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Metabolic syndrome is a cluster of metabolic and cardiovascular symptoms: insulin resistance (IR), obesity, dyslipemia.
Hypertension and vascular disorders are central to this syndrome. After a brief historical review, we discuss the role of sympathetic
tone. Subsequently, we examine the link between endothelial dysfunction and IR. NO is involved in the insulin-elicited capillary
vasodilatation. The insulin-signaling pathways causing NO release are different to the classical. There is a vasodilatory pathway
with activation of NO synthase through Akt, and a vasoconstrictor pathway that involves the release of endothelin-1 via MAPK.
IR is associated with an imbalance between both pathways in favour of the vasoconstrictor one. We also consider the link between
hypertension and IR: the insulin hypothesis of hypertension. Next we discuss the importance of perivascular adipose tissue and
the role of adipokines that possess vasoactive properties. Finally, animal models used in the study of vascular function of metabolic
syndrome are reviewed. In particular, the Zucker fatty rat and the spontaneously hypertensive obese rat (SHROB).This one suffers
macro- and microvascular malfunction due to a failure in the NO system and an abnormally high release of vasoconstrictor
prostaglandins, all this alleviated with glitazones used for metabolic syndrome therapy.

1. Introduction

Themetabolic syndrome is a cluster of metabolic and cardio-
vascular symptoms that are strongly associated with type II
diabetes mellitus. In this kind of diabetes, rather than pro-
longed high levels of glycemia, there is insulin resistance with
secondary hyperinsulinemia, both very frequently associated
with, hypertension, dyslipemia, atherosclerosis, and, most
importantly, obesity (Figure 1) [1]. Vascular disorders are
central to this condition. Quoting prof. Yki-Järvinen “. . .after
all, from a clinical point of view, type II diabetes mellitus
is a disease of blood vessels, not muscle.” [2]. For these
reasons, it is also known as cardiometabolic syndrome [1],
and hypertension plays a pivotal role. Indeed, risk estimates
according to the Framingham study show that roughly 80%
of essential hypertension in men and 65% in women can be
directly attributed to obesity [3]. There is a clear association
between body mass index and arterial pressure even in
nonobese, lean people [4–6]. Still, some obese people are
not hypertensive. For example, the North American Pima

Indians, who have a high prevalence of obesity, but do not
have corresponding high rates of hypertension [7].

The history of metabolic syndrome takes us back to
the early 20th century, when two physicians, the Swedish,
Kylin and the Spanish Marañón nearly simultaneously and
independently published in the journalZentralblatt für Innere
Medizin two articles under almost the same title: Über
Hypertonie und Zuckerkrankheit [8, 9]. In these articles, the
two physicians described for the first time the coexistence of
hypertension and diabetes mellitus in adults and proposed a
commonmechanism for the development of these disorders.
In 1988, Reaven, hypothesized that insulin resistance is the
common etiological factor of a group of disorders, such as
high blood pressure, hyperinsulinemia, high levels of low
density lipoproteins (LDL), triglycerides, and cholesterol, and
low levels of high density lipoproteins (HDL). Reaven named
this collection of disorders “syndrome X” [1]. A year later,
Kaplan added to the pathologies described by Reaven a very
important factor, central adiposity (increase in splanchnic
and subcutaneous fat depots in the abdominal region) [10].
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Figure 1: Two ways to conceptualize metabolic syndrome and the position hypertension and the other symptoms occupy. According to the
WHO definition, insulin resistance is central to any other symptom (a). Others define metabolic syndrome as a cluster of symptoms where
none has a central position (b).

Since then, abdominal obesity has been considered one of the
typical components of the syndrome.

Both type 2 diabetesmellitus andmetabolic syndrome are
reaching epidemic proportions. Considering that 220million
people worldwide are diabetic, this disease has become a
serious epidemiological problem [11].The problem is not only
the size of the figures but also the alarming increase in only
a few decades (46% in the 1990s). Metabolic syndrome is,
probably, the most important challenge for health authorities
in developed and developing countries [11, 12]. In Europe
there is a clear North-South gradient in almost all cardio-
vascular risk factors related with metabolic syndrome. For
example, mortality from coronary heart disease, expressed as
a mortality ratio, presented in men aged 30–69 the following
geographical indices: 8.2 Iceland; 5.1 England; 2.2 Italy; 1.8
Spain; and 0.9 Portugal [13]. However, there is no doubt that
the paradigm of overdevelopment-overweight is the United
States. With the turn of the century, 61% of Americans were
sufficiently overweight to suffer health problems directly
derived from this condition [14]. A diet that is as excessive
as inadequate has yielded these epidemiological figures in
less than 20 years: between 1977 and 1995 daily caloric intake
rose by 200 calories. This is the equivalent to an increment of
10 calories per year [14].

