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Abstract

Background: Gene duplication and the subsequent divergence in function of the resulting paralogs via
subfunctionalization and/or neofunctionalization is hypothesized to have played a major role in the evolution of
plant form. The LEAFY HULL STERILE1 (LHS1) SEPALLATA (SEP) genes have been linked with the origin and
diversification of the grass spikelet, but it is uncertain 1) when the duplication event that produced the LHS1 clade
and its paralogous lineage Oryza sativa MADS5 (OSM5) occurred, and 2) how changes in gene structure and/or
expression might have contributed to subfunctionalization and/or neofunctionalization in the two lineages.

Methods: Phylogenetic relationships among 84 SEP genes were estimated using Bayesian methods. RNA
expression patterns were inferred using in situ hybridization. The patterns of protein sequence and RNA expression
evolution were reconstructed using maximum parsimony (MP) and maximum likelihood (ML) methods,
respectively.

Results: Phylogenetic analyses mapped the LHS1/OSM5 duplication event to the base of the grass family. MP
character reconstructions estimated a change from cytosine to thymine in the first codon position of the first
amino acid after the Zea mays MADS3 (ZMM3) domain converted a glutamine to a stop codon in the OSM5
ancestor following the LHS1/OSM5 duplication event. RNA expression analyses of OSM5 co-orthologs in Avena
sativa, Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor followed by ML
reconstructions of these data and previously published analyses estimated a complex pattern of gain and loss of
LHS1 and OSM5 expression in different floral organs and different flowers within the spikelet or inflorescence.

Conclusions: Previous authors have reported that rice OSM5 and LHS1 proteins have different interaction partners
indicating that the truncation of OSM5 following the LHS1/OSM5 duplication event has resulted in both partitioned
and potentially novel gene functions. The complex pattern of OSM5 and LHS1 expression evolution is not
consistent with a simple subfunctionalization model following the gene duplication event, but there is evidence of
recent partitioning of OSM5 and LHS1 expression within different floral organs of A. sativa, C. latifolium, P. glaucum
and S. bicolor, and between the upper and lower florets of the two-flowered maize spikelet.
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Background
The diversification of paralogs following developmental
gene duplication events is hypothesized to have played a
major role in the evolution of morphological form [1-3].
Three general fates are hypothesized for duplicated gene

products [2]. In the bulk of cases one of the gene pro-
ducts is predicted to accumulate mutations, become a
pseudogene and be purged from the genome (pseudo-
genization). Alternatively, in a limited number of cases
it is hypothesized that either changes to regulatory
regions will result in the ancestral gene function being
partially or completely partitioned between the two
duplicates (subfunctionalization), or changes to regula-
tory domains and/or coding regions will result in a new
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gene function in one or both of the duplicates (neofunc-
tionalization). Either the neofunctionalized developmen-
tal gene copies alone, or a combination of sub- and
neofunctionalized copies are hypothesized to provide
the raw genetic material necessary for the production of
novel morphological structures.
The monocot clade comprises approximately 56,000

flowering plants, including such morphologically diver-
gent lineages as orchids, palms, gingers, and grasses.
Most monocot inflorescences contain one-many flowers,
comprised of two whorls of three tepals, six stamens, and
a three-carpellate pistil [4]. In contrast, grass inflores-
cences have, depending on the species, 1-40 flowers (or
florets) collected into novel structures called grass spike-
lets [5]. At the base of each grass spikelet are two bract-
like structures called glumes and each grass floret typi-
cally contains a lemma, a palea, two lodicules, three sta-
mens, and a pistil. Sister to the grasses is a lineage
comprised of the small families Joinvilleaceae and
Ecdeiocoleaceae [6]. Joinvilleaceae and Ecdeiocoleaceae,
in addition to other non-grass members of the graminoid
Poales clade, have typical monocot flowers suggesting
that a series of profound developmental and genetic
changes occurred early in the history of the Poaceae line-
age to produce grass spikelets, glumes, lemmas, paleas
and lodicules typical of most taxa within the family.
The LOFSEP SEPALLATA (SEP) genes - containing

the rice Oryza sativa MADS1/LEAFY HULL STERILE1
(OsMADS1/OsLHS1), Oryza sativa MADS5 (OSM5) and
Oryza sativa MADS34/PANICLE PHYTOMER2
(OsMADS34/OsPAP2) genes, the petunia FLORAL
BINDING PROTEIN9 (PhFBP9) and PhFBP23 genes,
and Arabidopsis SEP1, SEP2 and SEP4 genes [7,8] - are
hypothesized to have played a role in the origin and
diversification of the grass spikelet [8,9]. SEP genes act
as co-factors with ABC identity genes to help specify
the identity of the different floral whorls [10,11].
Although the four Arabidopsis SEP (AtSEP1-4) genes
are functionally redundant [12], at least two grass mem-
bers of the LOFSEP clade, the rice OsLHS1/MADS1 and
OsPAP2/MADS34 genes, have non-redundant roles dur-
ing various stages of inflorescence development. Muta-
tions to OsLHS1/MADS1 and OsPAP2/MADS34 are the
basis for three named mutants: the OsLHS1/MADS1
mutants leafy hull sterile1 and naked seed rice (nsr), and
the OsPAP2/MADS34 mutant panicle phytomer2
(Ospap2). Both Oslhs1 and Osnsr are characterized by
having leafy lemmas and paleas, leafy lodicules that
resemble the lemma and palea, a decreased number of
stamens, and occasionally, an extra pistil or floret
[13,14]. Ospap2-1 mutants have more inflorescence
branches, a disorganized arrangement of branches and
spikelets, and elongated glumes and sterile lemmas com-
pared to WT, but no obvious abnormalities in the

lemma, palea, lodicules, stamens and pistil [15]. In a
separate study, rice osmads34 mutants were reported as
displaying an increase in the number of primary inflor-
escence branches, fewer secondary branches, fewer spi-
kelets, and elongated sterile lemmas [16]. The difference
in the number of secondary branches between the two
studies is likely due to the different genetic backgrounds
and type of mutations [16], but both studies agree on
roles for the gene in regulating inflorescence branch
number and sterile lemma morphology. Mutants of the
remaining rice LOFSEP gene, osmads5, have only mild
phenotypes compared to the WT plants, with lodicules
attached to the palea and lemma [17]. Silencing of the
rice LHS1, OsMADS5 and the two SEP3 co-orthologs,
OsMADS7 and OsMADS8 is sufficient to convert floral
organs into leaf-like structures suggesting the four genes
in concert perform the vast majority of SEP or E-class
function during floral development [18].
Phylogenetic analyses of the monocot LOFSEP clade

