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Abstract: The complex and non-linear nature of material properties evolution during 3D printing
continues to make experimental optimization of Fused Deposition Modeling (FDM) costly, thus
entailing the development of mathematical predictive models. This paper proposes a two-stage
methodology based on coupling limited data experiments with black-box AI modeling and then per-
forming heuristic optimization, to enhance the viscoelastic properties of FDM processed acrylonitrile
butadiene styrene (ABS). The effect of selected process parameters (including nozzle temperature,
layer height, raster orientation and deposition speed) as well as their combinative effects are also
studied. Specifically, in the first step, a Taguchi orthogonal array was employed to design the Dy-
namic Mechanical Analysis (DMA) experiments with a minimal number of runs, while considering
different working conditions (temperatures) of the final prints. The significance of process parameters
was measured using Lenth’s statistical method. Combinative effects of FDM parameters were noted
to be highly nonlinear and complex. Next, artificial neural networks were trained to predict both
the storage and loss moduli of the 3D printed samples, and consequently, the process parameters
were optimized via Particle Swarm Optimization (PSO). The optimized process of the prints showed
overall a closer behavior to that of the parent (unprocessed) ABS, when compared to the unoptimized
set-up.

Keywords: acrylonitrile butadiene styrene; additive manufacturing; artificial neural networks; dy-
namic mechanical properties; Particle Swarm Optimization

1. Introduction

Fused Deposition Modeling (FDM) is increasingly being used as a reliable rapid
prototyping tool in industries. However, an outstanding challenge in the field of additive
manufacturing is yet to employ FDM to build high-quality end-use parts with minimal
waste, while maintaining a high rate of production [1]. Exploiting the full potential of
FDM for manufacturing requires the proper selection of process control factors through a
good understanding of their nature [2]. Over years of evolving additive manufacturing
techniques, several investigations have been performed to study the effect of FDM process
parameters, e.g., [3–5]. In these studies, the road width (w), which is the width of the road
deposited through the nozzle, layer thickness (t), which is the thickness of each 2D layer,
feeding rate (v), which is the rate at which the thermoplastic filament is fed into the nozzle,
nozzle temperature (NT), raster orientation (θ), which is the orientation of roads in each 2D
layer, overlap (b), which is the amount of overlap between two adjacent roads, and nozzle
diameter (d) have been introduced as the main effective process parameters [3–5]. Figure 1
schematically depicts the above-mentioned process parameters.
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elastic materials, due to the expensive and time-consuming nature of the dynamic me-
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ties of FDM processed parts have not been characterized as extensively as their static me-
chanical properties [3]. 

One of the earliest studies on dynamic mechanical properties of FDM processed parts 
goes back to the work of Chin Ang et al. [18], with respect to a few select process param-
eters including air gap, raster width, raster orientation, deposition profile, and layer 
height. In their study, the air gap and raster width were identified as the most effective 
process parameters to control the porosity and strength of processed parts. Furthermore, 
they claimed that there is a logarithmic relationship between mechanical properties and 
porosity, meaning that 3D printed scaffold parts with a lower porosity would show a 
higher strength. Later, Arivazhagan et al. [5] used the dynamic mechanical analysis 
(DMA) to examine the effects of road width, raster orientation, and nozzle temperature 
on viscosity and dynamic moduli of FDM processed Acrylonitrile Butadiene Styrene 
(ABS) samples. They showed that a raster orientation of 30°/60° and a road width of 0.454 
mm improves the dynamic moduli of 3D-printed ABS. Mohamed et al. [19] considered 
layer thickness, overlap, raster angle, raster orientation, and road width as control factors 
to investigate the dynamic mechanical properties of FDM processed ABS. The results of 
their study indicated that the overlap and layer thickness are the most effective process 
parameters. Specifically, it was shown that a layer thickness of 0.3302 mm, a road width 
of 0.4572 mm, and an overlap of 0 mm with a raster angle of 0° can increase the dynamic 
moduli of ABS. 

However, none of the above past studies on dynamic mechanical properties of FDM 
processed thermoplastics accounted for other important parameters including nozzle 
temperature and feeding rate. In addition, a lack of systematic experimental design (e.g., 
using the DOE methods) did not allow to fully account for the combined effects of various 
process parameters (most studies used a one-factor-at-a-time sensitivity analysis). This 
could lead to errors in analyzing the role of FDM parameters in the dynamic mechanical 
characteristics of 3D printing materials. 

This paper presents a two-stage methodology to study the concurrent effects of mul-
tiple FDM process parameters including nozzle temperature, raster orientation, layer 
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Assessment of FDM fabricated parts could be performed using several quality mea-
sures such as durability and static mechanical properties, dynamic mechanical properties,
and manufacturing accuracy [6–17]. Despite the fact that thermoplastics are viscoelastic
materials, due to the expensive and time-consuming nature of the dynamic mechanical
analysis (DMA) tests, the time- and temperature-dependent mechanical properties of
FDM processed parts have not been characterized as extensively as their static mechanical
properties [3].

