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Introduction
Polycystic ovary syndrome (PCOS) is one of the 
most common endocrine conditions, affecting 
approximately 10% of all women across the globe.1 
Women with PCOS commonly present with 
menstrual irregularities, infertility and signs and 
symptoms of androgen excess. PCOS has been 
traditionally perceived as a predominantly repro-
ductive disorder, with minimal focus on long-term 
metabolic complications. However, recent studies 
have shown that PCOS is associated with signifi-
cant health consequences in affected women,2 rep-
resenting a lifelong metabolic disorder (Figure 1).

Although controversies persist with regard to 
diagnostic criteria for PCOS, androgen excess 
remains a fundamental biological and diagnostic 
feature of the disorder.3,4 This is recognised in 
the 2003 Rotterdam Consensus criteria, with 
androgen excess featuring as a defining criterion 
alongside irregular periods and polycystic appear-
ances of the ovaries at ultrasound. Following 

this, the Androgen Excess Society recommended 
hyperandrogenism as a mandatory criterion for 
the diagnosis of PCOS, further highlighting 
PCOS as a disorder of androgen excess.4–6 In 
cross- sectional clinical phenotyping as well as 
population studies, androgen excess is a major 
driver of metabolic risk in PCOS, with the pres-
ence and severity of androgen excess closely cor-
relating with surrogate parameters of metabolic 
risk, including insulin resistance.7 Women with 
PCOS have been shown to be at increased risk of 
metabolic disease including type 2 diabetes mel-
litus (T2DM), nonalcoholic fatty liver disease 
(NAFLD), and cardiovascular disease (CVD).8

Most studies on PCOS have focused on classic C19 
androgens, their precursors and/or their down-
stream urinary metabolites for biochemical assess-
ment of androgen excess. However, the newly 
described, adrenal-derived C11-oxy C19 androgen 
subclass is emerging to be clinically and biochemi-
cally significant in the context of PCOS-related 
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androgen excess.9 In our recent study, we found 
that C11-oxy C19 androgens are the majority of 
circulating serum androgens in women with 
PCOS10

, thus emphasising the importance of 
improving our understanding of the impact of 
both classic and C11-oxy C19 androgens on wom-
en’s health. Furthermore, circulating levels of the 
active C11-oxy C19 androgen 11-ketotestosterone 
(11KT) have recently been shown to remain con-
sistent throughout the female lifespan,11 contrary 
to classic androgen concentrations, which decrease 
post-menopause. However, recent study by 
Stratakis et  al.12 analysing steroid hormones of 
adolescents and young women with PCOS and 
adrenocortical dysfunction using UPC2-MS/MS 
found C19 steroids [A4, testosterone and dehy-
droepiandrosterone (DHEA)] concentrations 
higher than the combined C11-oxy C19 andro-
gens. The combined C19 steroid levels were 

higher in PCOS group with the combined C11-
oxy androgens being similar in patients with 
PCOS and healthy people. Therefore, more stud-
ies on C11-oxy C19 and their downstream metab-
olites will be needed before a conclusion can be 
drawn about the roles of C11-oxy C19 androgens 
compared with the classic androgens.

Conditions characterised by androgen excess are 
PCOS, premature adrenarche, congenital adre-
nal hyperplasia, ovarian hyperthecosis, androgen 
secreting tumours and, to a degree, also Cushing’s 
syndrome.13,14 Many of these conditions lack the 
necessary prevalence and frequency of life events 
and metabolic dysfunction to understand the 
overall impact of androgen excess.15 PCOS is a 
lifelong metabolic condition likely to affect female 
health from childhood through to post-meno-
pause. Recent work by Risal et  al. showed that 

Figure 1. Iceberg phenomenon: PCOS has been traditionally perceived as a primarily reproductive disorder. 
On a superficial level, clinical consequences of this condition include subfertility, irregular menses and signs 
and symptoms of androgen excess. However, clinicians should be aware of the significantly increased risk of 
metabolic complications across the female lifespan in women with PCOS, underpinned by androgen excess 
and insulin resistance.
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daughters of mothers with PCOS have a fivefold 
increased risk for PCOS.16 More importantly, 
they showed that prenatal androgen exposure and 
not obesity lead to transgenerational reproductive 
and metabolic dysfunction in rodent models.17 
Another study by Gunning et  al. showed subtle 
cardiometabolic dysfunction in early childhood in 
otherwise healthy weight children of women with 
PCOS.18,19 Based on its high prevalence in the 
general background population, and the correla-
tion between PCOS and other features of meta-
bolic syndrome, PCOS is a good model for 
studying the impact of androgen excess on meta-
bolic risk.The origins of androgens and their 
mechanistic role inducing metabolic dysfunction 
in PCOS are discussed in detail in the following.

Review methodology
We included both in vitro and in vivo human and 
animal studies published in English up until March 
2020 providing evidence on PCOS and metabolic 
dysfunctions. Articles were searched from PubMed 
using terms “(PCOS) OR (PCOS MeSH terms)” 
AND (Androgens) OR “(Androgens MeSH 
terms)” AND terms on metabolic dysfunctions as 
mentioned previously such as “Obesity”, “Diabetes” 
and with their associated MeSH terms. We also 
added specific organs such as “Adrenal”, “Ovary”, 
“Muscle”, “Pancreas”, “Liver” in separate searches 
to review their impact on PCOS and metabolic dys-
functions. Additional articles were also obtained 
from previously published reviews for respective 
subjects. Articles were then screened based on titles 
and abstracts and full texts were subsequently 
obtained.

Origins of androgen excess in PCOS and  
pre-receptor androgen metabolism
Androgens are responsible for the development of 
male characteristics such as male pattern body 
hair, muscle bulk, and deep voice; androgens also 
impact on sexual function and reproductive capac-
ity in both sexes. In women, androgens also play 
an important role in general wellbeing, libido, 
energy levels, muscle mass and strength and bone 
mass.20–24 Apart from their role in reproduction 
and sexual health, androgens also play an impor-
tant role in human metabolic health in both men 
and women.25 The origins of androgen excess in 
PCOS have not been comprehensively delineated, 
but adrenals, ovaries and adipose tissue collec-
tively contribute to the bulk of circulating 