reconstruct the LHS1 and OSM5 clades as sister taxa,
and the PAP2 clade as sister to a combined LHS1/
OSM5 clade [3,19]. These analyses suggest that both the
LHS1/OSM5 and the LHS1+OSM5/PAP2 gene duplica-
tions occurred near the base of the grass family [3,19],
but additional sequences from early diverging grasses
and other graminoid Poales are necessary to both test
this hypothesis and provide a framework to investigate
evidence of gene sub- and/or neofunctionalization
within the lineage.
Expression patterns provide evidence of potential sub-

functionalization and neofunctionalization between dif-
ferent paralogs [2]. Of the grass LOFSEP genes,
expression patterns within the LHS1 clade are the most
extensively studied and have been detected in the floral
and spikelet meristems, in lemmas and paleas, and var-
iously in the other floral organs, but not in glumes
(except in wheat) [9,20,21]. Reinheimer et al. [20] used
maximum parsimony (MP) character reconstructions
and estimated an ancestral LHS1 expression pattern in
the lemma, palea and carpels. LHS1 expression in lodi-
cules was reconstructed to have been gained indepen-
dently in the barley (Hordeum vulgare) lineage and at
the base of the centothecoid and panicoid clade. LHS1
expression in stamens was gained independently in the
maize (Zea mays) and Chasmanthium latifolium
lineages, and LHS1 expression in the gynoecium was
inferred to have been lost independently in the Eleusine
indica and Paniceae (Pennisetum glaucum and Mega-
thyrsus maximus) lineages. Based on this comparative
analysis LHS1 was also hypothesized to act as a selector
gene [22], specifying the terminal floret, in species
whose spikelets mature basipetally, but not in species
whose spikelets mature acropetally [9,20]. This complex
pattern of LHS1 expression pattern in grasses led
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Malcomber and Kellogg [9] to hypothesize that differ-
ences in LHS1 expression pattern coupled with changes
in interacting partner could have played a major role in
the origin and diversification of the grass spikelet.
Expression profiles of PAP2 and OSM5 co-orthologs in
grasses are currently limited, but rice OsMADS34/PAP2
is broadly expressed in the floret meristem early in
development, before becoming localized to the lemma,
palea and stamens later in development [23]. Rice
OSM5 is expressed in stamens and carpels, but not lem-
mas and paleas [24] and expression of the maize OSM5
co-ortholog, ZmM3, is restricted to the lower floret [25].
Adding additional expression data from the OSM5

lineage and investigating the evolution of LOFSEP
expression patterns within a phylogenetic context will
not only provide new insights into possible evidence of
sub- or neo-functionalization in the clades, but also pro-
vide insights into the patterns of gene evolution follow-
ing duplication events.

Methods
Plant Materials
All plants were grown in greenhouses under natural
light at 20 to 28°C with twice daily watering and regular
fertilizing at California State University - Long Beach.

Gene Isolation
Total RNA was extracted from inflorescences, leaves
and vegetative apices and cDNA synthesized as
described by Woods et al. [26]. LOFSEP genes were iso-
lated using either a semi-nested RACE PCR approach
anchored using a polyT + adaptor primer (5’-CCG GAT
CCT CTA GAG CGG CCG CTT TTT TTT TTT TTT
TTT V-3’) or using species specific primers with the
reverse primer located in the 3’ UTR (Additional File 1).
All primers were designed using Primaclade [27]. PCR
products were cleaned using silica spin column (Epoch
Biolabs, Sugar Land, TX, US) and sub-cloned using a
pGEM-T vector kit (Promega, Madison, WI, US). Both
DNA strands were then sequenced using standard
dideoxy sequencing protocols. The 35 new LOFSEP
sequences isolated during this research have been
deposited with the GenBank Data Libraries [Genbank:
JN661596-JN661630]

Expression Analysis
RNA in situ hybridization of OSM5 co-orthologs in
Avena sativa, C. latifolium, H. vulgare, P. glaucum and
Sorghum bicolor were conducted on developing spikelets
using 3’ UTR probes derived from Reverse Transcription
Polymerase Chain Reaction (RT-PCR) gene fragments as
described by Malcomber and Kellogg [9]. Slides were
imaged using an Olympus BX51 compound microscope
with an Olympus DX4 digital camera. Hybridizations

were repeated at least three times using different dis-
sected and embedded materials to check for consistency.
Images were cropped and adjusted for white balance
using Adobe Photoshop CS5. Sense negative control
hybridizations all showed no staining (data not shown).

Phylogenetic and molecular evolutionary analyses
LOFSEP genes were identified by Basic Local Alignment
Search Tool (BLAST) searches at the National Center
for Biotechnology Information (NCBI) (http://www.ncbi.
nlm.nih.gov) and PlantGDB (http://www.plantgdb.org)
using full-length coding regions of the rice OsLHS1/
MADS1 (Os03g11614), OsMADS5 (Os06g06750) and
OsPAP2/MADS34 (Os03g54170) sequences as search
seeds. Full-length sequences were assembled and trans-
lated into conceptual amino acids using Mesquite 2.74
[28] and then aligned using multiple sequence compari-
son by log-expectation (MUSCLE) [29] before being
manually adjusted using MacClade 4.0 [30]. As in pre-
vious analyses of the SEP gene family [3,7,9,20], no
regions were considered unalignable and excluded from
subsequent analysis (See Additional File 2 for the phylo-
genetic data set). Bayesian phylogenetic analyses of the
full-length LOFSEP data set using MrBayes 3.1.2 [31]
were run on the Grethor parallel processing cluster at
the University of Missouri - St. Louis and consisted of
two separate searches of ten million generations using
flat priors and the General Time Reversible (GTR)
model of sequence evolution with invariant sites and
gamma distributed rates partitioned according to codon
position (GTR + I + SS). Trees were sampled every
1,000 generations and convergence between the two
runs was determined by examining the average standard
deviation of the split frequencies. After ten million gen-
erations the split frequencies between the two runs was
0.006531. After convergence had been assured the first
25% of trees were removed as burn-in and clade cred-
ibility values estimated using MrBayes.
The Shimodaira-Hasegawa test [32] for significance

between the best maximum likelihood (ML) tree identi-
fied in the Bayesian search and the best tree consistent
with the LHS1/OSM5 duplication mapping at the base
of the combined Bambusoideae, Ehrhartoideae and
Pooideae (BEP) and Panicoideae, Aristidoideae, Chlori-
doideae, Centothecoideae, Micrairoideae, Arundinoideae
and Danthonioideae (PACCMAD) clade and after the
divergence of Pharioideae was conducted in PAUP* 4.0
[33].
MP and ML character reconstruction analyses were