One of the earliest studies on dynamic mechanical properties of FDM processed parts
goes back to the work of Chin Ang et al. [18], with respect to a few select process parameters
including air gap, raster width, raster orientation, deposition profile, and layer height. In
their study, the air gap and raster width were identified as the most effective process
parameters to control the porosity and strength of processed parts. Furthermore, they
claimed that there is a logarithmic relationship between mechanical properties and porosity,
meaning that 3D printed scaffold parts with a lower porosity would show a higher strength.
Later, Arivazhagan et al. [5] used the dynamic mechanical analysis (DMA) to examine the
effects of road width, raster orientation, and nozzle temperature on viscosity and dynamic
moduli of FDM processed Acrylonitrile Butadiene Styrene (ABS) samples. They showed
that a raster orientation of 30◦/60◦ and a road width of 0.454 mm improves the dynamic
moduli of 3D-printed ABS. Mohamed et al. [19] considered layer thickness, overlap, raster
angle, raster orientation, and road width as control factors to investigate the dynamic
mechanical properties of FDM processed ABS. The results of their study indicated that the
overlap and layer thickness are the most effective process parameters. Specifically, it was
shown that a layer thickness of 0.3302 mm, a road width of 0.4572 mm, and an overlap of
0 mm with a raster angle of 0

◦
can increase the dynamic moduli of ABS.

However, none of the above past studies on dynamic mechanical properties of FDM
processed thermoplastics accounted for other important parameters including nozzle
temperature and feeding rate. In addition, a lack of systematic experimental design (e.g.,
using the DOE methods) did not allow to fully account for the combined effects of various
process parameters (most studies used a one-factor-at-a-time sensitivity analysis). This
could lead to errors in analyzing the role of FDM parameters in the dynamic mechanical
characteristics of 3D printing materials.

This paper presents a two-stage methodology to study the concurrent effects of mul-
tiple FDM process parameters including nozzle temperature, raster orientation, layer
thickness, and feeding rate on dynamic mechanical properties of FDM processed ABS.
Specifically, the variations of the dynamic moduli and glass transition temperature of ABS
as a function of changes in four key FDM parameters (nozzle temperature, layer height,
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raster orientation and deposition speed) are analyzed using a Taguchi design of experiment
(DOE). The latter not only minimizes the number of costly and time-consuming DMA
tests, but also accounts for the combined effects of the FDM parameters. Once the required
(limited) dataset was gathered through performing experiments, a series of artificial neural
networks were developed and employed to predict the properties of the 3D prints, and
consequently, the process parameters were optimized via a particle swarm optimization
(PSO). Finally, the contribution and ranking of process parameters were identified.

2. Methods
2.1. Material and Fabrication

Owing to its relatively low melting temperature and high-quality surface finish, ABS
is one of the most commonly used materials in 3D printing industries [20]. The initial
ABS material in the current study was in the form of filaments, which were then fed
into a 3D printer (MakerGear M2, Beachwood, OH, USA) to manufacture rectangular
samples of 57 mm× 14 mm× 1.25 mm (length × width × thickness) for subsequent DMA
characterization tests. The as-received filaments were extruded out of ABS POLYLAC® by
CHIMEI Corp. (Tainan City, Taiwan), with specifications shown in Table 1.

Table 1. Properties of the ABS filaments.

Commercial code CHIMEI PA-747S
Nominal diameter (mm) 1.75

Purity >98%
Nominal Young’s modulus (GPa) 2

Relative density—H2O
(

g
cm3

)
1.03–1.10

Decomposition temperature (◦C) >310

2.2. Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) [21] characterizes the viscoelastic properties of
materials, described by the storage modulus (E′), loss modulus (E′′ ), complex modulus
(E∗), and tan δ [22]; tan δ is a dimensionless property, defined as the ratio of the loss
modulus to the storage modulus. DMA also quantifies the glass transition temperature
(Tg), which denotes the transition point between glassy and rubbery states [23]. In this
study, the dynamic mechanical analyses of ABS 3D-printed samples were carried out using
DMA Q800 (TA Instruments, New Castle, DE, USA). DMA testing was also conducted
on original ABS filaments (length of 57 mm) prior to printing; this will be referred to as
unprocessed material hereafter. The test specimens were prepared according to the DMA
800 manufacturer instructions.

2.3. Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) modeling technique, inspired by the neurologic
system of the brain, has received notable attention in recent years in the AI field. The ability
to approximate complex non-linear relationships between input and output parameters in
complex systems is the main advantage that has made the technique a useful predictive
modeling tool in a wide range of applications [24]. In addition, ANNs are known to
provide predictions with minimal prior assumptions, hence making them a useful black-
box modeling means for unknown/complex systems, as opposed to more explicit, e.g.,
regression techniques that require a “pre-defined” form of input-output relationship. As
depicted in Figure 2, an artificial neural network model is a collection of processing units
called nodes (also called neurons). In a neural network, neurons are connected to each
other by numerically assigned connections, known as weights (Wi) and are fed by a signal
from each input (xi). The neuron’s scalar output (a) is the summation of the weighted
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inputs and the bias term (b) modified by a transfer function ( f ). Summation of weighted
inputs is denoted by s and is presented as:

s = w1x1 + w2x2 + . . . + wnxn + b =
n

∑
i=1

wixi + b (1)
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The bias term acts similar to an input with the value of 1 and its existence in a network
is not mandatory. However, it often improves the performance of the model [25,26]. It
must be noted that weights and biases are adjustable terms that are updated through the
learning algorithm. The transfer function is fixed throughout the whole process.