2. Role of the Sympathetic Nervous System

There are 3 conditions, typical of metabolic syndrome, that
may cause an exacerbation of sympathetic tone. Namely,
hyperinsulinemia, hyperleptinemia, and hyperlipidemia. In
1981, it was reported that hyperinsulinemia, independently
of changes in glycemia, caused a substantial increase in
circulating noradrenaline concentration accompanied by an
increase in blood pressure [15]. These sympathoexcitatory

effects of insulin appear to be centrally mediated, since they
are apparent only during systemic insulin infusion but not
local infusion [16]. In addition, high levels of insulin increase
sodium reabsorption [17] favouring expansion of extracellu-
lar fluid volume, which may predispose to hypertension [18].
Furthermore, obesity impairs renal-pressure natriuresis and
causes sodium retention. Obese subjects require increased
arterial pressure to maintain sodium balance, indicating
impaired renal-pressure natriuresis [19].

In addition to insulin, leptin can also be a link between
obesity and increased sympathetic activity. Besides its effect
on appetite and metabolism, leptin acts in the hypothala-
mus to increase blood pressure through activation of the
sympathetic nervous system [20]. High circulating levels of
leptin are reported to explain much of the increase in the
renal sympathetic tone observed in obese human subjects
[21]. Leptin-induced increases in renal sympathetic activity
and blood pressure are mediated by the ventromedial and
dorsomedial hypothalamus [22].

Finally, high circulating levels of free fatty acids in visceral
obese individuals may participate in the activation of the
sympathetic nervous system. The increased release of free
fatty acids into the portal vein from lipolysis in visceral fat
depots could explain the strong association between visceral
obesity and increased sympathetic nerve outflow [23].

3. Role of Insulin

3.1. Insulin Resistance and Endothelial Dysfunction. In 1939,
Himsworth postulated that type 2 diabetes mellitus was not
only an insulin deficiency state but also a disease in which
cells are unresponsive to insulin. Thus, Himsworth’s work
gave birth to the concept of insulin resistance [24, 25]. Insulin
resistance is clinically defined as the inability of a known
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quantity of insulin (exogenous or endogenous) to increase
glucose uptake and utilization in an individual as much
as it does in a normal population [26]. There is a clear
link between endothelial dysfunction and insulin resistance
[27, 28] but the mechanism by which insulin resistance
leads to endothelial dysfunction is complex and involves the
action of mediators of inflammation in the visceral fat, liver,
and muscle [29]. It is well known that insulin resistance
and compensatory hyperinsulinaemia, besides activating the
mechanisms mentioned above, have also a vascular toxicity
effect, mainly at the endothelial level. This, partly because
insulin resistance impairs the production of NO, favors the
production of endothelin-1 and the vasoconstrictive and
mitogenic responses on the vascular wall [30].

3.1.1. Role of NO in Insulin Resistance. King and John-
son reported in 1985 that the endothelial cell membrane
displays insulin receptors [31]. Functional studies indicate
that endothelium-derived NO is involved in the insulin-
elicited increase in blood flow and recruitment of capillaries
that physiologically links hemodynamics to the metabolic
action of insulin on the tissues [32–34]. Insulin resistance is
associated with impaired NO synthase activity [35] and an
abnormal basal NO-mediated dilation in the forearm arterial
bed [36]. The insulin-induced increase of microvascular
endothelium-dependent vasodilation is abolished in insulin
resistance conditions such as obesity [37]. Moreover, insulin
has been shown to constrict rather than dilate forearm
resistance arteries in obese patients [38]. On the other hand,
inhibition of NO synthesis or endothelium removal reveals
a vasoconstrictor effect of insulin on isolated arterioles [39].
Definitive proof of the relationship between NO and insulin
sensitivity has been provided by knock-out mice that are
homozygous null for the eNOS gene. These peculiar animals
display an expected hemodynamic phenotype of increased
basal blood pressure but also are insulin resistant [40].There-
fore, insulin has indeed a hemodynamic component, albeit
small compared to themetabolic one. But both are coupled in
such amanner that endothelial dysfunction can cause insulin
resistance, and this, in a vicious circle, aggravates endothelial
function.

Interestingly, insulin-signaling pathways in vascular
endothelium leading to the activation of endothelial NO
synthase are completely independent and distinct from clas-
sical calcium-dependent mechanisms used by G-protein-
coupled receptors, such as the acetylcholine receptor [34].
The messenger pathway that is activated when insulin binds
insulin receptor appears to be as follows [41]: insulin binds
insulin receptor (INS-R) which is at the same time a tyrosine
kinase and this undergoes autophosphorylation of tyrosine
residues. INS-R phosphorylates insulin receptor substrate-1
(IRS-1).The signalling pathway from insulin branches at IRS-
1. One of the branches involves the activation of phospho-
inositide 3 kinase (PI-3K), leading to phosphatidylinositol-
3,4,5-triphosphate as well as to phosphorylation and activa-
tion of phosphoinositide-dependent kinase 1 (PDK-1). Both
products, in turn, phosphorylate and activate Akt (also called
protein kinase B, PKB). Akt directly phosphorylates eNOS

at Ser1177, resulting in increased eNOS activity and NO
production [42]. Remarkably, the vascular actions of insulin
that stimulate the production ofNOpossess remarkable simi-
larities tometabolic insulin-signaling pathways. For instance,
activation of Akt is also a common step for glycogen synthase
kinase inhibition and GLUT-4 transporter translocation [41].