conducted using Mesquite version 2.74 [28]. To facili-
tate comparisons among the different taxa we followed
Whipple et al. [34], Sajo and Rudall [35] and Preston et
al. [36] and considered: 1) bract 6 of the early diverging
grass Streptochaeta angustifolia as homologous to one
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of the outer tepals in other monocots, a sepal in eudi-
cots and the lemma in spikelet grasses, 2) bracts 7 and
8 of S. angustifolia as homologous to the remaining two
outer tepals in other monocots, sepals in eudicots, and
the palea of spikelet grasses, and 3) bracts 9-11 of S.
angustifolia as homologous to the inner tepals in other
monocots, petals in eudicots, and lodicules in spikelet
grasses.
Tests for sites potentially under positive selection

within the LOFSEP alignment utilized the best ML
topology from the Bayesian search and the CODEML
program within the Phylogenetic Analysis Using Maxi-
mum Likelihood (PAML) package [37] on the Grethor
parallel processing cluster at University of Missouri - St
Louis. Evidence of positive selection at particular codons
was tested using the nested codon models M0 and M3,
M1a and M2a, and M7 and M8 [38-40] with signifi-
cance determined using a standard likelihood ratio test
(LRT) statistic against a c2 distribution with two degrees
of freedom.
We also tested for sites potentially under positive

selection on the branch subtending the LHS1 clade, the
branch subtending the OSM5 clade, and the branch sub-
tending the LHS1+OSM5 clades (Branches 1 to 3, Figure
1) using the modified branch-site models A and B
[39,40]. Model A was compared with model M1a (Near-
lyNeutral) and model B was compared with M3 (dis-
crete) with two site classes in a LRT against a c2
distribution with two degrees of freedom [39,40]

Results
LOFSEP gene duplication and loss in graminoid Poales
Our Bayesian phylogenetic analysis of 84 LOFSEP genes
estimated well-supported grass LHS1 (1.00 posterior
probability [PP]), OSM5 (1.00 PP), and PAP2 (1.00 PP)
clades (Figure 1 and Additional File 3). Although the
sister relationship of the LHS1 and OSM5 subclades was
only weakly supported (0.88 PP), the sister relationship
of Joinvillea LHS1/OSM5-like (JaL1O5) to the LHS1/
OsMADS5 clade was well supported (1.00 PP). The first
sequence to diverge within the LHS1 clade was isolated
from a member of the earliest diverging lineage of
grasses, S. angustifolia (subfamily Anomochlooideae),
followed by a member of the earliest diverging grass
lineage with true spikelets, Pharus latifolia (subfamily
Pharioideae). To further investigate support for the esti-
mated relationships we employed a Shimodaira-Hase-
gawa (SH) test [32] to compare the best ML tree from
the Bayesian search with the best ML tree satisfying the
constraint that the LHS1/OSM5 duplication occurred at
the base of the BEP+PACCMAD clades (after the diver-
gence of P. latifolia). This analysis estimated the con-
straint tree (-ln 29886.59) as significantly less likely than
the unconstrained analysis (-ln 23530.75, P < 0.001).

Taken together, these data suggest that the LHS1/OSM5
(L1O5) duplication event occurred at the base of the
grass family.
A clade of L1O5-like genes from two members of the

graminoid Poales family Restionaceae was sister to
JaL1O5, grass LHS1 and OSM5 clades, consistent with
organismal relationships [6]. Both sampled members of
the Restionaceae, Chondropetalum tectorum and Tham-
nochortus insignis,, had two L1O5 gene copies. C. tec-
torum L1O5a (CtL1O5a) and T. insignis L1O5a
(TiL1O5a) formed a well-supported sister relationship
(1.00 PP) that was sister to a CtL1O5b and TiL1O5b
clade (1.00 PP), suggesting a gene duplication at the
base of the African Restionaceae clade, or perhaps dee-
per within the lineage. A sequence isolated from a
member of the Poales family Cyperaceae, Cyperus invo-
lucrata L1O5 (CiL1O5), was sister to the Restionaceae
L1O5, JaL1O5, and grass LHS1/OsMADS5 clade (1.00
PP) suggesting an origin for the L1O5 LOFSEP clade at
least within Poales, and potentially deeper within
monocots.
Sister to the grass PAP2 clade was Joinvillea JaPAP2

(1.00 PP). This graminoid Poales clade was, in turn, sis-
ter to a clade of two oil palm sequences (Elias EgAGL2-
4 and EgAGL2-5) that together comprised a well-sup-
ported commelinoid PAP2 clade (1.00 PP). Sister to the
commelinoid PAP2 clade was a well-supported clade
(0.99 PP) comprised of two orchid (Dendrobium
DOMADS3 and Oncidium OgrMADS11) and two lily
sequences (Lilium LlMADS3 and LlMADS4). The Poales
L1O5 and monocot OsMADS34/PAP2 clades are, in
turn, sister to an Acorus LOFSEP gene (AaAGL2, 1.00
PP). Acorus is considered to be within the earliest diver-
ging monocot lineage [4], suggesting that the gene
duplication event to produce the PAP2 and L1O5
lineages occurred after the divergence of the Acorales,
but prior to the divergence of the Liliales, Asparagales
and Commelinoid clade.

Molecular evolution of LOFSEP genes
Changes in an amino acid sequence could have a dele-
terious, neutral or potentially beneficial effect on protein
function by altering binding domains, changing protein
stability, or modifying protein-folding ability. We used a
combination of ML molecular evolutionary and MP
character reconstruction approaches to investigate the
changes in amino acid sequence prior to and following
the LHS1/OSM5 duplication event at the base of the
grass family. We first used the CODEML program
within the PAML package [37] to test for evidence of
positive selection using the nested models M0 and M3,
M1a and M2a, M7 and M8 over the length of the
aligned proteins followed by the branch-site models A
and B on the branches subtending the LHS1, OSM5 and
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Amborella AtrAGL2 AY850179 AMBO
Acorus AaAGL2 AY850179 ACOR

Aristida AplLHS1 AY597511 POAC
Chasmantium ClLHS1 AY597513 POAC

Megathyrsus MmLHS1 DQ315475.1 POAC
Panicum PmLHS1 AY597519 POAC

Pennisetum PgLHS1 AY597520 POAC
Setaria SiLHS1 AY597521 POAC
Miscanthus MsLHS1 JN661626 POAC
Sorghum SbLHS1 Sb01g042840 POAC

Zea ZmM14 LHS1b AJ005338 POAC
Zea ZmM8 LHS1a Y09303 POAC

Danthonia DsLHS1 AY597514 POAC
Eleusine EcLHS1 AY597516 POAC

Eleusine EiLHS1 DQ315476.1 POAC
Eriachne EaLHS1 JN661625 POAC
Avena AsLHS1 AY597512 POAC
Hordeum Hv AJ249145 POAC