An ANN architecture consists of three layers: input, hidden, and output layers. The
input layer, which is statistically related to independent variables, contains no neurons.
On the other hand, all the neurons in the hidden (which is responsible for the major
mathematical process) and the output layers (which delivers the dependent variables) take
the outputs of their preceding layer as their inputs. Figure 2 shows an example of an ANN
architecture with one hidden layer.

For a designed network architecture, defining the initial weights and updating them
would be the next step. This step, which is also known as the learning or training algorithm,
is in essence the process of minimizing the network error. The training procedure starts by
calculating the error with the initial weights and continues with adjusting the interconnect-
ing weights until a maximum iteration level or an acceptable error level is achieved. The
network performance can be evaluated, e.g., by the Mean Squared Error (MSE) between
the desired and the predicted values of the output:

E =
1

2N

N

∑
i=1

[ti − ai]
2 (2)

where N stands for the number of training sample points, t is the desired value and a is the
predicted value for the output of the i-th sample point. As the network error is calculated,
the weights and biases are updated through back propagation to reduce the error value.
This process is repeated until the error becomes minimized. In each iteration, an adjusted
weight is calculated based on:

W(n)
ji (k) = W(n)

ji (k− 1)− α

 ∂E

∂W(n)
ji

 (3)
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where W(n)
ji (k) is an updated weight of the n-th layer in the k-th iteration (also known as

epoch). ∂E
∂W(n)

ji

is the partial derivative of the error. In this equation, α is the learning rate,

which is less than 1. Calculation of the derivative part of the equation is normally achieved
by the chain rule [27]. In order to develop a robust neural network, datasets are divided
into three subsets—training, validation and testing—and the performance of the model
is assessed through each of these subsets. The training dataset is employed to update the
weights and bias terms, and in order to prevent overfitting of the network and test set, the
validation set is employed [28].

2.4. Particle Swarm Optimization (PSO)

Particle Swarm Optimization is known as a powerful numerical algorithm to optimize
complex functions by finding the best solution in a space of feasible solutions. This
technique, which has been inspired by the social behavior of animals, was first introduced
by Eberhart and Kennedy [29]. A simple interpretation of PSO is the behavior of a group of
birds who are seeking food. None of the birds know where the single piece of food is located.
However, they know their distance from the other birds. Therefore, the simplest and fastest
way to achieve the food is to follow the closest bird to that food. In essence, it combines local
search methods (through self-experience) with global search methods (through neighboring
experience). Here, PSO was chosen merely as an example of global search methods (next
to other heuristics methods such as genetics algorithm), owing to its simple and intuitive
mathematical rules in finding the optimum solution in high-dimensional spaces.

In PSO, each candidate solution is called a “particle”, which is part of a community
known as a “swarm”. PSO solves the optimization problem by moving the particles in a
space of all feasible solutions, also known as the search space. Each particle has a memory
to keep its best experience, and the cooperation of particles helps them find the best global
solution in the search space.

As shown in Figure 3, the position of particle i at time step t, denoted by
−−→
Xi(t), and

its velocity, denoted by
−−→
Vi(t), are the key properties to define a particle. The previous

experience of each particle,
−−→
Xi(t), its previous movement

−−→
Vi(t), and the best experience of

the whole swarm, g(t), guide each particle moving towards its next position by
−−−−→

Xi(t + 1),
which is probably a better experience. This process continues until the swarm meets its
best experience (denoted by Pi(t)).
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In PSO, each particle obeys two rules to update its position and velocity vectors:

−−−−−−−→
Xi(t + 1) =

−−−−→
Xi(t) +

−−−−−−−→
Vi(t + 1) (4)

−−−−−−−→
Vi(t + 1) = wVi(t) + C1(Pi(t)− Xi(t)) + C2(g(t)− Xi(t)) (5)
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where w is the inertia coefficient and C1 and C2 are acceleration coefficients.
The j-th component of new position and speed vectors can be calculated as follows:

Xij(t + 1) = Xij(t) + Vij(t + 1) (6)

Vij(t + 1) = wVij(t) + r1C1
(

Pij(t)− Xij(t)
)
+ r2C2

(
gj(t)− Xij(t)

)
(7)

where Vij(t + 1) is the j-th component of velocity of particle i at time step (t + 1). In
Equation (7), the first component (wVij(t)) is known as inertia term. The second component
is called the cognitive component, and the third term is the social component; r1 and r2 are
the uniformly distributed numbers in the range of 0 and 1. Pij(t) is the j-th component of
position that gives the best value ever experienced by particle i and gj(t) is that experienced
by all particles in the swarm.