androgen burden in the disorder.8 Androgens are 
synthesized in the ovaries and adrenal glands cata-
lysed by a series of steroidogenic enzymes, espe-
cially the rate limiting cytochrome P450 (CYP) 
17A1 enzyme, responsible for the synthesis of the 
classic androgen pathway precursor DHEA. 
DHEA and its downstream product androstenedi-
one are released into circulation, with androgenic 
signals further amplified after uptake into target 
tissues, where androgen precursor steroids are 
converted into the active androgens testosterone 
and 5α-dihydrotestosterone (DHT), the most 
potent natural androgen.26 Several studies have 
reported a systemic upregulation of 5α-reductase 
activity as a significant feature in women with 
PCOS,27–31 with consequently increased activa-
tion of testosterone to 5α-DHT. More recently, 
another pathway of DHT synthesis, referred to as 
‘backdoor pathway’ has been discussed in the con-
text of PCOS and congenital adrenal hyperpla-
sia.32–34 This pathway involves the synthesis of 
DHT bypassing testosterone in the classic path-
way. There are also speculations of androgens 
transferring via mother’s milk into children as an 
early source of androgens in neonatal and infant 
life. However, currently there is a lack of scientific 
evidence to support this theory. As PCOS is a het-
erogeneous condition associated with features of 
the metabolic syndrome, in vivo studies involving 
women with PCOS are often confounded by coex-
isting obesity and insulin resistance, which are 
also contributors to hyperandrogenism in women 
with and without PCOS.35

Ovaries and androgen excess
The origin of androgen excess from the ovaries is 
complex and mainly attributed to tonic hyperse-
cretion of Luteinizing Hormone (LH), likely due 
to a dysregulated hypothalamic–pituitary–gonadal 
axis.36 A theory of insulin-potentiated accelerated 
gonadotropin-releasing hormone (GnRH) pulse 
frequency, resulting in increased LH pulse is sup-
ported by the works of Roland and Moenter.37,38 
Insulin has also been shown to stimulate androgen 
productions in the ovarian theca cells of women 
with PCOS via insulin receptor rather than insulin 
growth factor 1 (IGF-1) receptor.39,40 However, 
the IGF-1 receptor may also play a role in condi-
tions with extreme levels of insulin resistance such 
as heridatery insulin receptor mutations or lipod-
ystrophy contributing to their hyperandrogenism 
and PCOS.41,42 High levels of IGF-1 in acromeg-
aly have also been previously associated with 
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PCOS43 with the observation of improvement in 
IGF-1 and PCOS phenotype following reduction 
in growth hormone levels. This was followed by 
the normalisation of menstrual cycle and numbers 
of polycystic ovary morphoplogy suggesting that 
IGF-1 could play a role in hyperandrogenism and 
PCOS.44 Low concentrations of progesterone 
have been proposed to increase LH secretion by 
disrupting the negative feedback of GnRH.45 
However, the presence of increased LH and 
androgen excess in prepubertal girls fails to sup-
port low progesterone as a sole source of LH 
increase in PCOS.46 The increase in ovarian 
androgens in PCOS is not only LH- and insulin-
dependent as some in vitro studies have shown 
that it could be due to an abnormality in primary 
theca cell steroidogenesis.47,48 Subsequent clinical 
studies in women with PCOS have shown that 
ovarian androgen production is hyperresponsive 
to both administration of GnRH agonists and 
Human Chorionic Gonadatropin (hCG) chal-
lenges.48–51 The role of upregulation of backdoor 
androgen synthesis pathway contributing to andro-
gen excess in women with PCOS has been dis-
cussed by Marti et al.52 In their study, they have 
shown that the ovaries express all the enzymes 
required for DHT synthesis through the backdoor 
pathway. Comparing ovarian tissues of women 
with PCOS to women without PCOS, immuno-
histochemistry revealed higher reactivity for 3β-
hydroxysteroid dehydrogenase type 2 (HSD3B2), 
retinol dehydrogenase (RoDH), 5α-reductase type 
1 (SRD5A1) and aldo-keto reductase family 1 
member C2 (AKR1C2) genes indicating a possi-
ble higher activities of their respective enzymes 
involved in the backdoor pathway. SRD5A1, the 
gatekeeper of the backdoor pathways converting 
A4 into androstanedione, showed the highest dif-
ference in PCOS compared with non-PCOS high-
lighting the relevance of this pathway in women 
with PCOS. Derangement in the Kiss-1 system 
resulting in increased LH release has also been 
postulated; however, evidence supporting this the-
ory is lacking to date.36 Recently, the role of 
Gamma Aminobutyric Acid (GABA) activity in 
the arcuate nucleus stimulating LH secretion 
resulting in PCOS-like reproductive dysfunction 
has been explored in mice by Silva et al.53

Adrenal glands and androgen excess
Nearly 50% of women with PCOS have a pre-
dominantly adrenal hyperandrogenism pheno-
type as shown by elevated concentrations of 

Dehydroepiandrosterone Sulphate (DHEAS) 
and 11β-hydroxyandrostenedione, two andro-
gens that are exclusively produced by the adrenal 
glands.54–56 This is particularly prominent in 
young women with PCOS.13 This may be due to 
upregulation of CYP17A1 activity through tonic 
hyperstimulation by Adrenocorticotropic hor-
mone (ACTH) of the adrenal gland. Lack of a 
significant increase in 17-hydroxyprogesterone 
(17OHP) after  exogenous stimulation with 
ACTH supports this theory.54,57 One of the other 
proposed mechanisms of adrenal hyperandrogen-
ism is a relative deficiency of HSD3B2. In women 
with PCOS and high DHEAS, a normal DHEA 
response and slightly elevated 17OHP response to 
ACTH suggested that elevated DHEAS was due to 
tonic hyperstimulation of the adrenal gland rather 
than deficiency of the enzymes.54 Downregulation 
of 11β-hydroxysteroid dehydrogenase type 1 
(HSD11B1) activity will result in a decreased rate 
of cortisol activation and hence could lead to 
adrenal  androgen stimulation via hypothalamic–
pituitary–adrenal axis feedback; however, no con-
vincing evidence for decreased HSD11B1 activity 
was found in two independent studies in women 
with PCOS.58,59 The relevance of the adrenal 
backdoor pathway in women with PCOS was also 
discussed by Saito et  al. showing correlations 
between the levels of DHEAS to androstanedione 
and androsterone indicating a potential adrenal 
gland contribution in these two androgens 
involved in this pathway.60

Importantly, the C11-oxy C19 androgens are pri-
marily of adrenal origin as this pathway starts with 
the conversion of A4 to 11-hydroxyandrostenedi-
one (11OHA4), which can only be catalysed  
by 11β-hydroxylase activity of the exclusively 
adrenally expressed enzyme CYP11B1.55,61 As 
C11-oxy C19 androgens are particularly promi-
nent in the serum women with PCOS10 as well as 
in girls with premature adrenarche,62 it is safe to 
assume that the adrenal glands provide a major 
contribution to circulating androgen excess in 
PCOS (Figure 2).