Lolium LpMADS9 LHS1 AY198334 POAC
Brachypodium BdLHS1 Bd1g69890 POAC

Dendrocalamus DlMADS8 AY599761 POAC
Dendrocalamus DlMADS9 AY599762 POAC

Lithachne LhLHS1 AY597515 POAC
Ehrharta EeLHS1 AY597515 POAC

Leersia LvLHS1 AY597515 POAC
Oryza OsLHS1 Os03g11614 POAC
Oryza ObLHS1 JN661629 POAC
Oryza OgLHS1 JN661628 POAC
Oryza OmLHS1 JN661627 POAC

Pharus PlLHS1 JN661630 POAC
Streptochaeta SaLHS1 AY827470 POAC

Chasmanthium ClOSM5 JN661596 POAC
Pennisetum PgOSM5 JN661597 POAC

Setaria SiOSM5 JN661603 POAC
Panicum PmOSM5 DQ317437 POAC

Sorghum SbOSM5 Sb10g004390 POAC
Zea ZmM3 Y09301 POAC
Eriachne EaOMS5 JN661601 POAC
Eleusine EcOSM5 JN661600 POAC

Dendrocalamus DlMADS15 AY599752 POAC
Dendrocalamus DlMADS16 AY599753 POAC

Ehrharta EeOSM5 JN661599 POAC
Leersia LvOSM5 JN661602 POAC

Oryza OsMADS5 Os06g06750 POAC
Avena AsOSM5 JN661598 POAC
Lolium LpMADS6 AY198331 POAC

Triticum TaMADS3 DQ534491 POAC
Hordeum HvOSM5 JN661604 POAC

Fargesia FnMADS2 GU237135 POAC
Joinvillea JaL1O5 JN661624 JOIN

Chondropetalum CtL1O5A JN661620 REST
Thamnochortus TiL1O5A JN661622 REST

Chondropetalum CtL1O5B JN661621 REST
Thamnochortus TiL1O5B JN661623 REST

Cyperus CiL1O5 JN661619 CYPE
Aristida AplPAP2 JN661605 POAC
Chasmanthium ClPAP2 JN661606 POAC
Danthonia DsPAP2 JN661607 POAC
Panicum PmPAP2 JN661614 POAC
Pennisetum PgPAP2 JN661615 POAC

Setaria SiPAP2 JN661617 POAC
Zea Zmm24 PAP2A AJ430638 POAC
Sorghum Sb01g007780 POAC
Zea Zmm31 PAP2B AJ430640 POAC

Eleusine EcPAP2 JN661609 POAC
Lolium LpMADS7 AY198332 POAC
Avena AsPAP2 JN661613 POAC

Triticum TaPAP2 JN661618 POAC
Brachypodium BdPAP2 Bradi1g08330 POAC

Ehrharta EePAP2 JN661608 POAC
Leersia LvPAP2 JN661611 POAC
Oryza OsMADS34 PAP2 Os03g54170 POAC

Lithachne LhPAP2 JN661612 POAC
Pharus PlPAP2 JN661616 POAC

Joinvillea JaPAP2 JN661610 JOIN
Elaeis EgAGL2-4 AF411846 AREC
Elaeis EgAGL2-5 AF411847 AREC

Dendrobium DgMADS3 AF198176 ORCH
Oncidium OgrMADS11 HM140847 ORCH

Lilium LlMADS3 AY826062 LILI
Lilium LlMADS4 LILI

Arabidopsis AtSEP1 M55551 BRAS
Arabidopsis AtSEP2 M55552 BRAS

Arabidopsis AtSEP4 U81369 BRAS
0.05 substitutions/site
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Figure 1 Bayesian consensus phylogram of 84 LOFSEP genes. Relationships estimated using the General Time Reversible (GTR) model, invariant
sites and site specific rates partitioned according to codon position (GTR + I + SS). Phylogram rooted using Amborella AtAGL2 AY850179. Bold
branches are supported by posterior probability ≥0.95. Family abbreviations: ACOR = Acoraceae, AMBO = Amborellaceae, AREC = Arecaceae, BRAS =
Brassicaceae, CYPE = Cyperaceae, JOIN = Joinvilleaceae, LILI = Liliaceae, ORCH = Orchidaceae, POAC = Poaceae, REST = Restionaceae. Species
abbreviations: Aa = Acorus americanus, Al = Aristida longiseta, As = Avena sativa, At = Arabidopsis thaliana, Atr = Amborella trichopoda, Bd =
Brachypodium distachyon, Ci = Cyperus involucratus, Cl = Chasmanthium latifolium, Ct = Chondropetalum tectorum, Dl = Dendrocalamus latiflorus, Dg =
Dendrobium grex Madame Thong-In, Ds = Danthonia spicata, Ea = Eriachne aristata, Ec = Eleusine coracana, Ee = Ehrharta erecta, Eg = Elaeis guianensis,
Fn = Fargesia nitida, Hv = Hordeum vulgare, Ja = Joinvillea ascendens, Lh = Lithachne humilis, Ll = Lilium longiflorum, Lp = Lolium perenne, Lv = Leersia
virginica, Mm = Megathyrsus maximus, Ms = Miscanthus sinensis, Ob = Oryza barthii, Og = Oryza glaberrima, Om = Oryza meridionalis, Os = Oryza sativa,
Pg = Pennisetum glaucum, Pl = Pharus latifolius, Pm = Panicum maximum, Sa = Streptochaeta angustifolia, Sb = Sorghum bicolor, Si = Setaria italica, Ta =
Triticum aestivum, Ti = Thamnochortus insignis, Zm = Zea mays. Green = LEAFY HULL STERILE1 (LHS1) clade, Blue branches = Oryza sativa MADS5 (OSM5)
clade. Branch 1 = LHS1+OSM5 clade, Branch 2 = LHS1 clade, and Branch 3 = OSM5 clade. Branches 1 to 3 examined in PAML analyses were tested for
evidence of potential positive selection (see also Additional File 3).
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LHS1+OSM5 clades (Branches 1 to 3, Figure 1). All of
these analyses recovered evidence of strong purifying
selection (Additional File 4).
Of the four characteristic domains of MIKC-type

MADS box genes, the C-terminal domain is both highly
variable and critical for providing functional specificity
via transcriptional activation [41]. Despite the lack of
conservation of the C-terminal domain across the entire
MADS-box gene family, individual gene clades often
have conserved motifs [41]. Vandenbussche and collea-
gues [41] described two novel C-terminal motifs found
in the monocot AGL2-like subfamily, ZMM3 and
OSMADS1. We examined the sequence alignment of
isolated LOFSEP-like proteins from members of the Res-
tionaceae, Joinvilleaceae, and Poaceae to identify the
presence or absence of the ZMM3 and OSMADS1
motifs. All sampled L1O5, LHS1, and OSM5 proteins in
our analysis contained the ZMM3 motif. Both the L1O5
and LHS1 protein sequences also contained the