3. Results and Discussion

Although there are several process parameters controlling the properties of FDM fabri-
cated parts, this study is focused on four selected factors including the nozzle temperature,
the layer height, the raster orientation and the deposition speed. Based on the initial trial
and error experiments to ensure that the printed parts have minimum acceptable quality
with no visible defects, four levels were assigned to each process parameter. The selected
factors and their corresponding levels are presented in Table 2. For this case, the total
(full-factorial) number of experiments would be 44 or 256. However, assuming that ‘the
factor interactions are negligible’, the Taguchi approach [30,31] was implemented to reduce
the number of costly DMA experimental runs by means of using orthogonal arrays. Taguchi
orthogonal arrays are often shown by “Ln(xy)”, where n stands for the total number of the
experiments, x represents the levels, and y is the number of the controlling factors. Here, an
L16(44) design was used (Table 3, where the levels 1–4 are representing the physical values
in Table 2). Variations of the dynamic moduli and tan δ over working temperatures were
measured for 16 designed samples of Table 3, and the results are presented in Figures 4–6.

Table 2. Control factors used in the experimental procedures with their assigned levels.

Control Factors Level 1 Level 2 Level 3 Level 4

Raster orientation

0◦
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According to the observed trends, when comparing the processed (3D printed) and
unprocessed samples (as-received filaments), it can be concluded that all the processed
samples generally follow a similar trend. However, the comparison between the group of
the processed samples and unprocessed samples clearly shows that the FDM has reduced
the magnitude of both storage and loss moduli regardless of the combination of process pa-
rameters used. The extent of the decrease, however, is highly correlated to the temperature
at which the property has been measured in DMA (equivalent to the working temperature
of the print in use). As an instance, according to Figure 4, an average reduction of 40%
is observed on the storage modulus when pooling all processed samples. This reduction
ranges from 15% to 62%, corresponding to samples 2 and 9, respectively. At a specific
working temperature, e.g., 100 ◦C, there is an average reduction of 25% in the storage
modulus due to the FDM process. Similarly, the same trends can be seen while measuring
the loss modulus of 3D printed ABS samples. As shown in Figure 5, regardless of assigned
values to process parameters, the FDM process decreases the loss modulus of fabricated
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parts compared to the unprocessed sample. For instance, at 40 ◦C the loss modulus has
decreased 11–56% as a result of different FDM process conditions. The reduction at 40 ◦C
(as a nominal working temperature example) has an average value of 33.5%. Nevertheless,
the reduction increases drastically and reaches the average value of 60.7% at a working
temperature of 100 ◦C. Regardless of the selected process parameters, on average it is
confirmatory to notice that FDM fabricated samples heated up to, e.g., 100 ◦C show less
viscous behavior (represented by the loss modulus) compared to samples tested at 40 ◦C.
Although the FDM process seems to unavoidably decrease the storage and loss moduli
of the printed parts, by selecting a suitable (optimized) set of process parameters this
reduction may be minimized.

Table 3. Orthogonal array used to design the experimental layout with respect to configuration levels
given in Table 2.

Sample # Raster
Orientation

Layer Height
(µm)

Nozzle
Temperature (◦C)

Deposition Speed
(mm/min)

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4
10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3
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Figure 4. The variation of the storage modulus versus temperature for the test specimens. The
overshoot close to glass transition temperature often occurs as the stresses trapped in the part during
processing are relieved with an increase in temperature and rearrangement of polymer chains. Note
that the sample numbers in the legend correspond to the setups in Table 3, and do not refer to repeats.
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Figure 6. The variation of tan delta versus temperature for the test specimens, with the more detailed
view of the variation in the range of 110 ◦C to 130 ◦C.

Generally, it is common to identify the glass transition temperature (Tg) of thermoplas-
tics by measuring the peak of temperature-tan δ curve. Similarly, here Figure 6 was used
along with its zoomed view, to find this transitional point of mechanical properties from
glassy to rubbery behavior. The results are summarized in Table 4.
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Table 4. Values of glass transition temperature measured by DMA.

Sample Tg (◦C) Sample Tg (◦C)

1 119.466 9 119.268
2 119.363 10 119.682
3 120.578 11 119.131
4 119.156 12 118.986
5 119.608 13 118.918
6 119.178 14 119.771
7 119.711 15 117.984
8 118.667 16 118.514

Unprocessed ABS filament 112.854

From the results in Table 4, it can be concluded that the FDM-processed parts have a
higher glass transition temperature in comparison to unprocessed ABS; albeit the difference
in the values among processed samples themselves is small. In other words, regardless
of the combination of the assigned process parameters, FDM processed parts stay longer
in the glassy region in comparison to unprocessed material. For instance, according to
Table 3, the glass transition temperature has raised from 112.8 ◦C for unprocessed ABS
filament to 120.5 ◦C under sample 3 (i.e., a 6% increase). Figure 7 shows the effect of
each process parameter on the glass transition temperature of the FDM printed parts. In
order to statistically rank the effect of process parameters on Tg, Lenth’s method [32,33]
was employed. This method is known as a powerful statistical tool to analyze costly
experiments with single replicate factorial designs.
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Figure 7. The variation of glass transition temperature of FDM processed ABS as a function of:
(a) Raster orientation; (b) Layer height; (c) Nozzle temperature; (d) Deposition speed. Note that
the presence of air gap (or inversely an overlap) between the printed roads would make a major
difference in ensuing macro-level properties and non-linearities observed in the response above, and
other mechanical properties as also reported by [19]. The curved shown are average values from all
the performed 16 tests.
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Assuming a design with m effects, considering both factors and interactions, denoted
by c1, c2, . . . , cm, Lenth’s method performs the effect analysis using a numerical value
called the Pseudo Standard Error (PSE). For a 2k design, m is equal to 2k − 1.