Peripheral tissues and androgen excess
After the secretion by the ovaries and/or adrenals 
into the circulation, androgenic precursors are 
further activated in peripheral target tissues into 
more potent androgens that bind to the cytosolic 
androgen receptor (AR), which subsequently 
translocates to the nucleus where it functions as a 

https://journals.sagepub.com/home/tae


P Kempegowda, E Melson et al.

journals.sagepub.com/home/tae 5

transcription factor after binding to DNA, result-
ing in increased transcription of genes encoding 
for factors important for androgenic biologic 
activity. The concentration of androgens in 
peripheral target tissues of sex steroid action are 
determined by (1) the total concentration of the 
androgenic steroids in the circulation (2) whether 
they are bound to sex hormones binding globulin 
(SHBG) or albumin (3) important regulators of 
bioavailability, and the availability of mechanisms 
for cellular influx and efflux. Circulating andro-
gens must cross the plasma membrane of the tar-
get cells to be metabolized by intracellular 
enzymes and/or to activate AR. While unconju-
gated steroids can freely diffuse across the plasma 
membrane, conjugated steroids are hydrophilic 

and hence need to be actively transported inside 
the cell. Once in the cell, these steroids will need 
to be deconjugated before they can be metabo-
lized and/or interact with the androgen 
receptors.25,63

Combining human-based in vivo and ex vivo study 
approaches, our group has shown that the andro-
gen-activating enzyme aldoketoreductase type 1 
C3 (AKR1C3), which converts androstenedione to 
testosterone as well as 11OHA4 to 11KT, is a 
major driver of adipocyte-specific androgen excess 
and that its activity in adipose tissue is a major 
source of PCOS-related androgen excess.64 This 
will be discussed in detail in the adipose tissue 
 section in the following.

Figure 2. Adrenal, ovarian and peripheral androgen metabolism in PCOS. Androgenic precursors are secreted 
predominantly by the adrenal glands, and activated to potent androgens in the ovaries and peripheral tissues. 
Expression of key androgen-activating enzymes in peripheral tissues such as adipose tissue highlight an 
important role for extra-adrenal and -ovarian androgen generation. 
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MicroRNA and androgen excess
MicroRNAs (miRNAs) are present widely in the 
body playing a role in the regulation of gene expres-
sion by inhibiting post-transcriptional or post-
translational expression of messenger RNA 
(mRNA).65 Alteration in levels of miRNA have 
been implicated in conditions such as cervical can-
cer, ovarian cancer, endometriosis and CVDs.66–68 
Studies have shown differential expression of 
miRNA in women with PCOS compared with 
controls, suggesting a potential role of miRNA in 
PCOS.69,70 Chen et al. have extensively discussed 
the role of miRNA in PCOS.71 Muri et  al. have 
previously shown that levels of miR-21, miR-103 
and miR-155 were positively associated with levels 
of free testosterone in women with PCOS72 and 
several miRNAs have been shown to be negatively 
correlated with levels of testosterone and A4 in 
these women.73,74 Moreover, comparing miR-
130b-3p in normal and theca cells of women with 
PCOS have shown a decreased expression in 
PCOS which was correlated with increased expres-
sion of CYP17A1 and DHEA synthesis, which 
may contribute to the androgen excess in PCOS.75

In isolated porcine ovaries, overexpression of 
miR-378 was shown to inhibit the expression of 
aromatase enzymes in the ovaries, which contrib-
uted to hyperandrogenaemia.76 Furthermore, 
miRNA181a also downregulates oestrogen syn-
thesis via CYP19A1 expression in mouse granu-
losa cells.77 However, there is no evidence of 
miRNA overexpression in women with PCOS, 
hence its role in increasing levels of androgens in 
this population. miR-193a-5p and miR-199a-3p 
have been positively associated with oestrogen 
and SHBG and negatively associated with free 
testosterone in women with PCOS with predic-
tions of target genes, indicating the role of these 
miRNA in regulating some enzymes in the steroi-
dogenesis pathways.78 These evidences taken 
together suggested that more detailed studies will 
be needed to investigate the role of miRNA in 
contributing to androgen excess in women with 
PCOS. The role of miRNA in propagating meta-
bolic diseases will be discussed in the relevant 
section in the following.

Androgens in metabolic target tissues
Critical metabolic target organs such as adipose 
tissue, muscle and pancreatic beta cells are also 
targets of androgen action (Figure 3). Here, we 
summarise the potential mechanisms and 

metabolic dysregulation due to androgen action 
in each of these organs.

Adipose tissue, obesity, fat mass distribution 
and androgen excess
Adipose tissue forms the largest store of con-
served energy, in the form of triglycerides, in the 
human body. The process of adipocyte differen-
tiation from stem cells is complex and involves a 
variety of signals for gene regulation, histone 
modification, and protein modification by ubiqui-
tin.79 There are two distinct types of adipose tis-
sue, brown adipose tissue and white adipose 
tissue. Several studies have established the role of 
adipose tissue beyond an energy storehouse to 
regulating several critical physiological processes 
for example, through adipokine signals such as 
leptin and adiponectin. The various roles of adi-
pokines is discussed in detail by Ouchi et al. and 
Dimitriadis et al.80,81

Women with PCOS have been shown to have 
more central obesity phenotypes compared with 
weight and body mass index (BMI)-matched con-
trols,82–85 which is associated with various meta-
bolic conditions in PCOS.86–88 However, these 
data have been inconsistent.89,90 Some studies 
have also shown that although women with PCOS 
have android fat mass distribution, these might 
not be accompanied by increased visceral fat.91,92 
On the other hand, gluteo-femoral fat or gynecoid 
adiposity, low in PCOS, has been shown to be 
independently associated with protective lipid and 
glucose profile along with decreased cardiovascu-
lar and metabolic risk.93 Visceral adiposity index 
(VAI) has similar utility to the gold-standard com-
puted tomography scan in the evaluation of vis-
ceral adiposity.94 VAI is a sex-specific empirical 
mathematical model based on BMI, waist circum-
ference, triglycerides and high-density cholesterol 
in healthy normal and overweight populations.95 
Lim et al. reported a similar VAI in women with 
PCOS and healthy controls in few studies. 
However, subgroup analysis comparing three 
groups (PCOS and obesity, obesity alone, and 
PCOS alone) revealed that women with PCOS 
and obesity have higher VAI compared with the 
other two groups.96 In a study on women with 
PCOS by Amato et al., VAI was only associated 
with compensatory hyperinsulinemia and there 
was no independent association between VAI and 
insulin sensitivity index (by HOMA-IR and ISI 
Matsuda), androgen profiles and PCOS.97 Visceral 
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adiposity has also been previously, but not con-
sistently, associated with elevated FAI82 and total 
testerosterone.85 However, the number of studies 
available is too low for a systematic review to 
examine whether there is an association between 
PCOS, central obesity and androgens.

