicts the range |δ − δ0| ≤ ∆2

Q/2, where δ0 represents the mean value of the probability 
distribution function71,102. In order to determine the influence of the static noise on the dynamics of the spin 
state, the time-evolved state density matrix was averaged over all possible noise states. Finally, one can integrate 
the matrix in Eq. 15 on r+ = δ0 −∆Q/2 and r− = δo +∆Q/2 as follows71,103:

	

ρst(t, T ) =

 r+

r−

1

∆Q
ρ(t, T )d∆X =




ρ11 0 0 ρ14
e−4iδ0λt sin(2∆Qλt)

2∆Qλt

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ14
e−4iδ0λt sin(2∆Qλt)

2∆Qλt
0 0 ρ44




.� (16)

that the non-vanishing elements of this matrix also follow the same elements of relation 13. It is noteworthy that the 
aforementioned final density matrix shows the two-spin system simultaneously affected by a thermal, magnetic, and 
classical channel. In this paper, we use the final density matrix in Eq. 16 which is called a hybrid channel, as a resource 
or channel for quantum two-qubit teleportation.

The important point in plotting the figures is that we use the nondimensionalized parameter method throughout the 
work as described in12,104. Hence, all parameters are considered nondimensionalized.

Discussion and results
The output state of quantum two-qubit teleportation for Eq. 16 as a resource or channel of quantum teleportation, 
substituting Eqs. 3, 1, and 16 in 2, can be calculated as:

	

ρout(t, T ) =




ρout,11 0 0 ρout,14
0 ρout,22 ρout,23 0

0 ρout,32 ρout,33 0

ρout,41 0 0 ρout,44


� (17)

where non-vanishing elements of the output matrix can be given by
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ρout,11 = ρout,44 =
e
2∆z
T cosh(φ) cosh(ω)(

e
2∆z
T cosh(ω) + cosh(φ)

)2 ,

ρout,14 = −
iJKz

(
1 + e2iϕ

)
sin(θ) sinh(φ) sinh(ω) sin(2∆Qλt)e

2∆z
T −i(4δ0λt+ϕ)

∆QλtT 2φω
(
e
2∆z
T cosh(ω) + cosh(φ)

)2 ,

ρout,22 =
1
2 sin

2(θ) cosh2(φ) + 1
2 cos

2(θ)e
4∆z
T cosh2(ω)(

e
2∆z
T cosh(ω) + cosh(φ)

)2 ,

ρout,33 =
1
2 cos

2(θ) cosh2(φ) + 1
2 sin

2(θ)e
4∆z
T cosh2(ω)(

e
2∆z
T cosh(ω) + cosh(φ)

)2 ,

ρout,23 = −
sin(θ)e−i(8δ0λt+ϕ)

(
K2

zω
2e2iϕ sinh2(φ) sin2(2∆Qλt)− 4∆2

QJ
2λ2t2φ2 sinh2(ω)e

4∆z
T +8iδ0λt

)

2∆2
Qλ

2t2T 2φ2ω2
(
e
2∆z
T cosh(ω) + cosh(φ)

)2 ,

ρout,32 =
sin(θ)e−i(8δ0λt+ϕ)

(
−1

4K
2
z

(
T 2ω2

)
sinh2(φ) sin2(2∆Qλt) + ∆2

QJ
2λ2t2

(
T 2φ2

)
sinh2(ω)e

4∆z
T +2i(4δ0λt+ϕ)

)

2∆2
Qλ

2t2T 2φ2ω2
(
e
2∆z
T cosh(ω) + cosh(φ)

)2 .

� (18)

Now using the output state of Eq. 17 and Eqs. 4, 5, 1, 7, and 8 we can investigate the qualitative behaviors of fidelity f, 
average fidelity fav, success probability SP, and Hilbert-Schmidt speed with respect to initial phase HSSϕ for quantum 
two-qubit teleportation based on hybrid channel (Eq. 16).

