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Toxicogenomics (TGx) is a powerful method to evaluate toxicity and is widely used in both
in vivo and in vitro assays. For in vivo TGx, reduction, refinement, and replacement
represent the unremitting pursuit of live-animal tests, but in vitro assays, as alternatives,
usually demonstrate poor correlation with real in vivo assays. In living subjects, in addition
to drug effects, inner-environmental reactions also affect genetic variation, and these two
factors are further jointly reflected in gene abundance. Thus, finding a strategy to factorize
inner-environmental factor from in vivo assays based on gene expression levels and to
further utilize in vitro data to better simulate in vivo data is needed. We proposed a strategy
based on post‐modified non‐negative matrix factorization, which can estimate the gene
expression profiles and contents of major factors in samples. The applicability of the
strategy was first verified, and the strategy was then utilized to simulate in vivo data by
correcting in vitro data. The similarities between real in vivo data and simulated data
(single-dose 0.72, repeat-doses 0.75) were higher than those observed when directly
comparing real in vivo data with in vitro data (single-dose 0.56, repeat-doses 0.70).
Moreover, by keeping environment-related factor, a simulation can always be generated
by using in vitro data to provide potential substitutions for in vivo TGx and to reduce the
launch of live-animal tests.

Keywords: toxicogenomics, nonnegative matrix factorization, in vitro to in vivo extrapolation, in vivo and in vitro
strategies, gene expression, deconvolution, liver, bioinformatics
INTRODUCTION

In vivo and in vitro experimental systems are two essential ways to discover functional performance
during drug-discovery, vital processes occurring in living organisms and toxicological research
(Nuwaysir et al., 1999). For animal trials, in vivo experiments still can be launched properly for
toxicological research (Hussain et al., 1987; Liu et al., 2017). The only problem is that in vivo costs
are higher than those for in vitro assays, so it is more difficult to utilize in vivo systems in large-scale
projects. However, for human trials, in vivo studies can only be applied in the field if they cause no
damage to the human body, such as the studies in the brain science (Plate et al., 1992; Glasser and
Van Essen, 2011; Zhang et al., 2012), neuroscience (Fagan et al., 2006; Swain et al., 2007), and cell
behavior observation fields (Gronthos et al., 2000; Pillay et al., 2010; Eskildsen et al., 2011). More
in.org January 2020 | Volume 10 | Article 14891
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specifically, in toxicology studies, in vivo assays are currently
difficult to apply in human trials because of the high risk to
human volunteers or patients.

With the recent rapid development of genomics,
toxicogenomics (TGx), which is a combination of toxicology
and genomics technologies, has become a powerful method to
study the underlying molecular mechanisms of toxicity
(Aardema and MacGregor, 2003). TGx gives a novel
perspective to investigate and predict toxicology (Nuwaysir
et al., 1999; Waters and Fostel, 2004), risk assessment (Pennie
et al., 2004; Boverhof and Zacharewski, 2005), and mechanistic
studies (Suter et al., 2004; Suter et al., 2011; Chen et al., 2012a).
Moreover, with the development of emerging technologies, novel
genomic TGx features, such as microRNAs (Wang et al., 2009;
Yang et al., 2011) and lncRNAs (Aigner et al., 2016; Dempsey
and Cui, 2017), may provide a new way to achieve more
resolution and better understand the mechanisms of
toxicology. However, the fact that in vivo assays have high
costs and are difficult to apply in humans still persists with
TGx and has hindered the development of toxicology.