Adipose tissue is a key target of androgen action. 
Androgens are known to inhibit adipocyte differ-
entiation in both animal and human cell lines.98–101 
The effects of androgen on adipose tissue can be 
noted from birth. Roland et al. noted higher fast-
ing glucose and impaired glucose tolerance in 
prenatally androgenised female mice which 
closely mimics PCOS model.37 Prior to this, 
Nilsson et al. showed that exposure to testoster-
one in the neonatal period resulted in insulin 
resistance, change in adipose tissue distribution 
and lean mass without significant changes in cir-
culating androgen concentrations.102 Further, 
their groups showed this early exposure 

to androgen resulted in long-lasting effects on 
insulin sensitivity, adipose tissue and lipid pro-
file.103 We have previously published a detailed 
review of the abnormalities in adipose tissue func-
tion, fat distribution and lipid metabolism in the 
context of androgen excess.104

We have demonstrated that expression of the 
androgen-activating enzyme, AKR1C3, which 
converts the weak androgen precursor andros-
tenedione into potent testosterone, is increased 
in subcutaneous (SC) adipose tissue in women 
with PCOS. Locally generated androgens 
enhance de novo lipogenesis within SC female adi-
pocytes, potentially predisposing to fatty acid 
overspill into the systemic circulation, with conse-
quent lipotoxicity driving an adverse metabolic 
phenotype.64 We demonstrated that associated 
insulin resistance and hyperinsulinemia then drive 
AKR1C3 expression and activity within the adi-
pocyte, raising the possibility of a vicious circle of 

Figure 3. Impact of androgen excess on metabolic target tissues- (A) Increased fat accumulation in 
the hepatocytes in response to androgen excess, eventually resulting in NAFLD, (B) Androgen excess is 
proportionally related to beta-cell dysfunction, (C) Ectopic lipid accumulation in skeletal muscle with androgen 
excess influences glucose-regulating pathways resulting in insulin resistance, (D) under the  influence of 
androgens, women with PCOS have been shown to have more central obesity phenotypes.
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intra-adipose androgen activation, lipid accumu-
lation and hyperinsulinaemia.

AKR1C3 also converts the C11-oxy C19 andro-
gen precursor 11-ketoandrostenedione (11KA4) 
into 11-ketotestosterone (11KT), which binds 
and activates the AR with similar potency to test-
erosterone.105 Recent data from Storbeck’s group 
also suggest that 11KA4 is the preferred substrate 
for AKR1C3, which more efficiently converts it 
to active 11KT than its counterpart reaction in 
the classic pathway with KM values of 0.11 μM 
and 0.06 μM for 11KA4 and A4 respectively.106 
Our findings of increased AKR1C3 expression in 
SAT of women with PCOS were corroborated by 
a recent study describing similar results.107 Amer 
et  al. have shown an upregulated AKR1C3 and 
CYP17A1 mRNA expression in SAT of women 
with PCOS as well as a higher levels of T. But, it 
is important to note that the authors did not 
assess if the higher levels of testerosterone in the 
adipose tissue was a result of increased AKR1C3 
or CYP17A1 expression. This was previously 
shown by our group showing a reduction of test-
erosterone levels following inhibition of AKR1C3 
by 3-4 trifluoromethyl-phenylamino-benzoic acid 
in healthy female adipose tissue. Studies on 
women with PCOS will be needed to confirm if 
the increased levels of testerosterone in SAT are 
in fact related to overexpression of AKR1C3 per 
se or related to both CYP17A1 and AKR1C3 
activities. These findings define a novel intra-adi-
pose mechanism that could contribute to andro-
gen excess and metabolic dysfunction in PCOS.

These data strongly implicate adipose tissue as a 
major peripheral site of activation and metabo-
lism of C11-oxy C19 androgens in PCOS and sug-
gest that locally generated C11-oxy C19 androgens 
play a significant role in adipose tissue lipotoxic-
ity. To date, however, this hypothesis has not 
been tested in adipose tissue of human partici-
pants using in vivo physiology approaches.

The association between adiposity, androgen 
excess and PCOS has been further complicated by 
hyperinsulinaemia and insulin resistance, which 
exacerbate the metabolic, reproductive and steroi-
dogenic abnormalities observed in the disorder.8 
A systematic review by Lim et al.96 found women 
with obesity and PCOS have a higher total and 
free testerosterone and lower SHBG compared 
with those with normal BMI. Furthermore, 
women with both PCOS and obesity also have a 

more severe clinical evidence of hyperandrogen-
ism (such as hirsutism, menstrual abnormalities 
and anovulation) compared with women with 
PCOS and normal BMI. This effect tends to be 
more pronounced in the abdominal/visceral obe-
sity phenotypes96,108–110 and weight loss in women 
with PCOS has been shown to improve clinical, 
metabolic and reproductive outcomes.110–112

Insulin resistance and compensatory hyperinsu-
linemia in obesity inhibits hepatic production of 
SHBG, with a consequent increased bioavailability 
of androgens. Further, insulin modulates hypotha-
lamic-gonadal and steroid enzymatic machinery at 
various levels as described previously.

Pancreas, type 2 diabetes and androgen excess
Studies have shown that there is a clear sex differ-
ence in the way the foetal pancreas reacts to 
androgen excess. Insulin secreted from the pan-
creatic beta cells is critical for glucose utilisation 
in the peripheral tissues. Defects in insulin secre-
tion or action predispose to insulin resistance and 
T2DM. Beta cells expand rapidly during late ges-
tation and any alteration to its expansion during 
this period results in long-lasting deleterious 
effects. Navarro et al. demonstrated potentiating 
effects of DHT on male mice beta cell function 
via the glucagon-like peptide-1 (GLP-1) recep-
tor.113 Further, they showed male mice lacking 
AR had decreased glucose-stimulated insulin 
secretion, leading to glucose intolerance. 
Castration of male rats resulted in approximately 
30% reduction in beta cell mass.114 Xu et al. stud-
ied the transcriptome of AR-deficient islet beta 
cells of male mice and found altered expression of 
genes involved in inflammation and insulin 
secretion.115