In Fig. 3a–d, the qualitative behaviors of success probability SP, fidelity f, average fidelity fav, and Hilbert-
Schmidt speed with respect to the initial phase of the input state of the teleportation HSSϕ are shown. The 
significant outcomes of successful quantum teleportation via the current hybrid channel are clearly depicted in 
this figure. One of these outcomes is that the success probability SP of quantum teleportation in some intervals is 
equal to unity or close to unity. It means that the initial state has been successfully transferred from Alice to Bob. 
Since the TD plays a crucial role in the SP formula and well-known witness to probing the non-Markovianity 

Figure 3.  The comparison between the dynamics of success probability SP, fidelity f, average fidelity fav 
and Hilbert-Schmidt speed with respect to phase HSSϕ in quantum two-qubit teleportation when (a) 
B = 1, J = 1, Kz = 5, Dz = 1, ∆z = 1,∆Q = 0.1, λ = 0.1 δ0 = 1, θ = π/2, ϕ = π, T = 1, (b) the same values 
of parameters in the previous term for more time, (c) the same values of parameters in the previous term for 
more time, and (d) B = 1, J = 1, Kz = 5, Dz = 1,∆z = 1,∆Q = 0.02, λ = 0.1,δ0 = 1, θ = π/2, ϕ = π, T = 1
. Here, CT = 2/3 ≈ 0.67 represents the classical threshold of teleportation. Note that, all parameters are 
nondimensionalized in plotting all figures throughout this article.
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of dynamics, hence the non-Markovianity of system dynamics also can be seen in this figure. Given Eqs. (9 
and 10), the non-Markovianity witness is based on the SP introduced. Therefore, in this figure, we can detect 
the non-Markovian effects for I(t) > 0 due to quantum memory effects. Additionally, as suggested in Ref.82, 
another non-Markovian witness can be introduced based on fidelity. Here we can see that fidelity and success 
probability behaviors are the opposite of each other. Hence, their information flows run in contrary directions. 
Moreover, we see that the values of the fidelity f and average fidelity fav are more over than the classical threshold 
CT in some intervals which indicates the good quality of quantum teleportation. Furthermore, we consider 
that the important information has been encoded in the phase of the initial qubit state and Alice transfer the 
quantum state to Bob. The quantum phase estimation via HSS in quantum teleportation based on the presented 
model is implemented. The significant point that can be stated here is that the information at the destination of 
the teleportation is suppressed over time. Of course, in some intervals of time, we can see that the HSS curve 
recovers after the suppression of oscillations due to dephasing effects, but many times, the amount of received 
information is low, which indicates that in very long times (more than 450 in Fig. 3c) Bob may have problems in 
receiving encoded information in the initial state phase. The interesting thing is that in Fig. 3d we can see that 
by reducing the disorder parameter ∆Q or static noise control parameter, Bob can still receive information for 
much longer times and have better quantum teleportation. This means that less noise in the classical field can 
bring better teleportation quality, which is in agreement with the practical view of teleportation.

Given the crucial role of the SP in quantum teleportation, our attention is directed towards the qualitative 
behavior of the SP. The temporal variations of the SP with increasing disorder parameter ∆Q or static noise 
control parameter are illustrated in Fig. 4a–c. This figure states that by decreasing the ∆Q, the better quality of 
quantum two-qubit teleportation can be achieved because of decreasing static noise of the classical field. Hence, 
to improve quantum teleportation we must prevent additional noise from entering the system in the current 
model. All Fig. 4a–c are plotted with the same parameter values. Fig. 4a,b are plotted for a better understanding 
of the system’s behavior in different time intervals, and Fig. 4c is its contour plot. Fig. 4b shows that the SP can 
be obtained in more time with the setting of ∆Q. Fig. 4c also displays the necessity of decreasing the ∆Q to better 
transfer of quantum state.

In Fig. 5, the time evolution of the SP with increasing the homogeneous component of the magnetic field 
B is plotted. It is clear that the qualitative behavior of the SP for quantum two-qubit teleportation based on the 
present channel is disturbed under increasing the homogeneous component of the magnetic field B. Hence to 
enhance the quality of quantum teleportation based on the hybrid channel, the external homogeneous magnetic 
field must be lower than order 1.