The ideal situation is that an in vivo system can be supported
or even reflected by a low-cost approach or experiment involving
animal reduction (Iwatsubo et al., 1997; Rostami-Hodjegan and
Tucker, 2007). To reach this goal, decades of studies have tried
approaches using different data and models. Among all the
approaches, obtaining models from in vitro cells or tissue
cultures (IVIVE—in vitro to in vivo extrapolation) has become
a main alternative (Knight et al., 2006). For utilizing cells and
tissue cultures, the concept of “the 3Rs of alternatives”
(reduction, refinement, and replacement) (Russell et al., 1959)
was first described. Based on the 3Rs, worldwide organizations
are trying to develop methods to achieve IVIVE by using TGx.
These methods include the Registration, Evaluation,
Authorization and Restriction of Chemicals (REACH) program
launched in Europe (Abbott, 2005), “Advancing Regulatory
Science” initiated by the Food and Drug Administration (FDA)
(Hamburg, 2011) of the United States, and a guideline for the use
of the single‐cell gel (SCG)/Comet assay developed by the
International Workshop on Genotoxicity Test Procedures
(IWGTP) to standardize genetic toxicology procedures (Tice
et al., 2000). Additionally, other relevant programs have been
launched by organizations, such as ICH (International
Conference on Harmonization of technical requirements for
the registration of pharmaceuticals for human use), CPCSEA
(Committee for the Purpose of Control and Supervision of
Experiments on Animals), NIH (National Institutes of Health),
and OECD (Organization for Economic Co-operation and
Development) (Rollin, 2003; Abbott, 2005; Dix et al., 2007;
Hamburg, 2011; Tice et al., 2013).

With worldwide contributions, the capability of in vitro data
for providing assistance and references for in vivo data has
approved substantially. For instance, IVIVE can be achieved by
using physiologically-based pharmacokinetic (PBPK) modeling
(Chen et al., 2012b; Sager et al., 2015) on TGx (Alam et al., 2013;
Martin et al., 2014). Additionally, human health risk can be
assessed based on TGx analysis (Johnson et al., 2015). A
Frontiers in Pharmacology | www.frontiersin.org 2
demonstration showed that liver sections exhibit the strongest
similarity to liver tissue in terms of mRNA expression (Boess
et al., 2003). Reviews confirmed that TGx is able to improve
comprehension of the mechanisms underlying the responses of
in vitro and in vivo systems (Poma and Di Giorgio, 2008).
Moreover, in vitro data predicted carcinogenesis in rats based
on short-term TGx data (Watanabe et al., 2007; Ellinger-
Ziegelbauer et al., 2008). To summarize, in vitro assays as
alternatives for TGx play a vital role in the next-generation
risk assessment paradigm and have tremendous potential to
promote non-animal testing in TGx systems (Liu et al., 2018c).

However, the goal of using in vitro data to substitute for in
vivo data is greatly impeded by the inconsistency between in vivo
and in vitro data (Niki, 2010). Many researchers are challenged
by the fact that in vitro data demonstrate poor correlations with
in vivo data and have questioned the validity of IVIVE models
(Tice et al., 2000; Chen et al., 2014; Sutherland et al., 2016).
Previous research has stressed that many available methods
result in inconsistent results regarding antioxidant capacity
between in vivo and in vitro data (Niki, 2010). Laboratory
technicians have even mentioned that the in vivo dynamics of
antigen-specific regulatory T cells cannot be predicted from in
vitro behavior (Klein et al., 2003). Some publications showed that
the data obtained from in vivo livers without the use of
chloroquine was inconsistent with in vitro gene expression
results when using cultured HepG2 cells (Harada-Shiba et al.,
2002). After assessing the capacity of in vitro screening studies to
predict the in vivo pulmonary toxicity of several fine or nanoscale
particles in rats, a poor correlation between in vivo and in vitro
studies was observed (Sayes et al., 2007). The pair ranking
(PRank) method (Liu et al., 2017) was proposed by the
National Center for Toxicological Research of the U.S. FDA to
assess IVIVE and to quantitatively measure similarity (Chen
et al., 2012a; Chen et al., 2014). The PRank method has made it
possible to properly compare gene expression data between in
vivo and in vitro assays. However, the similarities between in
vitro and in vivo data are unsatisfactory. The similarities between
in vivo and in vitro data still can be further improved, especially
for in vivo single-dose studies.