Studies in women with PCOS have also shown 
that androgen excess is proportionally related to 
beta cell dysfunction. This has been discussed in 
detailed by Mauvaus-Jarvis in a review of sex ster-
oid effects on pancreatic beta cell function.116 
This hypothesis was further tested in female mice 
by exposing them to chronic androgen excess, 
which resulted hyperinsulinemia and insulin 
resistance. However, this was not observed in 
female βARKO mice lacking AR expression in 
pancreatic beta cells.117 Testosterone prevents 
beta cell apoptosis and increases insulin mRNA 
levels both in vitro and in vivo in a series of studies 
conducted by Morimoto et al.118,119
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Harada et  al. demonstrated an in vivo effect of 
androgens on beta cell mass and expansion in a 
sex-specific manner. They found reduced beta 
cell mass and proliferation in male rats following 
administration of flutamide to pregnant dams. 
Although beta cell mass was restored after feeding 
the mice a high fat diet, they had persisting glu-
cose intolerance suggesting decreased insulin 
secretion.120

Androgen exposure during intrauterine life results 
in several phenotypic characteristics of PCOS in 
nonhuman primates and sheep. When rats were 
exposed to testosterone during late gestation, their 
female offspring exhibited significant weight gain, 
increased adipose tissue and other traits of meta-
bolic dysfunction.121 Exposing rhesus monkey 
dams to testosterone pre-conception resulted in 
hyperinsulinaemia and a reduction in glucose 
clearance following accelerated weight gain during 
testosterone treatment. This transient hypergly-
caemic and relative hyperinsulinaemic episodes 
were sufficient to induce differential programming 
of insulin action and secretion in their female off-
spring.122 Intrauterine exposure to testosterone 
resulted in increased beta cell numbers in prena-
tally androgenised female foetuses with no effect 
on alpha cells.123 The same group reported upreg-
ulation of genes involved in beta cell development 
and function.124 Neither studies found any such 
changes in male offspring, even when they were 
exposed to androgens before the male program-
ming window. Roland et al. reported fasting hyper-
glycaemia and impaired glucose tolerance 
independently of age and changes in body compo-
sition or peripheral insulin sensitivity in prenatally 
androgenised female mice. Once again, no such 
changes were noted in male counterparts.37

Liu et  al.125 demonstrated improved differentia-
tion of pluripotent stem cells into insulin-produc-
ing cells when testosterone was added to routine 
differentiation medium, resulting in an upregula-
tion of NGN3, NEUROD1 and INS genes. 
Zhang et al. investigated the association between 
free-androgen index, a marker of androgen 
excess, with glucose tolerance in PCOS. They 
found a positive correlation suggestive of beta cell 
dysfunction in women with PCOS.126

Glucose-stimulated insulin secretion significantly 
decreases in islets treated with DHT in mice stud-
ies. This is associated with significant reductions in 
expression of several key genes involved in islet cell 

mitochondrial biogenesis and mitochondrial ATP 
production.127 Chronic exposure to androgens 
resulted in increased oxidative stress in islet cells 
resulting in secondary beta cell failure in female 
mice fed on a western diet.117,128 The study also 
reported direct androgen receptor-dependant 
impairment of beta cell function by inducing mito-
chondrial dysfunction in vitro.128 This is important 
in connection to skeletal muscle insulin resistance 
and failing insulin secretion would predispose 
women with PCOS to develop T2DM.

There are limitations that prevent direct transla-
tion findings from in vitro and animal studies into 
human physiology. Some of these limitations may 
be due to variability in animals for study, methods 
of randomization, choice of comparison therapy, 
blinding investigators to interventions and analy-
sis, and variable duration of follow up.129,130 
Nevertheless, these studies provide plausible 
pathophysiology and mechanisms linking pancreas 
and androgen excess, which have been explored in 
a few human studies described in the following.

PCOS is strongly linked with insulin resistance 
and T2DM in population and other large-scale 
studies. A meta-analysis of 35 studies of women 
with PCOS by Moran et  al. reported increased 
odds for insulin resistance (OR 2.54, CI 1.44–
4.47) and T2DM (OR 4.00, CI 1.97–8.10) com-
pared with BMI-matched studies.131 Legro et al. 
conducted one of the earliest prospective studies 
to assess the prevalence of T2DM in PCOS. They 
found the prevalence of T2DM in women with 
PCOS to be 7.5%; it was 1.5% in lean women 
with PCOS, further supporting the synergistic 
harmful effect of obesity on insulin sensitivity in 
PCOS. Interestingly, 31.1% of their cohort had 
impaired glucose tolerance speculating whether 
standards of diagnosing T2DM may not identify 
all index cases in PCOS cohort.132 Another study 
by Glintborg et al. later found no differences in 
the prevalence of Impaired Glucose Tolerance 
(IGT) and T2DM in healthy weight women with 
PCOS compared with healthy controls.133 
Boudreaux et al. reported an incidence of 13.4% 
and 5.8% in women with PCOS and healthy con-
trols respectively, with a relative risk of 2.3-times 
after prospective follow up over 8 years. Further, 
obesity increased the risk by fivefold in their 
cohort.134 One of the largest population-based 
survey of T2DM in PCOS was reported from 
Australia by Joham et  al. They surveyed 9145 
women who self-reported the diagnosis of PCOS, 
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T2DM and gestational diabetes mellitus. The 
prevalence of T2DM was 5.1%. After adjusting 
to sociodemographic and other known risk fac-
tors, the odds for T2DM were significantly 
increased in PCOS [odds ratio 8.8, 95% confi-
dence interval (CI) 3.9–20.1, p = 0.001]. BMI 
was independently associated with T2DM in 
PCOS with every BMI increment increasing the 
risk of T2DM by 10%.135 A Danish national reg-
ister study by Rubin et al. studying about 18,000 
women with PCOS and 54,000 controls has also 
shown a higher event rate of T2DM in PCOS 
compared with well-matched controls, and diabe-
tes was diagnosed on average 4 years earlier than 
in the background population.136 The prevalence 
of glucose intolerance and T2DM in a cohort of 
122 women with PCOS studied by Ehrmann and 
colleagues was 35% and 10% respectively.137 
They further followed up a subset of the glucose-
intolerant women with PCOS and found them to 
have higher post-prandial glucose compared with 
their baseline, suggesting a progressively worsen-
ing insulin resistance in the absence of any inter-
vention. The prevalence of diabetes in the Dutch 
population was much less (2.3%) compared with 
the American cohorts described previously. 
However, the risk was 2.3-times higher compared 
with the generally healthy cohorts. And this risk 
increased from 1.3-times in 25–34 years to 9.4-
times in 45–54 years.138 The study by Kauffman 
and colleagues suggests that ethnicity plays an 
additive effect on insulin resistance in PCOS. 
Mexican American women had significantly 
higher insulin resistance compared with white 
American women, thus challenging a single pop-
ulation-wide screening tool.139

First reported in 1980, the association of hyper-
androgenism and hyperinsulinemia is firmly 
established.64,140–142 Our group have also shown 
in a retrospective cohort study in a UK primary 
care database that women with increased serum 
testosterone levels have an increased risk of inci-
dent T2DM.143 This was recently highlighted fur-
ther by Ruth et al. in their study of 455,097 UK 
Biobank samples, which showed that the risk of 
T2DM in women was increased by 37% for every 
increased standard deviation of free testosterone 
from baseline. A higher fasting insulin was also 
reported in these women.144 However it is impor-
tant to note that these are associations rather than 
causation and hence more prospective studies will 
be needed to investigate the impact of androgen 
excess on the development of T2DM.