Next, in Fig. 6a, b, the qualitative behaviors of the SP with increasing the KSEWA interaction strength Kz and 
with increasing the anisotropy coupling constant ∆z are presented, respectively. In Fig. 6a, as Kz increases, the 
qualitative behavior of the SP becomes more oscillatory, and the value of the SP approaches unity. Consequently, 
the quantum teleportation based on a hybrid channel is enhanced under the influence of the KSEWA interaction. 
Conversely, in Fig. 6b, as ∆z rises, we observe that the qualitative behavior of the SP becomes less oscillatory, and 

Figure 4.  The temporal variations of success probability SP of quantum two-qubit teleportation with 
increasing disorder parameter ∆Q (increasing static noise) when (a) B = 0.6, J = 1.2, Kz = 4, Dz = 2,
∆z = 1, λ = 0.08,δ0 = 1, θ = π/2, ϕ = π, T = 1, (b) the same values of parameters in the previous term for 
more time, and (c) the contour plot ∆Q vs t with the same values of parameters in previous term.
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the value of the SP decreases. Hence, in contrast to Fig. 6b, quantum teleportation based on the current hybrid 
channel is negatively affected by the anisotropy coupling.

Moreover, the temporal variations of the SP with amplifying the spin-spin exchange interaction J are depicted 
in Fig. 7. We can derive the result that for the J > 0 which represents the interaction of the antiferromagnetic 

Figure 7.  The time evolution of success probability SP of quantum two-qubit teleportation with 
increasing the strength of the Heisenberg exchange interaction J when (a) B = 0.6, Kz = 4.2, Dz = 3,
∆z = 1,∆Q = 0.2, λ = 0.08,δ0 = 1, θ = π/2, ϕ = π, T = 0.9 and (b) B = 1.05, Kz = 4.7, Dz = 3,
∆z = 0.9,∆Q = 0.0.063, λ = 0.08,δ0 = 1, θ = π/2, ϕ = π, T = 0.7.

 

Figure 6.  The qualitative behavior of success probability SP of quantum two-qubit teleportation 
with increasing (a) the KSEWA interaction strength Kz when B = J = Dz = ∆z = T = δ0 = 1,
∆Q = λ = 0.1, θ = π/2, ϕ = π and (b) the anisotropy coupling constant ∆z when 
B = 0.4, J = 1.15, Kz = 3.7, Dz = 1.5∆Q = 0.2, λ = 0.08,δ0 = 1, θ = π/2, ϕ = π, T = 0.85.

 

Figure 5.  The time evolution of success probability SP of quantum two-qubit teleportation with 
increasing the homogeneous component of the magnetic field B when (a) J = 1.2, Kz = 4.8, Dz = 2,
∆z = 1,∆Q = 0.3, λ = 0.1,δ0 = 1, θ = π/2, φ = π, T = 0.8 and (b) the contour plot B vs t when 
J = 1.1, Kz = 3.8, Dz = 2,∆z = 1,∆Q = 0.1, λ = 0.09,δ0 = 1, θ = π/2, ϕ = π, T = 0.4.
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between the spin sites, with rising the J the qualitative behavior of the SP decreases. But, for J < 0 which 
represents the interaction of the ferromagnetic between the spin sites, the contrary result is obtained.

At last, the temporal variations of the SP for various values of the strength of the DM interaction Dz is 
plotted in Fig. 8a. The findings from this figure indicate that with the increase in the strength of the interaction 
Dz, the value of SP decreases. In addition, it can be seen that when the values of Dz and Kz become the same, 
the oscillations of SP behavior are suppressed, and the value of SP decreases. Besides, the qualitative behavior 
of the SP versus Dz and Kz at the initial time t = 1 for two-qubit quantum teleportation is illustrated in Fig. 8b. 
Here, we see that the same values of the Dz and Kz lead to the suppression of the SP in the two-qubit quantum 
teleportation based on the current model.