According to current investigations, in addition to the
response signals from drug effects, many variables need to be
considered inner-environmental factors that impact genetic
variations in in vivo assays, such as cell types, culture
conditions, time course of exposure, and measured end points
(Sayes et al., 2007). Differences are found when demonstrating
the immune response components (effectors) of in vivo and in
vitro hepatocytes (Bumgardner et al., 1990). It has been indicated
that the inner environment of a living subject has different
patterns of physiological function and mechanism.
Additionally, therapy–pharmacokinetics (Harada-Shiba et al.,
2002), pharmacokinetics and pharmacodynamics (PK/PD) (Liu
et al., 2017) are usually not considered within the proposed
IVIVE assessment of toxicogenomic data. Eventually, with the
comprehensive effects and variables that are determined by the
complicated inner-environment of in vivo data, an inconsistent
gap has emerged between in vivo data and in vitro data, and this
January 2020 | Volume 10 | Article 1489
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inconsistency is further reflected at the level of gene expression.
Thus, based on TGx data, the properties of a molecule can
influence a drug effect that ultimately reaches the cell in different
assays (Groothuis et al., 2015; Kramer et al., 2015). Furthermore,
the differences in the response components of a living system are
reflected differently between gene expression profiles from in
vivo and in vitro data.

To achieve better utilization of IVIVE, it is urgently necessary
to find a strategy that can extract the inner-environment factor
from in vivo TGx data, and based on that, to further develop a
valid strategy that is able to more accurately simulate in vivo data
from in vitro data. Non‐negative matrix factorization (NMF)
(Lee and Seung, 1999; Lee and Seung, 2001), consisting of a series
of unsupervised learning methods, is a classical method to
factorize a matrix to nonnegative matrixes. NMF is commonly
utilized to reduce the computational consumption or dimensions
of data, and to filter specific markers or gene selection for genetic
data (Dai et al., 2006). As for in vivo and in vitro data, NMF has
been utilized to image analysis, feature selection, and cancer-type
classify (Maruyama et al., 2014; Shourijeh et al., 2016). In a
previous study, we proposed a post-modified NMF approach to
make NMF more suitable for the utilization of biological systems
and further applied this approach for deconvoluting gene
expression profiles of cancer samples (Liu et al., 2018a). Post-
modified NMF is capable of estimating the gene expression
profiles and contents of the major factors in samples without
any prior reference knowledge. Therefore, post-modified NMF
has the potential to factorize major factors based on in vivo gene
expression profiles.

In this study, we developed a strategy that can extract the
inner-environment factor from in vivo TGx data at the gene
expression level. We first verified the applicable of Post-modified
Frontiers in Pharmacology | www.frontiersin.org 3
NMF on in vivo and in vitro profiles. The strategy is able to
factorize in vivo data into “drug-responding component” and
“environmental component” by using post-modified NMF. And
then, by combining in vitro data with the “environmental
component” factorized from in vivo data, simulated in vivo
data was obtained. The results indicated that the simulated in
vivo data is more compatible with the original in vivo data than the
use of in vitro data directly, and can be utilized to narrow the gap
between in vivo and in vitro data on the gene expression level.
RESULTS

Study Design
We sought to verify the capability of the deconvolution method
to decrease the inconsistency between in vivo and in vitro TGx
data and to develop a valid simulation for in vivo data using in
vitro data. All investigations involved two stages: verification and
simulation. The verification stage entailed evaluating whether
post-modified NMF can be utilized to factorize the inner-
environmental factors of in vivo data from TGx data. The
simulation stage narrowed the gap between two assay types, so
that in vivo data can be simulated better by in vitro assays.

We collected in vivo data (single dose/repeat doses) and in
vitro data (Table 1) on 170 compounds from The Open Japanese
Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
System (Open TG-GATEs) (Uehara et al., 2010; Igarashi et al.,
2014). In the verification stage, two group comparisons based on
three systems were carried out: in vivo single VS in vitro and in
vivo repeat VS in vitro. In the simulation stage, two group
comparisons based on in vivo systems were carried out: in vivo
single VS original in vivo and in vivo repeat VS original in vivo.
TABLE 1 | Data information and usage in this study.