3.1.2. Role of Endothelin-1 in Insulin Resistance. In 1991,
Oliver et al. demonstrated that insulin was able to stimu-
late endothelin-1 (ET-1, a very strong vasoconstrictor) gene
expression in endothelial cells [43]. Later, it was shown
that insulin can modulate circulating ET-1 levels [44] and
increased plasma levels of ET-1 were observed in type II
diabetic patients [45]. An additional work in the skeletal
muscle circulation reported that insulin stimulates both NO
activity (already known as we showed before) and ET-1 [46].

The authors then suggested that an imbalance between
the release of both substancesmay be involved in pathophysi-
ology of hypertension and atherosclerosis in insulin-resistant
states associated with endothelial dysfunction [46]. Follow-
ing research has shown that insulin induces endothelin-
mediated vasoconstriction only when NO synthase or
phosphatidylinositol-3 kinase (PI3K) is inhibited [47]. In a
paper elegantly entitled “Endothelin antagonism uncovers
insulin-mediated vasorelaxation in vitro and in vivo” [48],
Verma et al. demonstrated that insulin-mediated vasorelax-
ation is only well patent when antagonizing ET-1 receptors.
This proved previous proposals that insulin exhibits a dual
and opposite action on blood vessels: NO-mediated vasodi-
lation and ET-1-mediated vasoconstriction. It is known that
MAPK activation by IRS-1 causes the release of endothelin-1,
which promotes insulin resistance (by reducing blood supply
to the skeletal muscle), increases oxidative stress, reduces the
bioavailability of NO, and promotes a proatherogenic state
[49].

3.2. Hyperglycaemia andVascular Function. Regardless of the
evidence linking the vascular dysfunction of type II diabetes
mellitus with failures in the vascular biology of insulin, there
are many reports that attribute these dysfunctions to the
very fact of the existing hyperglycaemia. We wish to draw
attention to the functional effects of the acute excess in
glucose occurring in a particular moment. In this regard,
it has been reported that glucose favours vasoconstriction
[50] and impairs vasodilation [51]. In arteries of diabetic rats,
Taylor et al. demonstrated that hyperglycaemia reduces the
tonic release of NO [52] and established a central role for
glucose in the development of vascular functional changes
associated with experimental diabetes [50]. Most interesting
is the finding that in healthy subjects, acute hyperglycaemia
impairs endothelium-dependent vasodilation in both the
microcirculation and the macrocirculation when assessed in
the brachial artery [53]. More precise data on the mecha-
nisms involved in hyperglycaemia was released by Sobrevia
et al. [54] who showed that exposure of endothelial cells
to elevated glucose was associated with stimulation of L-
arginine transport paralleled by an increase in basal release
of NO and prostacyclin. This would be good news if they



4 International Journal of Hypertension

did not find as well that insulin treatment downregulated the
elevated activity of the L-arginine transport system and that
of NO synthase in the cells exposed to hyperglycaemia. They
concluded that the modulation of the human endothelial
cell L-arginine-NO pathway by insulin is influenced by pre-
disposing hyperglycaemic clinical conditions [54]. In a later
study, Renaudin et al. demonstrated that the vasodilatory
effect of insulin disappears when hyperglycaemia exists,
perhaps blunted by the vasoconstrictive effect of glucose [55].

3.3. Insulin Actions on Blood Pressure: The Insulin Hypoth-
esis of Hypertension. So far we have focused on the car-
diovascular effects of insulin at a local level. However, it
cannot be forgotten that insulin has systemic actions affecting
the sympathetic nervous system and kidney. The surge
of epidemiological reports relating insulin resistance and
hyperinsulinemia has fueled the idea of the so-called insulin
hypothesis of hypertension. There is no question that insulin
resistance is epidemiologically linked with hypertension [1].
The insulin hypothesis of hypertension proposes that the
compensatory hyperinsulinemia that occurs with insulin
resistance increases sodium reabsorption and sympathetic
activity, which combine to cause elevated arterial pressure.
Support for this hypothesis comes from various lines of
evidence. First, the correlation between insulin resistance
and high blood pressure [56], which is emphasized by the
fact that, even lean individuals with essential hypertension,
display insulin resistance and hyperinsulinemia. Some go a
step further asserting that essential hypertension is “per se”
an insulin resistance state [57]. Second, as explained before,
insulin has multiple actions on the sympathetic nervous
system, the kidney, and the vasculature which can lead
to hypertension. Third, the observation that drugs which
improve insulin resistance and decrease hyperinsulinemia,
are reported to be antihypertensive. For instance, Landin
et al. reported that oral administration of metformin to
insulin-resistant, hypertensive men increased insulin sen-
sitivity and significantly decreased arterial pressure [58].
Another remarkable example is the well-known blood pres-
sure lowering effects of insulin sensitizers glitazones [59]. For
review, see [60]. Fourth and finally, the observation that some
antihypertensives, such as angiotensin II converting enzyme
inhibitors [61] or angiotensin II receptor antagonists [62],
increase insulin sensitivity as well. Despite the size of the
support in favour of the insulin hypothesis of hypertension,
there is also important evidence against. For instance, the
eminent physiologist Hall and his collaborators failed to find
a correlation between insulin and hypertension in a well-
controlled model in dogs [63].