PSE = 1.5 ∗median(
∣∣cj
∣∣ :
∣∣cj
∣∣ < 2.5S0 (8)

where:
S0 = 1.5median

(∣∣cj
∣∣) (9)

According to the method, when there is no sufficient information on repeats of a test,
PSE is a reasonable measure to estimate the Standard Error [33]. The margin of Error (ME)
is the final factor used to compare factor effects:

ME = t α
2 ,dPSE (10)

where t α
2 ,d is the t-distribution with the significance level of α and the degree of freedom of

d = m
3 . Given a specific factor, if the absolute value of the effect is greater than ME , that

factor is considered effective (statistically significant). Table 5 represents the mean value
of Tg under each studied factor, based on Figure 7. The Delta parameter is the difference
between the maximum and minimum value of each data column and was considered as the
factor effect. Lenth’s parameter (ME threshold) has been calculated via Equations (8)–(10).
Comparing the Delta values with each corresponding threshold, it can be concluded that
the raster orientation is ranked above all other factors, followed by the feeding rate and
layer height, and finally the nozzle temperature, to control glass transition temperature in
FDM of ABS parts.

Table 5. Lenth’s method of factor analysis for glass transition temperature; the values shown
correspond to the average of response under each corresponding level of the process factors. The
physical values of the levels were given in Table 2.

Level Raster Orientation Layer Height Temperature Deposition Speed

1 118.8 119.3 119.1 119.5
2 119.6 119.5 119 119
3 119.3 119.4 119.6 119.6
4 119.3 118.8 119.4 118.9

Delta 0.8 0.7 0.6 0.7

ME threshold 0.515 0.515 0.515 0.515

Figures 8 and 9 exemplify the relationship between process parameters and the re-
ductions in dynamic mechanical moduli at two specific working temperatures, including
40 ◦C and 100 ◦C. As seen in these figures, the relationship between response modulus and
process parameters is sizable, nonlinear and highly dependent on the working temperature.

Owing to the complex nature of the FDM process, the presence of combinative effects
of the parameters necessitates the use of advanced modeling techniques to predict the
material behavior. As addressed in Section 2.3, the Artificial Neural Network (ANN) is
one of the known examples of powerful black-box modeling techniques to approximate
such complex non-linear relationships between input and output parameters. In order to
collect an adequate size of data to train the ANN model, the moduli values were taken at
the working temperature steps of 5 ◦C from Figures 4 and 5, under each process condition.
For each storage and loss modulus response, a separate multi-layer perceptron neural
network architecture, including input layer, hidden layer and output layer was designed.
After performing a series of training algorithms and testing various ANN architectures,
the optimum model was selected for each modulus. Namely, to approximate the storage
modulus, a 5-9-1 architecture was employed (five input neurons, nine hidden neurons and
one output neuron), while a 5-7-1 architecture was used to simulate the loss modulus.



Materials 2022, 15, 2855 11 of 20

Materials 2022, 15, x  11 of 21 
 

 

Table 5. Lenth’s method of factor analysis for glass transition temperature; the values shown corre-
spond to the average of response under each corresponding level of the process factors. The physical 
values of the levels were given in Table 2. 

Level Raster Orientation Layer Height Temperature Deposition 
Speed 

1 118.8 119.3 119.1 119.5 
2 119.6 119.5 119 119 
3 119.3 119.4 119.6 119.6 
4 119.3 118.8 119.4 118.9 

Delta 0.8 0.7 0.6 0.7 
ME threshold 0.515 0.515 0.515 0.515 

Figures 8 and 9 exemplify the relationship between process parameters and the re-
ductions in dynamic mechanical moduli at two specific working temperatures, including 40 ℃ and 100 ℃. As seen in these figures, the relationship between response modulus 
and process parameters is sizable, nonlinear and highly dependent on the working tem-
perature. 

 
Figure 8. Percentage of reduction in storage modulus as a function of FDM process parameters: (a) 
Raster orientation; (b) Layer height; (c) Nozzle temperature; (d) Deposition speed. The blue and the 
grey lines represent the average reduction in the storage modulus at 40 ℃ and 100 ℃ respectively. 

Figure 8. Percentage of reduction in storage modulus as a function of FDM process parameters:
(a) Raster orientation; (b) Layer height; (c) Nozzle temperature; (d) Deposition speed. The blue and
the grey lines represent the average reduction in the storage modulus at 40 ◦C and 100 ◦C respectively.

Both designed networks were trained using 60% of randomly selected data points
via Levenberg- Marquardt algorithm. Then, the testing validation for each network was
performed using a 20–20% portion of the remaining data. However, it must be mentioned
that all data points, except one experimental run (number 9), were used to build the
storage modulus and loss modulus networks. The latter experimental run was selected
randomly not to be used in training, testing and validation steps. Instead, the data points
corresponding to the response curves of test 9 were used to evaluate the robustness of the
final developed model for each modulus.