Species—plat-
form

Assay System Tissues Number of
compounds

Time points Dose* Number of
main

factors

Involved data

Original Deconvoluted

Sprague-Dawley
rat (6 weeks old)
—Affymetrix
GeneChip® Rat
Genome 230 2.0
Array

In vitro In vitro Primary
hepatocytes

144 2, 8, 24 h Control, low,
middle, high
(0:1:5:25)

1 In vitro None

In vivo In vivo (single
dose)

Liver 158 3, 6, 9, 24 h Control, low,
middle, high
(mainly
0:1:3:10)

2 Original In vivo
(single dose)

Drug-responding
component

Environmental
component

In vivo
(repeat
doses)

Liver 143 24 h after
the last dose
after
repeated
treatment for
3, 7, 14, 28
days

Control, low,
middle, high
(mainly
0:1:3:10)

Original in vivo
(repeat doses)

Drug-responding
component

Environmental
component
Ja
nuary 2020 | Volum
*For the in vitro assay, the highest concentration was defined as the dose level generating an 80–90% relative survival ratio with a ratio of 1:5:25 for the low, middle, and high concentration
levels. For the in vivo assay, the highest dose was chosen to match the level that induces the minimum toxic effect in a 4-week toxicity study. Then, the ratio of the low, middle, and high
dose levels was appropriately set as 1:3:10.
e 10 | Article 1489
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Figure 1 shows the overall flowchart of our study, including
the data and analytical approaches for both the verification stage
and application stage.

In Vivo “Drug-Responding Component”
Showed Higher Similarity With In Vitro
Data
In the verification stage, two group comparisons based on three
systems were carried out: in vivo single dose VS in vitro and in
vivo repeat doses VS in vitro. The deconvolution approach was
launched to factorize and verify two main factors of the in vivo
data. Two factors related to body-environment and drug-
response in in vivo systems were named “environmental
component” and “drug-responding component,” respectively.

Using factor analysis, our study first confirmed that the
expression data of both in vivo systems (single dose and repeat
doses) contained two main factors (Figure S1), whereas the in
vitro system only had one main factor (discussed in Confirm the
Number of Factors (k Value) for Deconvoluting by Factor
Analysis). When deconvoluting in vivo data by post-modified
NMF, the matrix of the gene expression profiles of each
compound was factorized into two matrices: W* represented
the gene expression profiles, and H* represented the weights of
the two main factors. Additionally, for the two lines in W*, the
line that had a higher correlation (Pearson’s correlation
coefficient) with corresponding control profiles was profiled as
“environmental component,” and the other line that had less
correlation with corresponding control profiles was profiled as
“drug-responding component.”

As shown in Figure 2, based on the comparison of the
consistency obtained between the original in vivo data and the
in vitro data, the “drug-responding component” and the in vitro
Frontiers in Pharmacology | www.frontiersin.org 4
data achieved higher consistency during the comparison. Both
single-dose and repeat-doses in vivo data achieved more than 9%
extra similarity when using “drug-responding component”
instead of using the original in vivo data for comparison with
the in vitro data. In more detail, we describe three indicators to
show the improved consistencies achieved by using “drug-
responding component.” 1) We first compared the similarities
[PRank score (Liu et al., 2017)] between the in vivo (original and
“drug-responding component”) and in vitro data for each pair of
compounds by using the PRankmethod (Figures 2A,B). 2) Then,
we counted the number of Dice’s coefficients of each compound-
pair, revealing different tendencies in in vivo (original and “drug-
responding component”) and in vivo data among 7021
compound-pairs. A different tendency means that Dice’s
coefficients are both lower than the cut-off or both higher than
the cut-off in the in vivo and in vitro data (Figure 2C).
3) Additionally, in order to investigate the differences in detail,
for each compound-pair, we utilized the absolute difference values
of Dice’s coefficients to determine how close the gap between the
in vivo and in vitro data was narrowed by deconvoluting the data.
Based on 7021 compound-pairs for each system, absolute
difference values were obtained by subtracting Dice’s
coefficients between “drug-responding component” data and in
vitro data or between the original in vivo data and in vitro data.
Then, the distribution of absolute differences for each system for
single-dose and repeat-doses data could be observed and
compared, and the mean absolute difference (MAD) of each
system could be calculated as well (Figure 2D).