OSMADS1 motif, but this motif was lacking among
OSM5 orthologs (Figure 2).
We then used MP character reconstruction methods

to investigate nucleotide changes following the LHS1/
OSM5 duplication event that resulted in the truncation
of OSM5 protein sequences. These analyses estimated a
cytosine (C) to thymine (T) nucleotide substitution in
the equivalent of the first codon position of the gluta-
mine (Q) in the L1O5 common ancestor at the base of
the OSM5 clade (Figure 3). This nucleotide substitution
converted the ancestral glutamine into a stop codon in
the first codon after the ZMM3 motif resulting in the
truncation of OSM5 proteins (Figure 3). The MP
nucleotide reconstruction analysis estimated ambiguity
in the second codon position in the first codon of the
ZMM3 domain with an adenine (A) or guanine (G) con-
sidered equally parsimonious. Neither of these changes,
however, affected the reconstructed amino acid change
from glutamine to a stop codon (Figure 3).
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Figure 2 Alignment of amino acids within the C-terminus of graminoid Poales LOFSEP proteins. Proteins aligned using MUSCLE [29] and
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branches = Oryza sativa MADS5 (OSM5) clade.
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Heterogeneous OSM5 expression profiles
Comparative mRNA expression studies in MADS box
gene families are powerful tools to identify potential
genetic interactors and infer whether expression pat-
terns have diverged. To investigate the pattern of
expression evolution within the OSM5 and LHS1
lineages we supplemented published LOFSEP gene
expression profiles with mRNA expression data on
OSM5 orthologs from a sample of taxa spanning the
major diversification of the family.
A. sativa (subfamily Pooideae) has a two- to six-flow-

ered, acropetally maturing spikelet (Figure 4A). A. sativa
OSM5 (AsOSM5) was detected in lemmas and paleas
within all florets of the developing spikelet (Figure 4B-D).
C. latifolium (subfamily Centothecoideae) has acrope-

tally maturing spikelets comprised of 4 to 24 florets
(Figure 4E). C. latifolium OSM5 (ClOSM5) was detected
in the spikelet meristem and the developing palea, and
in both the lemma and palea slightly later in develop-
ment (Figure 4F-H).

H. vulgare (subfamily Pooideae) has an indeterminate
inflorescence with one-flowered spikelets clustered
together in triads on short secondary inflorescence
branches (Figure 4I). Only the central spikelet is bisex-
ual, whereas the two lateral spikelets are sterile and
reduced to awns. H. vulgare OSM5 (HvOSM5) was
detected within the lemma and lodicules in developing
florets (Figure 4J-L).
P. glaucum (subfamily Panicoideae) has a two-flowered

spikelet that matures basipetally. The upper floret is
bisexual, whereas the lower floret is staminate or sterile.
P. glaucum OSM5 (PgOSM5) was detected in the lodi-
cules, stamens and carpels of the upper floret and the
stamens and lodicules of the lower floret later in devel-
opment (Figure 4M-N).
S. bicolor (subfamily Panicoideae) has an inflorescence

comprised of sessile and pedicellate basipetally maturing
two-flowered spikelets. The upper floret of the sessile
spikelet is bisexual, whereas the upper floret of the pedi-
cellate spikelet is staminate or sterile. The lower floret