4. Role of Adipokines

Traditionally, adipocytes were considered energy reservoirs
that store triglycerides during feeding and deliver fatty acids
during fasting. However, it has become quite clear that
adipose tissue does much more than this and is responsible
for the synthesis and secretion of numerous proteins. The
first protein describedwas adipsin [64]. Later, the secretion of

cytokines such as TNF-𝛼 was described [65], thus conferring
immune functions to adipocytes. Funahashi et al. named
these substances adipocytokines [66]. Undoubtedly, themost
relevant discovery was leptin by the Friedman group in 1994
[67]. Because the vast majority of substances produced by
the adipocyte are not necessarily cytokines, Trayhurn and
Wood recommended the term adipokines instead. Therefore,
adipokines are defined as any substance synthesized and
secreted by the adipocytes [68]. Thus, it has become quite
clear that adipose tissue is indeed an endocrine organ. In fact,
it can be the largest organ in the body. This is physiolog-
ically and pathophysiologically important because the total
amount of secreted adipokines are enormous and may affect
the whole body economy, especially considering that every
adipocyte is connected to the vascular network [69]. It is well
known that dysregulation of the production and secretion
of adipokines is involved in the development of metabolic
and cardiovascular diseases. In metabolic syndrome, intra-
abdominal visceral fat accumulation has been shown to play
a key role in the development of a variety of metabolic and
circulatory disorders through the dysregulation of adipokine
secretion [70].

4.1. Perivascular Adipose Tissue and Vascular Function. The
function of adipose tissue as an endocrine organ has impor-
tant implications in the understanding of the pathophysiolog-
ical relationships between excess body fat and hypertension.
Almost all the systemic arteries are surrounded by a layer
of perivascular adipose tissue (PVAT). In the majority of
myographic studies, PVAT is removed on a routine basis.
This is a custom based on the assumption that PVAT can
prevent the diffusion of vasoactive substances.This is perhaps
the reason that, despite the ubiquity of PVAT, very little is
known about its function in vascular biology. Perivascular
fat certainly has a modulator action on vascular contractility.
This was described by Soltis and Cassis in a study published
in 1991 [71]. This work has often been misinterpreted as
the first postulator of a supposed prorelaxing role of PVAT.
These researchers describe a decrease in the sensitivity to
noradrenalinewhen aortic segments remainwith PVAT.They
demonstrate that this is due to the uptake and elimination of
this catecholamine by adipose tissue. They postulate that the
nerve endings within PVAT recapt and remove noradrenaline
within the synaptic gap. This obviously results in a buffered
effect of this neurotransmitter, but it is not postulated that
PVAT releases any anticontractile factor.

In more recent years, several groups have dealt with the
possible vasoactive role of PVAT. The group of González et
al. has been especially interested in the vasoactive properties
of the tunica adventitia, to which they attribute a role in
the contractile ability of the responses modulated by the
endothelium [72]. Later on, Gao et al. as well as Rey et al.
claimed that PVAT promotes the vasoconstrictor response
to electrical stimulation [73] and impaired endothelial func-
tion [74] via reactive oxygen species generated by NADPH
oxidase. On the other hand stands the work pursued by
Gollasch’s group and initiated by Löhn et al. who claim to
have found a diffusible factor derived from PVAT, which
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they called “adventitium-derived relaxing factor” or ADRF
[75]. In a following paper, the “A” standed for “adipocyte”
instead [76]. A relevant amount of literature has confirmed
the existence of this anticontractile diffusible substance (see
[77] for review). Still, there is no unanimity regarding the
nature and mechanism of action of ADRF. For Verlohren
and coworkers, it is independent from the endothelium [76],
but not for Gao et al. [78]. What seems clear is that the
vasodilatory effect of ADRF is mediated by the opening
of different K+ channels on vascular smooth muscle cells
[75, 76, 78–80]. Endocrine and vascular paracrine functions
of a variety of adipokines are shown in Table 1. We shall
focus on those with particular vasoactive actions, namely,
leptin, adiponectin, TNF-𝛼, prostaglandins, angiotensin II,
and endothelin-1.

4.2. Leptin. The discovery that the endothelium expresses
the leptin receptor OB-Rb [81], converted endothelial cells,
just like those of the hypothalamus, in a target for this
hormone. The presence of leptin receptors in the vascular
endothelium and not only in the central nervous system is
important because it allows to find a link between leptin and
altered vascular function in obesity [82]. Leptin is an NO-
dependent vasodilator but also increases peripheral vascular
resistance and sympathetic nerve activity [83]. The concen-
tration of plasma leptin is correlated with adiposity, and
hyperleptinemia is indeed considered an independent cardio-
vascular disease risk factor [84]. There are two theories that
relate leptin’s cardiovascular effects to obesity. One of them
proposes that leptin is involved in the control of vascular
tone simultaneously causing a neurogenic pressor action and
an opposite depressor effect mediated by NO [85]. Another
theory, based on experiments performed in coronary arte-
rioles [86], proposes that, paradoxically, leptin causes itself
NO-dependent vasodilation and, at the same time, its very
presence impairs endothelium-dependent relaxations, that
is, produces endothelial dysfunction. The problem with this
interesting theory is that leptin-induced relaxation occurs at
concentrations well above those found in very obese subjects.
Physiological (lean) or pathophysiological concentrations
(obese) of leptin have, however, little direct effect on vascular
tone. Possibly, the most relevant aspect of this theory is that
leptin concentrations actually existing in obese patients do
elicit endothelial dysfunction [86].