For single-dose in vivo data, the similarity of “drug-
responding component” VS in vitro data was 9% higher than
the single-dose original in vivo data VS in vitro data. The PRank
score rose from 0.56 before deconvolution to 0.65 after
FIGURE 1 | The flowchart of our study design. Post-modified NMF, post‐modified non‐negative matrix factorization; comparisons accomplished by using the pair

ranking method (PRank score) and other indicators. W*
drug, H

*
drug, W

*
env , H*env were deconvoluted from experimental in vivo data.
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generating the “drug-responding component” (Figure 2A).
Additionally, an extra 73 compound-pairs were found when
comparing the “drug-responding component” with the in vitro
data. The number of inconsistent compound-pairs was reduced
from 193 to 120 (Figure 2C, purple). Furthermore, the MAD
values were calculated by subtracting Dice’s coefficients. The
“drug-responding component”VS in vitro comparison decreased
by 0.02 (“drug-responding component” VS in vitro = 0.10, and
original in vivo data VS in vitro = 0.08) (Figure 2D, purple). The
p-value of the significance test (Cohen, 1992) (Student t-test) for
the absolute difference values between the “drug-responding
component” VS in vitro and the original in vivo VS in vitro
data was less than 10×10-10.
Frontiers in Pharmacology | www.frontiersin.org 5
Similar results were achieved with repeat-doses in vivo data;
the score reached 0.79 for the compression of repeat-doses in
vivo data “drug-responding component” VS in vitro data, while
the score obtained from repeat-doses in vivo data original VS in
vitro was 0.70, with 9% higher similarity score (Figure 2B).
Sixteen extra compound-pairs were found when comparing
“drug-responding component” with in vitro data. The number
of inconsistent compound-pairs was reduced from 126 to 110
among 7021 compound-pairs (Figure 2C, yellows). Moreover, a
lower tendency was observed when comparing the violin plot of
absolute differences obtained by subtracting Dice’s coefficients
between the in vitro and in vivo assays. The MAD value was
reduced from 0.10 to 0.08, the gap between the in vivo and
FIGURE 2 | The comparisons among original in vivo data, in vitro data, and the drug-responding component from the in vivo data. For all four subplots, purple
represents the single-dose data, and yellow color represents the repeat-doses data. In the comparison with original in vivo data, the drug-responding component
achieved higher consistencies based on both (A) a single dose and (B) repeat doses. (C) The comparison of the number of inconsistent compound-pairs between
the in vivo and in vitro data among each system. (D) The violin plots of the absolute difference values between in vivo and in vitro (|Dice’s coefficient of in vivo data—
Dice’s coefficient of in vitro data|) systems.
January 2020 | Volume 10 | Article 1489
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in vitro data decreased by 0.02, and the p-value was less than
10×10-10 (Figure 2D, yellows) when comparing the absolute
difference value obtained for the “drug-responding component”
VS in vitro data and the absolute difference value obtained for the
original in vivo data VS in vitro data, respectively.

To summarize the results of this stage, in both single-dose and
repeat-doses data, the “drug-responding component”
deconvoluted by post-modified NMF from in vivo data showed
better results in the investigation among the three indicators than
the original in vivo data when compared with in vitro data. The
results indicated that post-modified NMF is able to efficiently
factorize the inner-environmental factors and can be used to
optimize the consistency between in vivo data and in vitro data at
the gene expression level.

In Vivo “Drug-Responding Component”
Can Be Replaced by In Vitro Data
In the simulation stage, two group comparisons based on the in
vivo systems were carried out: in vivo single VS original in vivo and
in vivo repeat VS original in vivo. Unlike the “drug-responding
component,” the “environmental component” tended to reflect
attributions that are more related to the inner-environment or
biological processing of a living body. Thus, the “environmental
component” could be regarded as the main factor for examining
the differentiation and inconsistency between in vivo data and in
vitro data. When the “environmental component” was confirmed,
simulated in vivo data were obtained by combining
“environmental component” with in vitro data. In other words,
in vitro datawere first used to replace (swap) the “drug-responding
component” line inW*, andH*was integrated with the newW* to
generate the simulated in vivo data.