The storage modulus ANN showed an acceptable performance represented by means
of the coefficient of correlation (R). The R-values corresponding to training, validation,
and testing, respectively, equaled 0.99317, 0-99256, and 0.99503. Figure 10 illustrates the
network performance in detail. This designed network was then employed to predict the
storage modulus under the fully unseen run #9. Figure 11 depicts the actual values versus
the simulated values under this setup.
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Figure 10. The performance of the developed 5-9-1 neural network to approximate the storage
modulus of the 3D prints.
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Figure 11. Comparison of the actual and predicted (virtual DMA test of) storage modulus, E′, under
run #9.

As shown in Figure 11, the developed network is usable to avoid actual experimen-
tation and predict the storage modulus of the untested sample. The deviation between
the experiment and model in the early stage of the DMA test can be linked to the large
differences seen in the original data (Figure 4) in the same range when comparing different
process conditions. Accordingly, as more DMA tests become available for training (here
only 16 samples were used), the performance of ANN would have also been improved.
Despite limited data, the overall validation R-score of the present model (i.e., considering
all samples and all regions of response) is still >99% (Figure 10). Similarly, a 5-7-1 network
architecture was selected to predict the loss modulus of FDM fabricated ABS samples.
The network performance is illustrated in Figure 12. The final verification of the network
performance was completed by predicting set-up condition #9 (Figure 13).
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Figure 13. Comparison of the actual and predicted (virtual DMA test of) loss modulus, E”, under
run #9.

Figure 14 represents an example of a simulated modulus as a function of process
parameters, using the above AI model, at a given working temperature of 40 ◦C. According
to Figure 14a, during printing of samples with 0◦ raster orientation, increasing the nozzle
temperature decreases the general trend of storage modulus response. However, as shown
in Figure 14b, increasing the nozzle temperature, first decreases and then increases the
storage modulus. Moreover, both mentioned figures show that at higher values of the
layer height, the storage modulus is higher. This trend is also visible for prints at 45◦ raster
orientation, as depicted in Figure 14c. The effect of nozzle temperature on the general trend
of storage modulus based on the layer height and deposition speed at raster orientation
of 45◦ is highly nonlinear where the contours are crossing each other (indicating a high
level of interaction of process parameters). Finally, as illustrated in Figure 14d, at the raster
orientation of ±45◦, regardless of the value assigned to the nozzle temperature, the higher
the layer height, the higher the storage modulus. Factor interaction effects can also be
clearly observed in the ±45◦ raster orientation case.

Noticing the above complex relationship between the process parameters and their
interactions on the ensuing dynamic moduli of the prints, which in turn also vary at each
given target working temperature, performing a nonlinear optimization of the process is
deemed vital for FDM designers to ensure maximized performance of printed parts during
use. Accordingly, the optimum set of process parameters would be the one at which the
fabricated part shows the highest value of storage or loss moduli, i.e., as close as possible
to the parent (unprocessed) material. Here, using the developed ANNs, such an optimum
set of process parameters at each working temperature condition was obtained using the
Particle Swarm Optimization (PSO) technique. As per Table 2, the layer height was allowed
to change from 50 µm to 300 µm, the nozzle temperature from 250 ◦C to 310 ◦C and the
deposition speed from 1000 mm/min to 4000 mm/min, at each level of raster orientation.
The working temperature was varied between 40 ◦C and 140 ◦C. The PSO was performed
in MATLAB (R2016b, MathWorks, Natick, MA, USA) using 100 particles in each swarm.
In order to end the iterating process, the maximum number of iterations was set at 1000
and the function tolerance was defined to be 10−25. The minimum and maximum inertia
weights were chosen to be 0.1 and 1.1, respectively. It should be noted that prior to the
optimization process, the data points were normalized to be between 0 and 1.
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The obtained optimum values of the process parameters along with the maximum
achievable storage modulus are presented in Table A1. Table A2 similarly illustrates the
optimization results for the loss modulus. The latter optimum values were reported for
each working temperature. Results clearly show that there is no single optimum process
condition that can optimize the printed part performance at all working temperature
conditions. In practice, such look-up tables may be used by a designer, e.g., to choose the
best FDM condition given the target operating temperature (application) of the 3D printed
part. To better visualize the efficiency of the optimization, Figure 15 shows the optimized
moduli of prints compared to the unprocessed material. When comparing Figure 15a with
Figure 4, it can be noticed that the optimized prints exhibit closer behavior to that of the
unprocessed material, albeit the storage modulus of the unprocessed material prior to Tg is
still relatively higher than the prints. A similar effect of optimization, though to a lesser
extent, can be noticed in regard to the loss moduli of the prints (compare Figures 5 and 15b).
From Figure 15, it can be induced that the optimum moduli values for raster orientations 0◦,
90◦, and 45◦ are comparable, but at the orientation ±45◦ a distinct behavior is evidenced,
namely providing a much lower storage modulus (pre-glass transition) but a higher storage
modulus upon process optimization.
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4. Conclusions

In this paper, first, the variation of the viscoelastic response of 3D printed ABS samples
in a wide range of working temperatures (the room condition to 140 ◦C) was studied
as a function of four FDM process parameters (raster orientation, layer height, nozzle
temperature, and deposition speed). The experimental layout was designed via a Taguchi
orthogonal array in order to minimize the size of data required for subsequent ANN
training. Dependency of the viscoelastic properties of the printed samples on the process
control factors was shown via Lenth’s method. Consequently, the optimum parameter
values corresponding to each working condition were obtained using the ANN models
(for storage and loss moduli), integrated with the PSO algorithm. The optimum values
were reported for various working temperatures for both moduli. Results clearly showed
that there is no single optimum process condition that can optimize the printed part
performance at all working temperature conditions. However, specific conclusions could
be drawn from the observations, as follows.