Dunaif et al. were amongst the first to prove that 
women with PCOS have significant insulin 
resistance independent of obesity. However, 
obesity seemed to have a synergistic deleterious 
effect on glucose tolerance.142 Further, they 
proved in their study that insulin resistance was 
not due to decreased insulin clearance but of a 
different pathology.145 Since then, several 
researchers have studied the exact mechanisms 
of insulin resistance and its consequent deleteri-
ous effect on metabolism. Hypotheses to explain 
intrinsic insulin resistance in PCOS include 
mitochondrial dysfunction and lipid accumula-
tion affecting the insulin-signalling pathway. 
Hansen et  al.146 found that lean women with 
PCOS have 25% lower insulin sensitivity and 
40% lower plasma adiponectin levels compared 
with age- and BMI-matched controls. The find-
ing of low levels of adiponectin has been shown 
to predict women with PCOS who are at high 
risk for developing T2DM.147 They also reported 
an increased accumulation of triacylglycerol, 
diacylglycerol and ceramide in skeletal muscles 
of PCOS women supporting the lipid accumula-
tion theory.

Muscle
Androgen excess may play a role impacting skel-
etal muscles in women with PCOS by altering 
their insulin sensitivity. Muscle is one of the key 
organs responsible for disposing 70–80% of glu-
cose load. Insulin stimulates a canonical signal-
ling cascade composed of insulin receptor 
substrate (IRS)-1, phosphoinositide 3-kinase 
(PI3K), protein kinases PDK1, Akt and Rab. The 
overall cascade ends with translocation of glucose 
transporter (GLUT) 4 to the cell membrane 
which permits the intake of glucose from blood 
into the cell.148 Several groups have tried to tease 
out the role of androgen excess in metabolic dys-
function using hyperglycaemic and euglycaemic-
hyperinsulinaemic clamps. Most of these studies 
concluded that high levels of testosterone resulted 
in reduction in whole-body glucose uptake in 
healthy women.149–152 Furthermore, they reported 
that these testosterone-induced insulin resistance 
were not attributed to hepatic insulin resistance 
supporting the role of muscles in androgen-medi-
ated insulin resistance.153 Insulin resistance is a 
common finding in PCOS. Stepto et  al. found 
that 75% of lean women with PCOS and 95% of 
overweight women with PCOS are intrinsically 
insulin resistant.154 Various scientists have 
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attempted to explain insulin resistance in PCOS 
by one of three mechanisms: (1) dysregulation 
and/or dysfunction at several steps in the insulin-
signalling cascade, (2) lipid accumulation and (3) 
mitochondrial dysfunction.155,156

Most of the theories about a dysfunctional insu-
lin-signalling pathway come from studies on dia-
betes. The earliest proposed mechanism of insulin 
resistance in skeletal muscle of women with 
PCOS was increased phosphorylation of serine 
residue on IRS-1 limiting the signal cascade.157 
This was also shown in a later study by Corbould 
et al.158 However, these findings could not be rep-
licated by other groups. Instead, defects distal to 
IRS-1/IRS-2 involving Akt substrate 160 kDa159,160 
and other pathways were found. This theory is 
supported by a study on the impact of exercise on 
hyperandrogenized mice, showing improvement 
in insulin sensitivity via PI3K-Akt pathway with 
associated reduction in 5αR1 expression in skel-
etal muscle of the exercise group versus stationary 
group.161 A cross-sectional study looking at 
impact of habitual physical activity on women 
with PCOS showed an association of having more 
than 7500 steps per day (active group) with 
reduction of BMI, waist circumference, lipid 
accumulation product, androgen levels and fast-
ing and 120-min insulin levels. In their study, 
HOMA-IR and 2000 daily steps increment were 
also found to be an independent predictor of free-
androgen index.162 A randomized trial on women 
with PCOS have also shown improvement in 
some androgen levels (total testosterone and 
SHBG) as well as insulin resistance shown by the 
decrease in HOMA-IR following 12 weeks of 
high-intensity interval training, further strength-
ening the link between androgens excess and 
insulin resistance in skeletal muscle.163

Nilsson et al. found aberrant gene expression and 
DNA methylation in skeletal muscles of women 
with PCOS, mainly DYRK1A, which encodes an 
inhibitor of glycogen synthase kinase-3, SCP2, 
which is involved in lipid metabolism, SYNPO2, 
which encodes synaptopodin protein involved in 
oxidation in the muscles, KLF10, which is a tran-
scriptional repressor regulating circadian expres-
sion of various genes involved in lipid and glucose 
metabolism, and NAMPT, which encodes vis-
fatin and promotes glucose uptake into skeletal 
muscle.164 However, many of these changes had 
contrasting results in the presence of androgens in 
vitro and hence remain inconclusive.

The other commonly proposed mechanisms 
explaining insulin resistance in PCOS include lipid 
accumulation and mitochondrial dysfunction. 
Lipid accumulation in skeletal muscle influencing 
glucose-regulating pathways is hypothesised to 
cause insulin resistance in diabetes.165,166 Intra-
muscular lipid levels (triacylglycerol, sn-1.3 diacyl-
glycerol and ceramide) were higher in women with 
PCOS compared with healthy controls in a study 
done by Hanssen et al. In this study, they found 
women with PCOS had 25% higher whole-body 
insulin resistance compared with healthy controls. 
They also found lower AMP-activated protein 
kinase and Thr172 phosphorylation in association 
with lower plasma adiponectin levels suggesting a 
role of the latter in insulin resistance.146 Studies on 
the theory of mitochondrial dysfunction causing 
insulin resistance has resulted in contrasting evi-
dence over the last decades.167,168 A nontargeted 
metabolomics analysis of skeletal muscle of mice 
which was treated with DHEA revealed 32 metab-
olites and five metabolic pathways that are signifi-
cantly different compared with controls.169 Among 
these, the reduced NAD+/NADH ratio affecting 
ATP generation was a key finding, which may 
influence downstream activation of the insulin-
signalling pathway, supporting the mitochondrial 
dysfunction theory. Skov et  al. showed that 
impaired insulin-stimulated glucose disposal in 
women with PCOS was associated with downreg-
ulation of mitochondrial oxidative phosphoryla-
tion genes using global genetic pathway analysis.170 
Interestingly, Hutchinson et al. could not explain 
the difference in insulin resistance between women 
with and without PCOS with either lipid accumu-
lation or mitochondrial dysfunction.171 The ability 
of high-intensity interval training to improve insu-
lin sensitivity and androgen excess may also be 
related to increase in mitochondrial density and 
capacity during the training as well as increased in 
fat oxidation reducing lipid accumulation.163,172

Taken together, the essence of these studies sug-
gests there is perhaps a distinct mechanism of 
insulin resistance in PCOS. Future studies on the 
specific influence of androgens on insulin resist-
ance in skeletal muscle may answer this question.