The consistency of the “drug-responding component” and in
vitro was already confirmed in the validation stage by using the
PRank score and Dice’s coefficient. However, when replacing
(swapping) the “drug-responding component” with in vitro data,
consistency at the genetic quantification level still needs to be
verified to ensure this replacement was feasible. Thus, we
investigated the consistency of the “drug-responding
component” with in vitro data gene by gene for each
compound (Figures 3 and 4). For each compound, out of 119
compounds, we used gene expression profiles from the “drug-
responding component” and in vitro data to plot the intensity
scatter, then calculated the R2 and root-mean-square error
(RMSE) for evaluation. Each scatter showed the corresponding
tendencies of an expressed gene from the “drug-responding
component” and in vitro profiles.

Both single-dose data and repeat-doses data showed good
consistency at the genetic level; most of the dots were arranged
around the diagonal line in the intensity scatter chart (Figures
3A–D). For single-dose in vivo data, the average of R2 was 0.73,
R2 (Figure 4A) ranged from 0.63–0.81, and the average RMSE
(Figure 4B) reached 3.95. For repeat-doses in vivo data, the
mean R2 reached 0.72, R2 ranged from 0.62–0.80, and the average
RMSE was 4.00. Furthermore, the linear regression process could
be applied based on the “drug-responding component” and in
vitro data to obtain a better correlation if necessary (discussed in
Frontiers in Pharmacology | www.frontiersin.org 6
How to Improve the Consistency Between In Vitro and “Drug-
Responding Component” Data In Vivo).

In Vivo Data Can Be Simulated Better by
Combining In Vitro Data With
“Environmental Component”
After confirming that “drug-responding component” was
replaceable by using in vitro data, we determined that
combining the correct factor with upcoming in vitro data
allowed the simulated in vivo data to be obtained based on in
vitro assays without carrying out in vivo assays. Since the
combined data (simulated in vivo data) took the inner-
environment into consideration, the simulation demonstrated
higher compatibility with the original in vivo data than using the
in vitro data alone (Figure 5). The “environmental component”
was combined with the corresponding in vitro data (details are
shown in the Methods section) for each compound. Later, the
PRank score was applied again to investigate the correlation
between simulated in vivo data and original in vivo data.

For both single-dose and repeat-doses in vivo data, the PRank
scores were generated based on 7,021 compound-pairs, and high
consistencies were observed, with similarity PRank scores higher
than 0.72 (Figures 5A, B). The PRank score between the
simulated single-dose data in vivo and the original single-dose
in vivo data was 0.72 versus only 0.56 for the in vitro data and the
single-dose in vivo data. For repeat-doses in vivo data, the PRank
score was 0.70 when directly comparing the in vitro data with the
original in vivo data and rose to 0.75 when comparing the
simulated in vivo data with the original in vivo data. These
results indicated that the simulated in vivo data had higher
consistency with real in vivo data than did the in vitro data
with real in vivo data, especially for single-dose in vivo systems
(discussed in Extension of Strategy Application). Furthermore,
once the attribution of two components has been confirmed, we
not only can use the “drug-responding component” to obtain a
better understanding of the mechanism for the drug effect but
also use the “environmental component” to make the in vitro
data become more accessible for real situations in living objects.
With the storage of the “environmental component,” the
upcoming in vitro data can always be adjusted and turned into
simulated in vivo data.

Validation of the Deconvolution Strategy
To further investigate the utilization of the strategy in this study,
we applied the strategy to another individual dataset, which
including 15 common compounds. Factor analysis also applied
to validation dataset, two factors observed from in vivo data set
and only one main factor observed from the in vitro data (Figure
S2). Thus, the number of factors we used at post-modified NMF
of validation is 2.

Similar to the results that observed from using TG-GATEs,
when comparing original in vivo data with in vitro directly, the
PRank score is 0.44 (discussed in Further Perspective and
Challenges). And the Prank score raised to 0.50 when
comparing drug-responding component from in vivo data with
in vitro data. Later, simulated in vivo data obtained from
January 2020 | Volume 10 | Article 1489
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validated dataset showed higher similarity (Prank score = 0.68)
than the original comparison. Notably, after applying the linear
regression, PRank score between original in vivo data and
simulated data reached to 0.77 (discussed in How to Improve
the Consistency Between In Vitro and “Drug-Responding
Component” Data In Vivo) (Figure S3). The results implied
that, when dealing with the data generated from different
platforms (GPL341 VS GPL1355) and at different times (2008
VS 2018), the linear regression is necessary.