C A G

C A G

C A G

C A G

C A A

T G A

T G A

T G A

T A A

T A A

T A A

T G A

C A G

G A C

G A C

G A T

G A C

G A C

G A C

G A C

G A C

G A C

G C A

G A C
G A C

G A C

G A C

G A C

G A C

G A C

C A G

C A G

C A G

T A A
T A A

T A A T G A

T G AT A A

T G A
T G A

C A AC A G

C A AC A G

C A AC A G

C A CC A AC A G

G A CG A A

G A CG A A

Chondropetalum CtL1O5A REST

Chondropetalum CtL1O5B REST

Thamnochortus TiL1O5A REST

Thamnochortus TiL1O5B REST

Joinvillea JaL1O5 JOIN

Avena AsOSM5 POAC

Lolium LpMADS6 POAC

Oryza OsMADS5 POAC

Chasmanthium ClOSM5 POAC

Pennisetum PgOSM5 POAC

Sorghum SbOSM5 POAC

Zea ZmM3 POAC

Streptochaeta SaLHS1 POAC

Pharus PlLHS1 POAC

Oryza OsMADS1 POAC

Lolium LpMADS9 POAC

Hordeum HvM7 POAC

Lithachne LhLHS1 POAC

Aristida AplLHS1 POAC

Pennisetum PgLHS1 POAC

Sorghum SbLHS1 POAC

Zea ZmM8 POAC

Zea ZmM14 POAC C T G A A C A A C G A G

T T G A A C A A C G A A

T T A A A C A A T G A A

T T G A A C A A C G A A

T T G A A C A A T G A A

C T G A A C A A T A A A

C T G A A C A A T A A C

C T C A A C C A A - - -

C T G A A C A A C G A A

C T G A G C A A T G A A

A T G A A C A A T A A T

C T G A A C A A T G A T

C T G A A C A A T G G A

C T A A A C C A T G A A

C T G A G C A A T G A A

C T G A A C A A C A A A

C T G A A C A A C A G A

C T G A A C C A C G A A

C T G A G C A A C G A A

C T G A A C A A C G A G

C T G A A C A A C G A G

C T G - - - A A C G A G

G G C T G G A T A

G G G T G G A T A

G G G T G G A T A

G G G T G G A T A

G G T T G G A T A

G C A G G G A T A

G C G G G G A C A

- - - T G G A C A

- - - T G G A A A

T C T T C T A T A

T C T T C T A T A

T C T T C T A T A

C C C T G G A T A

G G A T G G A T A

G G A T G G A T A

C C C T G G A T A

G G A T G G A T A

G G C T G G A T A

G G C T G G A T A

C C C T G G A T A

G G T T G G A T A

G G C T G G A T A

C C C T G G A T A

ZMM3 MOTIF OSMADS1 MOTIF

G A C

C A G

C A G

C A G

C A A

T G A

T G A

T G A

T G A

T A A

T A A

T A A

C A G

G A C

G C A

G A C

G A T

G A C

G A C

G A C

G A C

G A C

C T G

T T G A A C A A T G A A C A G A T T

A C T

A T T

A T T

A T C

G T G

G T G

G T T

A T G

G C T

G C T

G T T

A T T

A T G

G C A

A T A

C A C

A T G

A T G

A T G

A T G

A T G
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Figure 4 Scanning Electron Microscopy (SEM) analysis and mRNA expression profiles of OSM5 co-orthologs in Avena sativa,
Chasmanthium latifolium, Hordeum vulgare, Pennisetum glaucum, and Sorghum bicolor inflorescences. Scanning electron microscopy
(SEM) images of inflorescence development in Avena sativa (A), Chasmanthium latifolium (E), and Hordeum vulgare (I), mRNA in situ hybridization
expression analyses of OSM5 co-orthologs in developing inflorescences of A. sativa (B-C), C. latifolium (F-G), H. vulgare (J-K), P. glaucum (M) and
S. bicolor (O) using antisense digoxygenin-labeled RNA probes, and cartoons summarizing OSM5 expression in the different taxa (D, H, L, N and
P). Developing A. sativa spikelets with AsOSM5 expression in lemmas and paleas (B-D). Developing C. latifolium spikelets with ClOSM5 expression
in the spikelet meristem, lemma and palea of upper florets and no expression in the lower florets (F-H). Developing H. vulgare spikelets with
HvOSM5 expression in lemmas and lodicules (J-L). P. glaucum spikelets with PgOSM5 expression in carpels, stamens and lodicules of the upper
floret and stamens and lodicules of the lower spikelet (M-N). Young S. bicolor spikelet with SbOSM5 expression in the palea and lemma of the
upper floret and sterile lemma of the lower floret (O-P). Abbreviations: c = carpels, l = lemma, lo = lodicule, p = palea, s = stamen, sm = spikelet
meristem. Bars, 100 μm.

Christensen and Malcomber EvoDevo 2012, 3:4
http://www.evodevojournal.com/content/3/1/4

Page 8 of 15



in both the sessile and pedicellate spikelets is reduced to
a sterile lemma. S. bicolor OSM5 (SbOSM5) was
detected in the lemma and palea of the upper floret and
the sterile lemma of the lower floret (Figure 4O-P).

Complex patterns of LHS1 and OSM5 mRNA expression
evolution
To investigate evidence of sub- or neofunctionalization
following the L1O5 duplication event we combined our
new expression data on OSM5 genes with published
data on other LOFSEP genes [9,13,20-25,36,42-48] and
reconstructed the pattern of evolution using ML within
Mesquite.
All analyses recovered complex patterns of expression

evolution in the different floral structures (Figure 5) and in
different flowers/florets within the inflorescence (Figure 6).
Joinvillea L1O5 is expressed within all floral whorls and all
flowers within the inflorescence [36]. LHS1 was expressed
in the lemma and palea of all sampled grasses, whereas
OSM5 co-orthologs were also detected in the lemma and
palea of A. sativa, C. latifolium, and S. bicolor, and the
lemma of H. vulgare (Figure 5A). The presence of OSM5
expression within the lemma and palea was reconstructed
as likely at the base of the clade, with the loss of expres-
sion estimated to have occurred independently in the rice
and P. glaucum lineages.
Expression within whorl 2 is more homoplasious than

whorl 1 (Figure 5B). LHS1 was detected in second whorl
structures of S. angustifolia, H. vulgare, C. latifolium, P.
glaucum and Z. mays whereas OSM5 was only
expressed in lodicules of H. vulgare and P. glaucum
(whether O. sativa OSM5 is expressed in lodicules is
unknown). The reconstructed ancestral state at the base
of the LHS1, OSM5 and LHS1+OSM5 clade is ambigu-
ous in our analyses due to homoplasy within the clade,
so it is uncertain whether expression was gained in
those taxa expressing LHS1 or OSM5 in whorl 2 struc-
tures, or whether expression was lost in the other taxa.
The presence of expression in stamens was recon-

structed as the more likely ancestral state at the base of
the LHS1, OSM5 and LHS1+OSM5 clades (Figure 5C).
LHS1 is expressed in the stamens of S. angustifolia, C.
latifolium and Z. mays, and OSM5 is detected in the
stamens of O. sativa and P. glaucum. ML character
reconstructions estimate the independent loss of OSM5
expression in the pooid clade (A. sativa and H. vulgare)
and at the base of PACCMAD grasses followed by the
subsequent gain of expression in P. glaucum. LHS1
expression was lost on the branch subtending the BEP
+PACCMAD clade and subsequently regained indepen-
dently within the C. latifolium and Z. mays lineages.
The presence of expression within carpels was recon-

structed as the ancestral state at the base of the LHS1
and LHS1+OSM5 clade, and marginally more likely at

the base of the OSM5 clade (Figure 5D). OSM5 expres-
sion in carpels was subsequently lost in pooid grasses
(A. sativa and H. vulgare) and at the base of panicoid
+centothecoid clade, but subsequently regained within
the P. glaucum lineage. Within the LHS1 clade, expres-
sion in carpels was independently lost in H. vulgare, E.
indica, and in the Paniceae (M. maximum and P.
glaucum).
Cacharrón and colleagues [22] hypothesized that the

maize LHS1 and OSM5 co-orthologs. ZmM8, ZmM14
and ZmM3, respectively, function as selector genes dur-
ing inflorescence development. Expression of the maize
LHS1 co-orthologs ZmM8 and ZmM14 were hypothe-
sized to specify the terminal floret of the two-flowered
spikelet [22], whereas expression of the OSM5 ortholog
ZmM3 was hypothesized to specify the lower floret [43].
Using the expanded L1O5, LHS1 and OSM5 dataset we
find no support for a subfunctionalization of LHS1 and
OsMADS5 function into different flowers of the spikelet
at the base of the two clades (Figure 6A). ML recon-
structions estimate expression in all flowers at the base
of the L1O5, LHS1 and OSM5 clades, with expression
restricted to the upper flowers in O. sativa OSM5 and
OsLHS1, M. maximus LHS1, P. glaucum LHS1, S. bicolor
LHS1 and Z. mays ZmM8 and ZmM14. Expression
restricted to the lower floret is only reported in maize
ZmM3, and based on our reconstructions this partition-
ing of expression evolved relatively recently (since maize
and sorghum last shared a common ancestor).
Together, these data do not support the subfunctiona-

lization of LHS1 and OSM5 function into different
regions within the grass spikelet following the L1O5
duplication event. However, our analyses are consistent
with LHS1 functioning as a selector gene of the terminal
flower in basipetally maturing spikelets of ehrhartoid
and panicoid grasses.

Discussion
LHS1 genes have been linked to the origin and diversifi-
cation of the grass spikelet, but the role of its paralog,
OSM5, has largely been overlooked. In this analysis we
have used a combination of Bayesian phylogenetics,
expression analyses, molecular evolutionary analyses,
and MP and ML character reconstruction methods to
investigate the evolutionary history of the LHS1 and
OSM5 lineages of SEP genes. These analyses reconstruct
a complex pattern of duplication and diversification and
provide new insights into how these genes are expressed
during spikelet and floret development in grasses.