4.3. Adiponectin. Adiponectin is the secretory protein pro-
duced in largest amounts by adipocytes and present in high
and stable concentration in the plasma. In healthy subjects,
adiponectin carries out its roles preventing the development
of vascular changes and has been reported to be associated
with lipid metabolism [87], glucose metabolism [88], and
insulin resistance [89]. Unlike leptin, plasma adiponectin
levels are negatively correlated with body mass index. This
negative correlation is stronger between adiponectin levels
and visceral adiposity than between the protein and sub-
cutaneous adiposity [90]. Also, there is a close relationship
between low concentrations of adiponectin in the blood,

insulin resistance, and hyperinsulinemia. It has been sug-
gested that the decrease in plasma adiponectin concentration
contributes to the metabolic complications associated with
obesity [91]. Adiponectin improves NO-dependent vasodila-
tion by opening voltage-dependent potassium channels [92–
94].

Some reports suggest that adiponectin plays an impor-
tant role in insulin actions and hypoadiponectinemia may
result in insulin resistance and diabetes mellitus. In fact,
Lindsay et al. demonstrated that plasma levels of adiponectin
were lower in Pima Indians, a unique cohort with high
prevalence of obesity [95]. They also demonstrated that
plasma levels of adiponectin are strongly correlated with
insulin sensitivity evaluated by glucose disposal rate [96].
The study of the Pima Indian population demonstrates that
adiponectin may play a crucial role in the development of
diabetes mellitus and that high adiponectin levels should
protect from the deterioration of glucose metabolism. Thus,
hypoadiponectinemia could be a significant background of
vascular changes and metabolic disorders, including insulin
resistance and, possibly, a background for hypertension as
well. Indeed, some studies show that hypertensive subjects
have lower levels of plasma adiponectin [97].

4.4. Tumor Necrosis Factor-𝛼 (TNF-𝛼). Since Hotamisligil’s
group reported that adipose tissue expresses TNF-𝛼, one
of the candidate molecules inducing insulin resistance
adipokines [98], this factor has been recognized as one of the
most important adipokine. Adipocytes secrete TNF-𝛼, and
the expression of this factor is increased in the hypertrophied
adipocytes of obese subjects. TNF-𝛼 is the molecule linking
inflammation with obesity [99]. We will further discuss this
adipokine in the diet-induced hypertension section.

4.5. Prostaglandins (Adipocyte Derived). Prostaglandins,
together with angiotensin II and endothelin-1, are the most
vasoactive substances generated by adipocytes. Adipocytes
produce prostaglandins in response to sympathetic stimu-
lation. Lipolytic hormones, like adrenaline, are linked to
the hypertensive status and obesity-associated hypertension.
These hormones target membrane adipocyte 𝛽 receptors
and in turn activate hormone sensitive lipase. This stimulus
induces lipolysis, release of fatty acids, and prostaglandins,
especially PGE

2
and PGI

2
, which are also fatty acids in

origin. Antilipolytic stimuli, insulin, for example, reduce
the release of prostaglandins [100] such as prostacyclin
(PGI
2
). On the basis that insulin decreases the production

of this strong vasodilator, Parker and coworkers suggested
that hypertension associated with insulin resistance and
hyperinsulinemia (i.e., metabolic syndrome) would be due
partly caused by the lack of proper PGI

2
release [69]. It

appears that PGI
2
production by the adipocytes results from

the cooperation of adipocytes and vascular endothelial cells.
Parker and coworkers proved that adipocytes are a source
of the original fatty acid component of prostaglandins,
arachidonic acid, that is converted into prostaglandins by the
closely located vascular endothelial cells. Adipocytes provide
arachidonic acid but lack the required cyclooxygenase which
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Table 1: Endocrine and vascular paracrine functions of some adipokines.

Adipokine General effects Vascular effects References

Leptin

Satiating factor
Physiological regulation of feeding
behaviour through hypothalamic receptors
Levels correlate with amount of body fat

Endothelial dysfunction
Endothelium-dependent and independent relaxation

[67, 85, 160–
165]

Resistin Relates obesity to diabetes by inducing
insulin resistance

Impairs endothelial function due to an increase in ET-1
production and a decrease in NO production [166, 167]

Adiponectin Levels inversely correlate with obesity NO-dependent vasorelaxation mediated by𝐾V channels
[91, 93, 94,

168]

Visfatin Expression correlates with obesity degree
Similar effects to insulin in cell culture NO-dependent vasorelaxation [169–171]

TNF𝛼

Links inflammation with obesity
Increase in TNF𝛼 expression induces ROS
production
Reduces adiponectin production

Endothelium-dependent and -independent
vasodilatation
Triggers ET-1 and Ang II-induced vasoconstriction
Impairs endothelium-dependent vasodilatation due to
increased ROS production or decreased NO production
Less vasodilatory effect of PAT due to ROS production