Liver
Several cross-sectional studies have shown an 
increased prevalence of NAFLD in women with 
PCOS; NAFLD is now on its way to become the 
most frequent cause of liver transplantation, 
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driven by the global obesity pandemic, and is a 
forerunner of CVD.173 A study by Petta et  al. 
concluded that PCOS is an independent risk fac-
tor for hepatic steatosis and possibly progression 
to fibrosis and cirrhosis, with hyperandrogenism 
and insulin resistance as main determinants.174 
These associations have been observed in other 
studies.175–177 Our group has carried out a cohort 
study utilising a large primary care database in 
the United Kingdom, including 63,000 women 
with PCOS and 121,000 matched controls, 
revealing that the risk of NAFLD was signifi-
cantly increased in women with PCOS, even in 
women with a normal BMI (hazard ratio = 2.23, 
95% CI 1.86–2.66, p < 0.001).178 Androgen 
excess (high testosterone, low SHBG) was found 
to be a contributing risk factor for the develop-
ment of NAFLD in PCOS in this study.178 These 
associations have been recently supported by a 
meta-analysis showing a 2.3-fold increased rate 
of NAFLD in women with PCOS, especially 
those who have hyperandrogenism.179

There are numerous proposed mechanisms link-
ing this hepatic manifestation of metabolic syn-
drome with PCOS.179,180 Androgen excess in 
PCOS suppressed low-density lipoprotein recep-
tor RNA expression both in the adipocytes and 
the liver.They speculate the suppressed receptor 
expression might prolong plasma half-life of Very 
low density lipoprotein (VLDL) and low density 
lipoprotein (LDL), potentially leading to lipid 
accumulation both in the adipocytes and liver.181 
Tumour necrosis factor (TNF)-α levels related to 
hyperandrogenism have also been implicated in 
the development of NAFLD.182 DHEA-induced 
hyperandrogenism in healthy women of repro-
ductive age resulted in increased fasting AR 
mRNA content and TNF-α levels, which were 
both potentiated by glucose ingestion.183 TNF-α 
is one of the proinflammatory cytokines involved 
in many inflammatory disorders, including meta-
bolic syndrome and has also been shown to 
induce insulin resistance via promotion of IRS-
1.184 TNF-α is also involved in inducing enzymes 
involved in lipid metabolism, proinflammatory 
cytokines and fibrosis-associated protein in the 
liver, thus playing a pivotal role in development of 
NAFLD. A study by Shimomura et  al. showed 
that the adipocyte- specific nuclear form of sterol 
regulatory element-binding protein 1c (nSREBP-
1c) transgenic mice developed hepatic changes 
similar to the ones seen in NAFLD, with increased 
TNF-α.185 Follow-up studies by Kakino et  al. 

using the same mouse model showed that TNF-α 
is responsible for the development of NAFLD.182 
In this study, TNF knockout nSREBP-1c mice 
showed an improved glucose tolerance and there 
was a significantly reduced prevalence of hepatic 
steatosis compared with the original nSREBP-1c 
model. This finding was also supported by cultur-
ing primary hepatocytes in the presence of TNF-
α.182 These observations support that increased 
TNF-α, possibly mediated by hyperandrogenism, 
is an important mechanism in the development 
and progression of NAFLD in women with 
PCOS.

Our group has demonstrated androgen-mediated 
suppression of lipolysis and increased de novo 
lipogenesis in vivo and in vitro.186 This would 
result in net positive fat accumulation beyond the 
adipocyte storing capacities causing fatty acid 
overspill, systemic lipotoxicity, insulin resistance 
and fat accumulation in the liver, thus leading to 
the development of NAFLD in women with 
PCOS. In the same study, serum metabolomics 
showed increased concentration of glycerophos-
pholipids and lysoglycerophospholipids in women 
with PCOS with androgen excess, but not in con-
trols with normal androgen concentrations, at 
baseline. Acute androgen exposure yielded a fur-
ther increased in these metabolites whereas a 
decrease was observed in the BMI-matched healthy 
controls.64 Both glycerophospholipids and lyso-
glycerophospholipids were previously observed to 
be increased in people with NAFLD and have 
been identified as potential markers of risk and 
progression of the condition.187 These data shows 
that women with PCOS have a distinct metabolic 
response to androgens which might contribute to 
the development of NAFLD and other related 
conditions.

The role of microRNA
Interestingly, miRNA differential expression was 
previously associated with the increased risk in the 
development of T2DM.188,189 These expressions 
have been investigated in women with PCOS in 
the context of insulin resistance (IR).71 miR-222 
has been shown to be positively associated with 
hyperinsulinaemia in women with PCOS, sug-
gesting its role in IR in PCOS.69 Treating an IR 
adipose tissue cell line with high levels of glucose 
and insulin increased levels of miR-320 signifi-
cantly which in turns reversed the IR via increas-
ing the expression of GLUT4. Moreover, miR-320 
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have been found in the follicular fluid of women 
with PCOS which may  present a future therapeu-
tic target for women with PCOS and IR.190 Jiang 
et al. added to the literature of miRNA and IR in 
PCOS later showing the upregulation of miR-122, 
miR-193b and miR-194 in women with IGT and 
PCOS compared with those with normal glucose 
tolerance. miR-33b-5p expression in ovarian tis-
sues has also been found to play a role in propa-
gating IR in PCOS.191 This miRNA has been 
found to be increased in rats with PCOS and IR 
with levels negatively correlated with the expres-
sion GLUT4, high mobility group A2 (HMGA2) 
and sterol regulatory element-binding protein 1 
(SREBF1). The overexpression was also shown in 
IR adipose tissue in vivo with a similar reduced 
expression of GLUT4, HMGA2 and SREBF1. 
Furthermore, expression of GLUT4, HMGA2 
and SREBF1 was increased following the inhibi-
tion of miR-33b-5p, further strengthening the role 
of this miRNA in promoting IR in PCOS via this 
pathway.