• The FDM process condition could directly affect the maximum allowable working tem-
perature (represented by glass transition temperature) for the 3D printed thermoplastic.

• Based on Lenth’s statistical analysis, among the process parameters, raster orientation
was the most effective factor to increase the glass transition temperature of the 3D
printed parts. Subsequently, the deposition speed and the layer height were ranked
second, followed by the nozzle temperature.

• Distinct trends between viscoelastic responses of unprocessed and processed ABS
filaments under various process conditions pointed to the fact that all FDM process con-
ditions significantly (on average 40%) lowered the magnitude of viscoelastic moduli
regardless of a specific combination of process parameters, which is also in agreement
with the earlier study [5]. This effect is deemed critical for designers to consider for
the reliable application of 3D printed parts, especially at high temperatures.

• Although it was shown that there are distinct trends between the behavior of processed
and unprocessed ABS samples, the exact change in the moduli was highly dependent
on the working temperature, at which the part viscoelastic properties were measured.
For instance, at a working temperature of 100 ◦C, there was an average reduction of
25% in storage modulus when compared to the unprocessed sample. On the other
hand, this reduction at a 40 ◦C working temperature was about 33.5%. The reduction
increased drastically and reached as high as 60.7% at high working temperatures
>100 ◦C.

• It was validated that the developed neural network architectures are capable of pre-
dicting the entire DMA curve of 3D printed parts, including for samples that were
fully unseen to the original model. Using such networks, optimum values of pro-
cess parameters can be obtained via global search methods such as particle swarm
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optimization for each given target working temperature (Tables A1 and A2). The
optimized prints indicated a closer behavior to that of the parent material.

• The optimized prints with orientation ±45◦ showed clearly a distinct behavior com-
pared to the 0◦, 90◦, and 45◦ orientations.

Further study may be worthwhile to test the presented AI modeling approach for
other thermoplastics, and possibly for improving the permeance of the predictions by
employing and comparing other high-fidelity machine learning methods. Furthermore, the
observed variation of dynamic mechanical properties can be further supported with, e.g., a
molecular weight analysis of samples.
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Appendix A. Optimization Results Raw Data

Table A1. The optimum values (look-up table) of the process parameters using PSO on E′ at each
raster orientation level and under each working temperature.

R LH*
(µm)

NT*
(◦C)

DS*
( mm

min )
WT
(◦C)

E’*
(MPa) R LH*

(µm)
NT*
(◦C)

DS*
( mm

min )
WT
(◦C)

E’*
(MPa)

1 300 310 1275 40 2292 2 270 250 3374 40 2227
1 300 310 1281 45 2282 2 279 250 3357 45 2285
1 300 310 1295 50 2277 2 286 250 3338 50 2199
1 50 310 1464 55 2263 2 288 250 3320 55 2172
1 50 310 1527 60 2234 2 292 250 3314 60 2136
1 50 310 1567 65 2193 2 299 250 3318 65 2093
1 50 310 1575 70 2141 2 300 250 3332 70 2046
1 50 310 1548 75 2099 2 300 250 3344 75 2003
1 50 310 1484 80 2058 2 300 250 3341 80 1972
1 50 310 1378 85 2033 2 300 250 3314 85 1973
1 76 310 1211 90 2039 2 300 250 3268 90 2011
1 87 310 1000 95 2080 2 300 250 3229 95 2066
1 94 310 1000 100 2125 2 300 252 3263 100 2105
1 102 310 1000 105 2128 2 300 253 3081 105 2088
1 118 310 1000 110 1945 2 300 253 2841 110 1817
1 50 268 3956 115 922 2 300 251 2564 115 607
1 50 269 3941 120 71 2 300 252 2601 120 37
1 175 310 1237 125 6 2 300 250 2894 125 4
1 300 297 1000 130 2 2 300 250 3215 130 2
1 300 296 1000 135 2 2 300 250 3452 135 2
1 300 298 1048 140 2 2 300 250 3538 140 2
3 300 310 4000 40 2111 4 300 310 2023 40 1887
3 235 250 4000 45 2092 4 177 296 1000 45 1692
3 242 250 4000 50 2056 4 194 297 1000 50 1573
3 251 250 4000 55 2004 4 207 297 1000 55 1443
3 265 250 4000 60 1944 4 220 298 1000 60 1312
3 287 250 4000 65 1886 4 239 297 1000 65 1196
3 300 250 4000 70 1848 4 300 292 1000 70 1131
3 300 250 4000 75 1817 4 300 292 1000 75 1130
3 300 250 4000 80 1810 4 300 293 1000 80 1222
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Table A1. Cont.