All in all, the performance evaluation we have shown above is
positive for single-dose in vivo data and repeat-doses in vivo data
in the verification stage and simulation stage, especially for
single-dose systems (discussed in Extension of Strategy
Application). The “drug-responding component” deconvoluted
from in vivo data achieved higher similarities than the original in
vivo data when compared with in vitro data. The two factors, the
“drug-responding component” and the “environmental
component,” generated from the original in vivo data were able
to reveal different drug-interaction and inner-environment
Frontiers in Pharmacology | www.frontiersin.org 7
functions inside living bodies at the gene expression level.
Additionally, this result showed more potential for extending
the usage of post-modified NMF to apply to heterogeneous fields,
which include the cancer clinical data that we discussed in a
previous study (Liu et al., 2018a) and the large-scale
toxicogenomics field that we utilized in this study.
DISCUSSION

Confirm the Number of Factors (k Value)
for Deconvoluting by Factor Analysis
By using factor analysis for in vivo data, both single-dose and
repeat-doses data showed (Figure S1) that there were two main
factors for a gene expression profile, whereas in vitro data only
had one factor. Additionally, in terms of the factors of in vivo
single-dose data, the first factor had a higher score than the
second factor. On the other hand, the two main factors for in vivo
repeat-doses data had almost the same score. This result suggests
FIGURE 3 | The intensity scatter plots reflecting the consistency between in vivo and in vitro data. (A and C) Intensity scatter plots for the compounds that have
max R2 (R2 = 0.81, RMSE = 3.96) and min R2 (R2 = 0.63, RMSE = 3.97) in single-dose in vivo data. (B and D) Plots for the compounds that have max R2 (R2 =
0.80, RMSE = 4.00) and min R2 (R2 = 0.62, RMSE = 3.96) in repeat-doses in vivo data. 9#, 20#, 97#, and 40# are acetaminophen, captopril, quinidine, and
disopyramide, respectively. Purple color and yellow color in this figure indicate data from the single-dose and repeat-doses systems, respectively.
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the second factor might be “environmental component.” Since a
compound remains in the repeat-doses in vivo data situation for
a longer time, the inner-environment would influence the data
for repeat-doses more than it influences single-dose in vivo data.

Moreover, we confirmed that the number of main factors is 1
for in vitro data and 2 for in vivo data. As shown in Figure S1-a,
although there are some minor factors behind the highest one or
two columns, the cut-off already contributes more than 99% of
factors Figure S1-b, specifically 99.61% for the first factor of the
in vitro data and 99.56% and 99.65% for the first and second
factors of the single-dose and repeat-doses in vivo data,
respectively. Thus, we used k = 2 when we applied post-
modified NMF for deconvolution.

How to Improve the Consistency Between
In Vitro and “Drug-Responding
Component” Data In Vivo
Technically, if more samples are involved, higher accuracy can be
generated during formulization. However, within the Open TG-
Frontiers in Pharmacology | www.frontiersin.org 8
GATEs database, for each compound at a different dose and
different duration, there are three biological repetitions for in
vivo data and two biological repetitions for in vitro data. The
amount of sample that we can utilize in this study was large but
still limited. Although this database is capable of helping us prove
our verification and launch the simulation, the number of
samples is far from sufficient. To pursue better performance
and durability, the number of in vivo samples used to obtain the
“drug-responding component” and the “environmental
component” should be as high as possible. Additionally, once
the two components have been obtained, infinite in vitro data can
always be modified and further optimized based on those
two components.