The LHS1/OSM5 duplication event maps to the base of
the grass family
Our Bayesian phylogenetic analyses support the hypoth-
esis that the LHS1 and OSM5 lineages are products of a
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Figure 5 Maximum likelihood character reconstructions of LOFSEP gene expression in flowers. (A) Expression evolution in first whorl
structures (sepals, outer tepals, lemma and palea). (B) Expression evolution in second whorl structures (petals, inner tepals and lodicules). (C)
Expression evolution in third whorl structures (stamens). (D) Expression evolution in fourth whorl structures (carpels). Solid circle = presence of
expression, empty circle = absence of expression, partially filled circles = reconstructed likelihood of the presence/absence of expression. Blue
branches = Oryza sativa MADS5 (OSM5) clade, Green = LEAFY HULL STERILE1 (LHS1) clade, Grey = missing data, Orange = LHS1+OSM5 ancestor.
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gene duplication event at the base of the grass family.
Although LHS1 co-orthologs were isolated from S.
angustifolia and P. latifolia, the two earliest diverging
members of the Poaceae, we were unable to isolate
OSM5 co-orthologs from these taxa. The most parsimo-
nious explanation hypothesizes independent losses of
the OsMS5 co-orthologs in the two lineages. However, it
is also possible that these OSM5 genes: 1) were
expressed at a developmental stage not represented in
our cDNA, 2) are too divergent to amplify using our
degenerate primers, or 3) that the Bayesian tree has
reconstructed the position of the LHS1/OSM5 duplica-
tion event incorrectly. We consider the independent loss
hypothesis more likely based on three lines of evidence.
First, the cDNA stocks used to isolate the genes using
RT-PCR spanned diverse stages of inflorescence devel-
opment, ranging from early branching through to floral
organ initiation and maturation. Second, we were able
to successfully amplify LOFSEP (Figure 1), SEP3 (Chris-
tensen and Malcomber, unpublished) and AGL6-like
genes [49] from diverse other Poales using the same
degenerate MADS primers and cDNA stocks. Third, the
results of a Shimodaira-Hasegawa test [32] indicated
that a constrained phylogeny where the LHS1/OSM5

duplication event occurred at the base of the BEP and
PACCMAD clade and after the divergence of the
Anomochlooideae and Pharioideae was significantly less
likely (P < 0.001) than the unconstrained analysis with a
duplication event at the base of the grass family.
A similar pattern of gene loss in S. angustifolia and P.

latifolia was also reported in FRUITFULL (FUL) genes.
In this analysis, Preston and Kellogg [50] were able to
isolate FUL2 co-orthologs from S. angustifolia and P.
latifolia, but not FUL1. Rice OsFUL1 and OsLHS1 both
occur on chomosome 3, whereas OsFUL2 and
OsMADS5 both occur on chromosome 6. Because
OSM5 and OsFUL1 occur on different chromosomes we
hypothesize that a more localized pattern of indepen-
dent gene loss in the Anomochlooideae and Pharioideae
produced the complex pattern of relationships within
FUL and LOFSEP lineages rather than a pair of large
chromosomal deletion events.

OSM5 proteins are truncated relative to LHS1 and L1O5
proteins
Our molecular evolutionary analyses of the LHS1, OSM5
and L1O5 clade failed to find any evidence of positive
selection (Additional file 4), but MP reconstructions
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Figure 6 Maximum likelihood character reconstructions of graminoid poales LOFSEP gene expression in inflorescences and spikelets.
(A) Expression evolution in different regions of the inflorescence and spikelet. Black = Expression restricted to the lower floret within the
spikelet, Grey = Expression restricted to the upper floret in the spikelet, White = Expression present in all flowers of the inflorescence. (B)
Evolution of floral maturation. Black = basipetally maturing spikelets, Grey = Flowers borne singly or spikelets comprised of a single floret, White
= acropetally maturing spikelets. Green = LEAFY HULL STERILE1 (LHS1) clade, Blue branches = Oryza sativa MADS5 (OSM5) clade.
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estimated a cytosine to thymine substitution in the first
codon position of the first amino acid immediately after
the ZMM3 domain that converted a glutamine into stop
codon and truncated OSM5 relative to the ancestral
L1O5 proteins. This is a different hypothesis than pro-
posed by Xu and Kong [19] who hypothesized that the
insertion of a cytosine within the exon 8 of the rice
OsM5 gene resulted in a frameshift and introduction of a
premature stop codon. Our phylogenetic reconstructions
of the LOFSEP data set estimate the insertion-deletion
event within the rice OSM5 ZMM3 domain occurred
relatively recently within the evolutionary history of the
grass family (since ehrhartoid and pooid grasses last
shared a common ancestor) and consequently did not
coincide with the duplication event giving rise to the
OSM5 lineage at the base of the grass family.
The C-terminal regions of MADS box genes are

known to help regulate transcriptional activation, part-
ner specificity, subcellular localization and/or the ability
to attract interacting partners [8,41]. Deletion of amino
acids 218 to 257 of the rice LHS1 protein, including
both the ZMM3 and OSMADS1 domains, removed the
ability of the protein to bind FUL1/OsMADS14 and
FUL2/OsMADS15 [51] confirming a role for the C-ter-
minus in regulating partner interactions. Cui et al. [18]
reported that rice LHS1 and OSM5 proteins interact dif-
ferently; OsLHS1 can homodimerize weakly and hetero-
dimerize with the AGL11-like protein OsMADS13 and
the SEP3 proteins OsMADS7 and OsMADS8, whereas
rice OSM5 cannot homodimerize and cannot heterodi-
merize with OsLHS1, OsMADS7, OsMADS8 or
OsMADS13. Whether rice LHS1 and OSM5 can hetero-
dimerize with PAP2 has yet to be shown, but the discre-
pancy in binding abilities between OsLHS1 and OSM5
suggests that the truncation within the C-terminus of
the OSM5 protein following the duplication event at the
base of the grass family has had a profound effect on its
ability to form multimeric complexes. The subtle pheno-
typic differences in rice osmads5 mutants with lodicules
attached to the lemma and palea [17] suggests that
OSM5 has a partially redundant role with other E-class
genes during floral development. However, the inability
of OSM5 to form complexes with the same set of pro-
teins as OsLHS1 indicates that OSM5 is not (partially)
redundant with OsLHS1. Together these data suggest
that changes following the LHS1/OSM5 duplication have
resulted in a new coding region function (or at least the
loss of several functions currently performed by LHS1)
for the OSM5 lineage and potentially some partitioning
of function between LHS1 and OsM5 lineages.