The role of miRNA, obesity and dyslipidaemia 
have also been discussed by Chen et al. in their 
review.71 Several studies have also shown differ-
ential expression of miRNA with their expres-
sions correlating to markers of adiposity such as 
BMI and waist-to-hip ratio.72,78,192 Arancio et al. 
have also shown association of miRNA levels with 
LDL cholesterol levels in women with PCOS and 
hyperandrogenism, adding into the evidence on 
androgen excess and miRNA in propogating met-
abolic diseases in women with PCOS.73

In summary, miRNAs have been shown to be play 
a role in the metabolic derrangements in women 
with PCOS with evidences linking them to andro-
gen excess. More studies will be needed to thor-
oughly investigate these associations to enable for 
successful therapeutic targets specifically for 
reducing the metabolic risk in women with PCOS.

Androgen excess and cardiovascular disease
Earlier studies investigating the association 
between PCOS and CVD reported no increased 
prevalence. Pierpoint et al. reviewed the case notes 
of 786 women who were diagnosed with PCOS 
between 1930 and 1979 and were followed up for 
an average 30 years. They did not find any 
increased deaths due to CVDs in this cohort com-
pared with national rates.193 Interestingly, the same 
group reported higher prevalence of cardiovascular 

risk factors and nonfatal cerebrovascular disease in 
this cohort.194 While they concluded that PCOS 
may have protective effects on CVD, most of these 
patients did not have a hormonal profile, challeng-
ing the diagnosis and the conclusion of the study. 
Dahlgren et al. reported a 7.4-times higher risk for 
myocardial infarction in women with PCOS com-
pared with those without, using an early risk factor 
model.195 However, the number of participants 
was relatively small. Birdsall et al. reported a more 
extensive coronary artery disease in postmenopau-
sal women with polycystic ovaries on ultrasound.196 
Although the the diagnosis of PCOS in this cohort 
could not be ascertained from their report, the 
study reported associations between the polycystic 
ovaries with hirsutism and high levels of free tes-
tosterone. Christian et al. found that women with 
PCOS had higher coronary artery calcification 
compared with their age-matched controls, inde-
pendently of obesity.197 The incidence of coronary 
artery disease was four-times higher in Czech 
women with a history of PCOS compared with the 
general population.198 Although these women also 
had higher prevalence of T2DM, the remaining 
cardiovascular risk factors were comparable with 
the rest of the population, questioning whether 
PCOS is an independent risk factor for coronary 
artery disease.198 Based on these findings, the 
Androgen Excess and PCOS Society acknowl-
edged that women with PCOS have a moderate-
to-high risk for CVD, depending on the presence 
of other risk factors.199

A meta-analysis evaluating the effect of androgen 
excess in PCOS on metabolic parameters has 
shown that androgen excess is associated with 
higher levels of total cholesterol and lower high-
density cholesterol levels.200 A study by Luque-
Ramírez et  al. comparing hyperandrogenic with 
nonhyperandrogenic PCOS showed an increased 
mean carotid intima-media thickness indepen-
dently of BMI, with the main determinant being 
the concentration of serum total testosterone and 
A4.201 Furthermore, testosterone has also been 
shown to inhibit bradykinin-induced intracellular 
calcium kinetics resulting in endothelial dysfunc-
tion.202 Androgens are also known to impact the 
renal system through the upregulation of sodium 
channels in the proximal tubules increasing the rate 
of fluid reabsorption, hence increasing extracellular 
volume and blood pressure.203,204 Orio et al.205 clin-
ically confirmed endothelial dysfunction in brachial 
arteries and increased cardiac intima-media thick-
ness directly proportional to androgen excess and 
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independently of obesity in PCOS compared with 
age- and BMI-matched controls. Kravariti et  al. 
and Luque-Ramírez et al. independently confirmed 
both these findings in PCOS women of differing 
ethnicities.201,206 Levels of serum highly sensitive 
C-reactive protein (hsCRP) has been previously 
shown to be higher in women with PCOS, which 
may play a role in increased risk of CVD in this 
population.207,208 Möhlig et  al. later found that 
increased levels of hsCRP were due to obesity 
rather than PCOS alone209, which was confirmed 
by another study showing increased hsCRP in 
women with PCOS that diminishes after adjust-
ment for BMI. The study also reported no associa-
tion between levels of androgens and that of 
hsCRP.210 Hyperhomocysteinaemia and oxidative 
stress are widely known as risk factors for the devel-
opment of CVD.211,212 Several studies have previ-
ously shown elevated levels of homocysteine and 
oxidative stress in women with PCOS which may 
contribute to their risk of developing CVD.213–216 A 
study by Yilmaz et al.217 also showed a positive cor-
relation between levels of oxidative stress and free 
testosterone levels in women with PCOS, suggest-
ing the potential role of androgen excess in increas-
ing risk of CVD via this mechnanism. Although 
there is no evidence on the relationship between 
androgen excess and homocysteine levels, many 
studies using anti-androgenic oral contraceptives 
containing 35 μg ehtynylestroadiol and 2 mg cypro-
terone acetate have demonstrated rapid reductions 
of homocysteine levels in women with PCOS.218–220 
However, this was not the case for anti-androgen-
containing drosperinone.221 Recently, the role of 
androgens in attenuating endothelin-1-induced 
vasodilation and endothelin B receptor-mediated 
nitric oxide production resulting in endothelial dys-
function was described by Usselman et al. in women 
with PCOS.222 These and other studies support 
that androgen excess is implicated either directly or 
indirectly in almost all proposed mechanisms to 
explain the increased risk for CVD in PCOS.

Conclusion
Androgen excess plays a pivotal role in increasing 
risk of metabolic dysfunction in women with 
PCOS. Currently, there are no disease-specific 
therapeutic options available to modify metabolic 
risk in women with PCOS, and treatments are lim-
ited to the use of insulin-sensitising agents, anti-
hypertensives and lipid lowering agents. Consensus 
guidelines2 have consistently acknowledged the 
need to identify novel biomarkers and therapies for 

metabolic risk in women with PCOS, and target-
ing androgen excess is likely to represent the most 
promising future therapeutic avenue. With the 
emerging role of the less-well-characterised C11-
oxy C19 androgen subclass, it is important to estab-
lish the origins and roles of specific androgens in 
metabolic pathophysiology in order to identify 
potential therapeutic targets. There is now a strong 
rationale for therapies targeting androgen synthesis 
or action for the amelioration of metabolic risk in 
women with PCOS.
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