[94, 99, 172–
178]

Interleukin-6 Contributes to systemic inflammation and
insulin resistance

Endothelium-independent vasodilatation
Endothelial dysfunction due to an increase in ROS
production and decreased NO production

[94, 179–
182]

Prostanoids
See vascular effects
Hemostasis
Numerous biological functions

Vasoconstriction or vasodilatation depending on which
prostanoid [183, 184]

Angiotensin II
See vascular effects
Na+ and water homeostasis
Renal function

Vasoconstriction [185, 186]

Endothelin-1 See vascular effects Vasoconstriction [187]
Reactive oxygen
species

Numerous biological effects
Ageing

Vasoconstriction through Ca2+ sensitization
Decrease in NO bioavailability [73, 188, 189]

Adventitial derived
relaxing factor See vascular effects Vasorelaxation through opening different K+ channels [75, 76, 78–

80]

is provided by adjacent endothelial cells [69]. However,
adipocytes do express cyclooxygenase [101], and according
to Richelsen et al., adipocytes can synthesize prostaglandins,
but still provide endothelial cells with adipocyte-derived
arachidonic acid to further generate prostaglandins [100].

4.6. Angiotensin II (Adipocyte Derived). The first to propose
PVAT as a source of angiotensin II were our previously
quoted Soltis and Cassis who suggested that adipocyte-
derived angiotensin II would favor vasoconstriction [71].
This effect could be due to the fact that the angiotensin
II action prevents PI3K activation, resulting in a loss of
stimulation of NO synthesis by this route [102], as discussed
in the section related to endothelin-1. Plasma renin activity
and thus the production of angiotensin II are high in
obese individuals [5, 19]. Three possible explanations have
been proposed to explain this phenomenon: (1) obesity may
raise renin secretion by increasing loop of Henle sodium
chloride reabsorption and reduce sodium chloride delivery
to the macula densa [19]; (2) obesity may stimulate renin
secretion by activation of the sympathetic nervous system
[19]. Finally, (3) the existence of a high renin activity in the
hypertrophied adipocytes causing an increased angiotensin

II release [103–106]. Today, we know that adipocytes possess
the whole enzymatic machinery involved in the renin-
angiotensin system [103] and, in fact, they do synthesize
angiotensin II [105, 107]. Importantly, angiotensinogen gene
expression is higher in intra-abdominal fat than in other fat
depots or nonadipose tissues [108]. Indeed, increased pro-
duction of angiotensinogen by intra-abdominal fat appears
to explain the high circulating levels of this peptide observed
in dietary obesity [104]. Closely related with the physiology
of angiotensin II is aldosterone. The levels of this corticoid
are elevated in some obese hypertensives, especially patients
with visceral obesity [109]. Furthermore, it has been recently
discovered that adipocytes also produce aldosterone (actually
in response to angiotensin II) [106]. In this regard, the
adipocyte may be considered a miniature renin-angiotensin-
aldosterone system.

It is noteworthy that adipose cells also secrete mineraloc-
orticoid-releasing factors with important effects on aldos-
terone release from adrenocortical cells [110].These are called
adipogensins or aldosterone-releasing factors (ARF) [111] but
are not well characterized as yet.There is a lot of data that sug-
gests a close relationship between an excess in released aldo-
sterone and insulin resistance. Aldosterone promotes insulin
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resistance through mineralocorticoid receptors activation
(independently of gene transcription) in a large number of
tissues [112]. On the other hand, hyperinsulinaemia induces
increase in aldosterone levels [113, 114] thus creating another
positive feedback cycle between hyperaldosteronism and
hyperinsulinemia, with important pathophysiological effects
in subjects with insulin resistance and a potential mechanism
for the development of complications in obese hypertensive
patients.

4.7. Endothelin-1 (Adipocyte Derived). As stated in previous
lines, endothelin-1 is a vasoconstrictor protein normally
produced by the endothelial cells but qualifies as adipokine
as well [115]. Indeed, the levels of endothelin-1 increase in
obesity and type II diabetes [116, 117]. In studies of experi-
mental obesity, an increase in endothelin-1 gene and protein
expression has been detected within the cardiovascular sys-
tem [118]. Harmelen et al. found that obese adipose tissue
releases 2.5 times more endothelin-1 than the adipose tissue
of lean individuals. Furthermore, this ET-1 generates insulin
resistance specifically in visceral, but not in subcutaneous,
adipose tissue [119]. This links directly endothelin-1 with
insulin resistance and obesity.