Complex patterns of expression of OSM5 and LHS1 genes
Our analysis of OSM5 and LHS1 mRNA expression pro-
files reveals a complex pattern of complimentary,

overlapping and absent expression profiles within flow-
ers (Figure 5) and in different regions of the inflores-
cence (Figure 6). Complimentary mRNA expression
profiles of OSM5 and LHS1 occur in maize, where
ZmM3 is restricted to the lower floret while ZmM8 and
ZmM14 are only expressed in the upper floret, and
within floral organs of certain sampled taxa, including:
1) the lemmas of rice and P. glaucum where LHS1 is
expressed, but OSM5 is not, 2) the lodicules of C. latifo-
lium where LHS1 is expressed, but OSM5 is not, 3) the
stamens of rice and P. glaucum where OSM5 is
expressed, but LHS1 is not, and 4) the carpels of A.
sativa, C. latifolium and S. bicolor where LHS1 is
expressed, but OSM5 is not, and in P. glaucum where
OSM5 is expressed, but LHS1 is not. Several species also
show overlapping expression profiles with LHS1 and
OSM5 both being expressed in the lemmas and paleas
of A. sativa, S. bicolor and C. latifolium, in the lemmas
of H. vulgare, in the lodicules of H. vulgare and P. glau-
cum, and in the carpels of rice. Neither LHS1 nor OSM5
are expressed in the lodicules of S. bicolor, the stamens
of A. sativa and S. bicolor, and the stamens and carpels
of H. vulgare suggesting the E-class functional role in
these structures is provided by either PAP2 or, more
likely based on studies in rice [18], SEP3 co-orthologs.
Taken together these data suggest a more labile pattern
of expression evolution within the LHS1 and OSM5
clades than predicted by the classic model of subfunctio-
nalization [1].
Expression profiles of LHS1, OSM5, PAP2 and the

SEP3 co-orthologs OSM7 and OSM8 in rice osmads7,
osmads8, osmads7/8 and osmads1/5/7/8 mutants pro-
vide additional insights into the plasticity of SEP gene
expression in grasses and their roles during floral devel-
opment. In osmads7 mutants, LHS1 (approximately 1.3
to 1.5× WT expression), OSM5 (approximately 2.5 to 3×
WT expression), OSM8 (approximately 1.3 to 1.7× WT
expression) and PAP2 (approximately 1.2 to 1.3× WT
expression) were upregulated to compensate for the lack
of OSM7 expression and in osmads8 mutants LHS1
(approximately 1.5 to 1.7× WT expression), OSM5
(approximately 1.8 to 2.1× WT expression), OSM7
(approximately 2.2 to 2.4× WT expression) and PAP2
(approximately 1.3 to 1.5× WT expression) were all
upregulated and sufficient to produce mutant plants
with only subtle phenotypes [18]. However, in osmads7/
8 mutants even the upregulation of LHS1 (approxi-
mately 2.5 to 3.6× WT expression), OSM5 (approxi-
mately 1.6 to 2× WT expression), and PAP2
(approximately 1.7 to 1.8× WT expression) still pro-
duced severe mutant plants with two to four lodicules
transformed into lemma and palea-like structures and
three to seven longer and thinner sterile stamens [18],
suggesting that the rice LOFSEP (LHS1, OSM5 and
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PAP2) genes are functionally divergent from the SEP3
co-orthologs and unable to complement the mutant. In
osmads1/5/7/8 mutants, PAP2 expression ranged from
1.2 to 1.6× WT expression levels but even this increased
expression was, again, unable to compensate for the lack
of the other SEP genes with mutant plants having flow-
ering delayed by three to four weeks, shorter inflores-
cences with increased branching, and florets with
leaflike lemma, palea, lodicules, stamens and carpels
[18]. Given the inability of LHS1, OSM5 and PAP2 to
compensate for the lack of OSM7 and OSM8 in the
mutant and the inability of PAP2 to compensate for the
lack of SEP expression in the quadruple osmads1/5/7/8
mutant, these data point to either a direct or indirect
negative feedback loop regulating expression among the
different rice SEP genes, rather than a dosage effect
among partially redundant genes [18].
This feedback loop could have compensated for the

lack of OsMADS5 in rice osmads5 mutants which in
turn resulted in plants with only subtle phenotypes. The
different protein binding abilities of rice LHS1 and
OSM5 suggests one (or more) of the other of the rice
SEP genes is partially compensating for OsMADS5 in
these mutants. Which of these other SEP genes, how-
ever, awaits further analysis of rice osmads5 mutants
using real time RT-PCR.

Conclusions
The grass LOFSEP genes LHS1, OSM5 and PAP2 all regu-
late aspects of grass inflorescence development, but the
timing of the duplication events to produce the different
lineages and the pattern of evolution within the different
clades has not been fully investigated. In this analysis we
used Bayesian phylogenetic methods to reconstruct rela-
tionships among 84 LOFSEP SEPALLATA genes that map
the LHS1 and OSM5 duplication event at the very base of
the grass family, whereas the LHS1+OSM5 and PAP2
duplication event maps to deeper within the monocot
clade. MP reconstructions within the LHS1 and OSM5
lineage estimated a cytosine to thymine substitution con-
verted a glutamine to stop codon immediately after the
ZMM3 domain that truncated OSM5 relative to LHS1
and the L1O5 ancestor. Based on studies in rice, the trun-
cation of the OSM5 protein and removal of the
OSMADS1 domain has resulted in a different set of pro-
tein interaction partners [18,51]. This observation supports
hypotheses of both subfunctionalization between LHS1
and OSM5 and neofunctionalization within the OSM5
lineage via a change in the coding region. ML character
reconstruction analyses estimate a complex pattern of
OSM5 and LHS1 expression evolution that is not consis-
tent with a classic subfunctionalization model of partition-
ing following the gene duplication event. However, our
analyses do support a hypothesis of recent OSM5 and

LHS1 expression partitioning within the floral organs of A.
sativa, C. latifolium, H. vulgare, P. glaucum and S. bicolor,
and between the upper and lower florets of the two-flow-
ered maize spikelet. How this complex pattern of gene
expression evolution within the two lineages has affected
morphological evolution in grasses has yet to be deter-
mined. The next step will be to expand expression ana-
lyses within the OSM5 lineage and couple these studies
with investigations of OSM5 and LHS1 protein interac-
tions and functional analyses of osmads5 and lhs1 single
and double mutants in transformable grasses such as Bra-
chypodium distachyon [52-54] and Setaria viridis [55].
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Additional file 4: Summary of LOFSEP molecular evolutionary
analyses using the CODEML package within PAML.
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