Conclusion
Investigating the performance of different channels and examining the success of quantum teleportation is an 
essential task in quantum communication. In this paper, we theoretically investigate the feasibility of quantum 
two-qubit teleportation based on a hybrid channel including two-spin of XXZ Heisenberg chain influenced by 
an external homogeneous magnetic field characterized by Dzyaloshinskii-Moriya (DM) interaction, Kaplan-
Shekhtman-Entin-Wohlman-Aharony (KSEWA) interaction, and anisotropy interaction. In detail, the hybrid 
channel proposed here refers to the two-spin system simultaneously influenced by a thermal, magnetic, and 
classical channel that contains classical static noise. This hybrid channel allowed us to investigate various 
possibilities, including the simultaneous investigation of several interactions, thermal and magnetic effects, and 
the effects of classical static noise at the same time corresponding to the evolution of the system in quantum 
teleportation that it is very valuable in the practical implementation of quantum teleportation.

To study the quality of quantum two-qubit teleportation based on a current hybrid channel, we used the 
criteria of success probability (SP), fidelity (f), and average fidelity (fav). The main focus of this work was 
on the qualitative behavior of the SP for the quantum two-qubit teleportation. Furthermore, we considered 
that the important information has been encoded in the phase of the initial qubit state and Alice transferred 
the quantum state to Bob. We report on the quantum phase estimation using Hilbert-Schmidt speed (HSS) 
in quantum teleportation based on the presented model. We illustrate how adjusting system parameters can 
achieve improved quantum teleportation performance within this framework. 

In particular, by decreasing the static noise control parameter we achieved a stable SP, fidelity, average fidelity, 
and quantum phase estimation according to this hybrid channel over a long time for the faithful quantum two-
qubit teleportation. Furthermore, the quantum teleportation based on a hybrid channel under the effect of the 
KSEWA interaction is improved. On the contrary, the quantum teleportation under the effect of the anisotropy 
coupling is disturbed. Moreover, we derived the result that for the J > 0 which represents the interaction of 
the antiferromagnetic between the spin sites, with rising the J the quantum teleportation can be disturbed. 
But, for J < 0 which represents the interaction of the ferromagnetic between the spin sites, the contrary result 
is obtained. One outcome is that when the strength of DM and KSEWA interactions are equal, the success 
probability of two-qubit teleportation in the current model reaches its minimum. This finding could inspire 
additional exploration of the hybrid channel in quantum communication. Finally, corresponding to system 
parameters, we illustrated that this hybrid channel based on the current model has a good potential to be 
successful in quantum teleportation.

Another significant finding was our introduction of a robust witness for identifying non-Markovian behavior 
in system dynamics and quantum memory effects, utilizing success probability, which can rival the effectiveness 
of trace distance. Based on this witness, we assessed the non-Markovian effects in the quantum teleportation 
process. We demonstrated that during certain time intervals, the suggested hybrid channel distinctly exhibited 
the non-Markovian effects.

This article can be motivation for the implementation of different hybrid channels in quantum communication 
to improve the quantum state transformation. Our findings could potentially address persistent challenges in 

Figure 8.  (a) The temporal evolution of success probability SP of two-qubit quantum teleportation with 
increasing the strength of theDM interaction Dz when B = 1, J = 1, Kz = 4,∆z = 1,∆Q = 0.1, λ = 0.1,
δ0 = 1, θ = π/2, ϕ = π, T = 1, and (b) the qualitative behavior of the SP versus Dz and Kz when 
B = 1, J = 1,∆z = 1,∆Q = 0.1, λ = 0.1, δ0 = 1, θ = π/2, ϕ = π, T = 1, t = 1.
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achieving reliable quantum teleportation over extended distances, thereby enhancing various applications 
such as information security105, quantum remote sensing106, quantum network7, radar107, lidar108, imaging109, 
antenna design110, navigation111, and quantum computing system83.
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