5. Animal Models of Metabolic Syndrome:
Vascular Function

5.1. The Zucker Obese Rat. The Zucker rat is probably the
most commonly used rat model for metabolic syndrome. In
1961, L. M. Zucker and T. F. Zucker discovered that an auto-
somal recessive mutation in the fatty gene (fa) resulted in
obesity [120]. The homozygotes for the mutation (fa/fa)
develop obesity because of a defective leptin receptor [121,
122]. Zucker rats develop insulin resistance in addition to
obesity, but glycemia remains normal, and they do not
develop diabetes [123]. In this aspect, the Zucker rat shares
similarities with some of the obese subjects, those who are
obese and insulin resistant but are not diabetic. However, the
Zucker fatty rat does notmimic the cardiovascular, renal, and
neurohumoral changes found in obese humans. For example,
this rat has decreased plasma renin activity [124], whereas
obese humans often reveal increased renin activity [5]. Also,
increased sympathetic activity appears to play a significant
role in causing hypertension in obese humans [125], but not in
Zucker fatty rats [124]. In addition, conflicting results about
whether obese Zucker rats are hypertensive or not compared
with their lean controls have been repetitively reported [126].
In a carefully performed study by Hall’s group, it was shown
that obese Zucker rats suffer no more than 14mmHg higher
than the lean counterparts and that this depends in part on
angiotensin II [124].

Regarding vascular responses, much work has been per-
formed in aorta [127–131] and in resistance arteries [132–
137] of Zucker rats. Endothelial function assessed in aortic
preparations appears to be preserved, or even increased, in
young Zucker obese rats compared to the lean rats [128–131].
Andrews et al. use the term endothelial hyperreactivity [130]
to emphasize the superior endothelial function of Zucker

obese rats [131]. For Auguet et al. the increased influence of
endothelium in Zucker rats would be related to the absence of
atherosclerosis (despite hypercholesterolemia) of these rats.
As for resistance arteries, the majority of studies indicate
impaired endothelial dysfunction [134–136] and impaired
NO-dependent vasodilation [133, 137] in Zucker obese rat
arterioles compared to the lean counterpart. By contrast, one
study finds equal endothelial function [132].

5.2.The SpontaneouslyHypertensiveObese (SHROB)Rat. The
obese spontaneously hypertensive rat (SHROB), also known
as Koletsky rat, is a rat strain of spontaneous hypertension
breeding origin that suffers a nonsense mutation of the leptin
receptor gene [138]. This animal was obtained by mating a
female SHR of the Wistar-Kyoto strain with a normotensive
Sprague-Dawley male. The resulting hybrid offspring was
inbred and the obese rat appeared after several generations.
The obesity mutation is a recessive trait, designated 𝑓𝑎𝑘,
which is a nonsense mutation of the leptin receptor gene
resulting in a premature stop codon in the leptin receptor
extracellular domain. The SHROB rat carries two 𝑓𝑎𝑘 alleles;
it is leptin resistant and has circulating leptin levels 30
times higher that the lean counterpart. This mutation makes
SHROB rats unable to respond to leptin [139, 140]. This
strain arose spontaneously in 1969 in Koletsky’s laboratory
in Case Western Reserve University School of Medicine
(Ohio) [141].The rat displays obesity, hypertension (although
milder than that of their SHR ancestor), hyperinsulinaemia,
hyperlipidaemia, and nephropathy, all superimposed on a
hypertensive background. Thus, these rats exhibit all the
symptoms of metabolic syndrome and are generally regarded
as an adequate animal model of this disease [126].

Cardiovascular and renal function has been hardly
explored in the SHROB rat. Still, it is known that SHROB
rats develop a pronounced diabetic retinopathy. This makes
them of special interest for the study of the microvascular
complications associated with metabolic syndrome. Huang
and coworkers noted that already at 3 months of age
they displayed very mild microvascular alterations and did
not develop diabetic retinopathy until 10 months of age.
Interestingly, control lean SHROB rats also develop diabetic
retinopathy [142].

The effect of diet on blood pressure changes has also been
studied in these animals. Ernsberger and coworkers observed
that drastic fluctuations in the supply of nutrients are not
beneficial for blood pressure in these animals. They show
that restrictive diet followed by feedback cycles produces
blood pressure elevations caused by sympathetic activation
and cardiac hypertrophy [143].

Regarding renal and cardiovascular function, it is known
that specific binding sites for angiotensin II are decreased
in SHROB rats with early glomerular sclerosis, suggesting
that angiotensin receptors may be regulated by pathogenic
processes in kidneys of these animals [144].

Recently, our group has characterized the macrovascular
andmicrovascular function of this rat strain and the effects of
a kind of antidiabetic drugs, glitazones, used in the handling
of metabolic syndrome [145]. The SHROB rat clearly suffers
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Figure 2: Endothelial function tested by means of acetylcholine responses in aorta (a) and resistance arteries (b) of normotensive (WKY)
and metabolic syndrome rats (SHROB). Modified fromMendizábal et al. [145].

macrovascular and most especially microvascular dysfunc-
tion (Figures 2(a) and 2(b)). Mesenteric resistance arteries
of SHROB rats display a severely impaired endothelium-
dependent relaxation due to a failure in the NO system and
an abnormally high release of vasoconstrictive prostanoids.
These rats also exhibit a dramatic loss in endothelium-
independent relaxation, specifically to exogenous NO, sug-
gesting a malfunction of guanylate cyclase. We also showed
that drugs used for metabolic syndrome therapy, glitazones,
have salutary effects on the endothelial dysfunction of these
rats.