R LH*
(µm)

NT*
(◦C)

DS*
( mm

min )
WT
(◦C)

E’*
(MPa) R LH*

(µm)
NT*
(◦C)

DS*
( mm

min )
WT
(◦C)

E’*
(MPa)

3 300 250 4000 85 1842 4 300 294 1000 85 1423
3 300 250 4000 90 1910 4 167 310 1000 90 1696
3 300 250 3774 95 2008 4 167 310 1000 95 1931
3 300 250 3639 100 2086 4 173 310 1000 100 2051
3 300 250 3577 105 2056 4 190 310 1000 105 2060
3 300 250 3548 110 1620 4 229 310 1000 110 1873
3 300 310 1000 115 414 4 223 310 1000 115 704
3 300 310 1000 120 22 4 300 310 1000 120 46
3 300 250 3861 125 3 4 300 310 1000 125 4
3 300 250 4000 130 2 4 300 250 4000 130 2
3 300 250 4000 135 2 4 300 250 4000 135 2
3 300 250 4000 140 2 4 162 250 4000 140 2

* LH*, NT*, DS* stand for the optimum Layer height, Nozzle temperature, Deposition speed and given Raster
orientation R and Working temperature WT. E’* is the corresponding optimum storage modulus.

Table A2. The optimum values (look-up table) of the process parameters using PSO on E” at each
raster orientation level and under each working temperature.

R LH*
(µm)

NT*
(◦C)

DS*
( mm

min )
WT
(◦C)

E”*
(MPa) R LH*

(µm)
NT*
(◦C)

DS*
( mm

min )
WT
(◦C)

E”*
(MPa)

1 50 310 4000 40 79.8 2 54 277 4000 40 74.1
1 50 310 4000 45 78.3 2 50 276 4000 45 73.9
1 50 310 4000 50 76.7 2 300 250 1000 50 90.5
1 50 310 4000 55 75.3 2 300 250 1000 55 91.2
1 50 310 4000 60 73.4 2 278 250 1000 60 84.4
1 50 273 1000 65 80 2 300 310 4000 65 80.2
1 300 250 1000 70 99.3 2 300 310 4000 70 85.6
1 300 250 1000 75 146.7 2 50 250 4000 75 98.2
1 300 250 1000 80 188.8 2 50 250 4000 80 107.6
1 75 250 1000 85 208.7 2 50 250 4000 85 107.4
1 300 250 1000 90 204.5 2 300 296 4000 90 129.6
1 300 250 1000 95 189.6 2 300 297 4000 95 163.1
1 50 250 3548 100 239.6 2 300 298 4000 100 213.8
1 98 250 3967 105 334 2 300 298 4000 105 313.5
1 110 250 4000 110 448.5 2 50 279 4000 110 448.9
1 115 254 4000 115 442.2 2 50 282 4000 115 407.6
1 284 278 4000 120 176.4 2 300 310 4000 120 89.4
1 300 283 4000 125 34 2 300 310 3860 125 13.6
1 300 285 4000 130 17.2 2 300 271 1000 130 7.7
1 186 280 4000 135 14.7 2 50 310 1586 135 8.2
1 148 281 4000 140 14.4 2 50 310 1895 140 9.9
3 50 250 4000 40 117.7 4 300 310 1000 40 63.7
3 50 250 4000 45 114.9 4 300 310 1000 45 62.6
3 50 250 4000 50 111 4 133 250 1000 50 61.9
3 50 250 4000 55 105.2 4 148 250 1000 55 61.6
3 50 250 4000 60 97 4 170 250 1000 60 60.8
3 50 250 1000 65 86.2 4 170 310 4000 65 64.7
3 50 250 1000 70 76 4 150 310 4000 70 79.6
3 50 250 1000 75 86.1 4 155 250 4000 75 99.3
3 50 250 1000 80 92.4 4 140 250 4000 80 125
3 50 250 1000 85 93.9 4 134 250 4000 85 141.8
3 300 250 3364 90 96.9 4 131 250 4000 90 149.9
3 258 310 1000 95 116.7 4 50 310 1000 95 181.2
3 255 310 1000 100 158.2 4 50 310 1000 100 252.5
3 251 310 1000 105 251.9 4 50 250 1000 105 408.6
3 102 250 4000 110 412.5 4 50 250 1000 110 508.5
3 67 250 4000 115 458.6 4 300 250 2278.8 115 783.6
3 50 250 4000 120 164.1 4 50 250 1000 120 155.1
3 50 250 4000 125 37.3 4 50 250 1000 125 34.2
3 50 250 4000 130 21.6 4 50 250 1000 130 19.5
3 50 250 4000 135 18.2 4 50 250 1000 135 15.8
3 50 250 3911 140 16.7 4 50 250 1000 140 14.2

* LH*, NT*, DS* stand for the optimum Layer height, Nozzle temperature, Deposition speed and given Raster
orientation R and Working temperature WT. E”* is the corresponding optimum loss modulus.
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