5.3.The JCR-LA-cp Corpulent Rat. The JCR-LA-cp corpulent
rat is another rat model used to study metabolic syndrome.
This rat is homozygous for the autosomal recessive cp gene
(cp/cp) and is obese, hyperphagic, insulin resistant, hyper-
insulinemic, and hypertriglyceridemic [146]. In addition,
male JCR-LA-cp rats develop atherosclerosis and myocardial
ischemia. Vascular responses and endothelial function were
studied by O’Brien and coworkers [146] rendering similar
results as for micro- versus macrovascular endothelial dys-
function as those of SHROB rats, although the latter displayed
a more intense impairment of acetylcholine responses.

5.4. Diet-Induced Obesity. Stricto sensu, this model of obesity
cannot be always categorized as an animalmodel ofmetabolic
syndromebecause dieting an animalwith high fat chow rarely
causes the complete cardiovascular and metabolic disease.
In some cases, obesity-induced hypertension is achieved
[147, 148], but this is not commonplace and most research
papers do not report blood pressure values. Other metabolic
syndrome symptoms are irregularly reported. For example,
hyperinsulinemia or hyperglycemia is found in some studies
[149, 150] but not in others [151, 152]. Dyslipemia takes place
in some [149, 151] but not all the studies [152]. Hyperleptine-
mia seems to be common to all [150–152].

However, keeping inmind the enormous epidemiological
dimension of overweight, obesity, and obesity-associated
cardiovascular problems (i.e., cardiometabolic syndrome),
much research and effort have been performed in these kind
of rat or mouse models regardless of whether the animal
develops or not a complete metabolic syndrome. Another
factor in favor of diet-induced obesity animal models is that
they are more human-like models, where the obesity is based
on an excess intake of calories, whilst geneticmodels deficient
in the leptin receptor or leptin synthesis are not representative
of the human pathophysiology of obesity. Obesity in rodents
can also be induced with the so-called cafeteria diet. In this
model, animals have a choice of various energy-dense foods.
The advantage to this approach is that the diet is palatable and
the propensity to overeat is larger than that for the high-fat
chow diet. Needless to say is that this is the most similar to
the human dietary situation [153].

Regarding vascular function, the vast majority of studies
have reported alterations. Endothelial function, assessed by
acetylcholine responses, has been found altered inmost cases.
For example, in a cafeteria diet model reported by Naderali
et al., a negative association between plasma lipid levels
and reduction in acetylcholine-induced vasorelaxation was
found [151]. Furthermore, a study in obese people showed
that weight loss improves endothelial function together with
various metabolic syndrome symptoms [154]. Hypercontrac-
tility, albeit less studied, has been reported in rats made
hypertensive through the diet [147, 148]. In recent times, a
large amount of studies have been focused on the effects
that the local adiposity surrounding blood vessels (the so
called PVAT) has on smooth muscle cell contractility and
endothelial function [77]. Adipose tissue specifically located
close to blood vessels exhibits a proinflammatory phenotype
compared to other depots such as the subcutaneous one
[155]. This phenotype is aggravated after a high fat feeding
suggesting that PVAT is very sensitive to the effects of
excess dietary fat [155]. In obese rats, including diet-induced
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obesity rats, it has been repetitively shown that PVAT causes
endothelial dysfunction via proinflammatory cytokines such
as TNF𝛼 [156] or monocyte chemotactic protein-1 [157] as
well as through oxidative stress [148, 157]. Actually, Dobrian
et al. report on a rat model of obesity-induced hypertension
that this increase in vascular oxidative stress is associated
with an increase in vascular NOproduction andNO synthase
activity [148]. Furthermore, Jebelovszki et al. demonstrated
that diet-induced obesity increases vascular smooth muscle
sensitivity to NO through an activation of guanylate cyclase
[149]. To have a whole picture of the biology of NO in
obesity it is important to consider also that adipocytes can
express NO synthase and that this expression is upregu-
lated in obesity [158]. The adipocytic upregulation of NO
synthase contrasts with the endothelial downregulation of
this enzyme described by Ma et al. in diet-induced obesity
rats in which this downregulation finely correlates with the
vascular dysfunction they find in their own experiments [159]
and, in general, in those of others [152–157]. This apparent
contradiction can be explained as follows. In nonobese
individuals, PVAT would have a vascular protective and
beneficial role [152]. During the onset of obesity, several
adaptive mechanisms within the vessel wall [149] and within
PVAT itself [152] are activated. Regarding the latter, Gil-
Ortega et al. have published interesting data showing the
existence of an adaptive NO overproduction by PVAT during
early diet-induced obesity and propose that, at some time
point during obesity development, PVAT switches from a
vascular protective influence to a deleterious one [152].

6. Future Directions

Thepathophysiology ofmetabolic syndromehas become very
complex. We have reviewed some of the pathophysiological
aspects that affect vascular function: insulin, sympathetic
system, endothelium, perivascular fat, and adipokines. The
animal models in use have important limitations that need to
be compensated with clinical studies. Translational research,
in which animal studies are designed and carried out together
with clinical investigation, is of special value. It is also
highly important to merit basic science studies designed
to unravel specific pathways, messengers, and intermediates
of metabolic syndrome. While the era of endothelium and
endothelium-derived substances has passed its summit, the
age of perivascular adipocytes and adipokines is coming with
a strong impulse.
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