Notably, in the Open TG-GATEs database, all the data were
generated by the same microarray chip (Affymetrix Support by
Product for GeneChip® Rat Genome 230 2.0 Array) in the same
relative location. Only minor improvements for single-dose data
(0.72–0.72) and repeat-doses data (0.75–0.76) (Figure S4-a and b)
were achieved by applying linear regression in this study, which
FIGURE 4 | The attributions of simulated in vivo data. Purple color and yellow color in this figure always indicate data from the single-dose and repeat-doses
systems, respectively. (A and B) The distribution of R2 among 119 compounds between the original in vivo and the simulated in vivo data for single-dose and
repeat-doses data, respectively. (C and D) The distribution of RMSE among 119 compounds between the original in vivo and the simulated in vivo data for single-
dose and repeat-doses data, respectively.
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indicated that the data we used in this study were similar in their
order of magnitude. As for the validation stage, applying linear
regression has improved 9% (from 0.68 to 0.77) on PRank score
than that directly combine in vivo data with in vitro data. For
further simulation processing, the “environmental component”
might be combined with the upcoming in vitro data issued from
other batches, other laboratories or even other chips. The
expression level of the “environmental component” might be
influenced by the experimental batch. Therefore, applying linear
regression is suggested to reduce potential bias at the numerical and
batch effect levels.

Linear regression (y = Ax + B, A is the slope and B is the
intercept) was based on “drug-responding component” (y) and
in vitro data (x) to correct the bias at the numerical and batch
effect levels between in vitro and in vivo systems. This study also
demonstrated the distributions of slope and intercept for each
compound to investigate the correlation between in vivo “drug-
responding component” and in vitro data. Most of the slopes
were in the range of 0.8–0.9 in both the single-dose and repeat-
doses data (Figure S4 c), and the average slopes for single-dose
and repeat-doses in vivo data were both 0.86. Additionally, the
average intercepts for single-dose and repeat-doses data were
0.31 and 0.35, respectively (Figure S4 d). Most of the intercepts
had positive values, showing that the data obtained in vitro had
slightly higher measurements overall than corresponding the
“drug-responding component” in vivo data. This result indicated
that, compared with the “drug-responding component,” the
concentration of the corresponding compound was attenuated
by biological processes in vivo, and this bias was observed at the
gene expression level by using our strategy.

Repeat-Doses Data Achieved Better
Similarity Than Single-Dose Data
According to previous reports, when comparing single-dose data
(24 h) and repeat-doses data (28 days) from an in vivo assay,
Frontiers in Pharmacology | www.frontiersin.org 9
there was a high concordance between the two in vivo assay
systems, indicating the potential to use a short-term in vivo assay
for some endpoints, saving time and money (Liu et al., 2018b).
However, for comparisons between in vitro and in vivo data, the
in vitro TGx data set had a relatively higher similarity to the
repeat-doses in vivo data (0.70) than did the single-doses in vivo
data (0.56), suggesting better correlation of the in vitro assays
with the longer-term in vivo assays. Specifically, gene activities
associated with the survival of hepatocytes reflect a level of
adaptation that resembles those under 28-day repeated dosing
conditions. One explanation could be that 24 h (single dose) in
vivo is simply the time frame in which the liver responds to a new
chemical stressor and the inner-environment sways the
expression level more than drug effect. Conversely, after 28
days (repeat doses) of in vivo treatment, there is a greater drug
effect on the expression level with multiple treatments, making
repeat doses more equivalent to the response of hepatocytes in
cell culture (in vitro assay). These differences can also be
observed by the factor analysis procedure (Figure S1); the two
main factors generated by a repeat-doses data set were more even
than the factors generated by a single-dose data set. Notably,
after applying the simulation strategy, the similarities of the
simulated data generated from the in vitro data set with single-
dose and repeat-doses in vivo data were improved 16% and 5%,
respectively. This result indicated that the deconvolution strategy
can be an efficient way to improve IVIVE, especially in terms of
assisting with the utility of short-term in vivo assays.

Extension of Strategy Application
Technically speaking, all kinds of data (kidney, liver etc.) that
meet follow criteria can be processed by the deconvoluting
strategy in this study: a. There are normal samples as blank
control (to identify drug effect and inner-environmental
components respectively). b. The number of samples is bigger
than the number of components (in this study is 2). c. The in
FIGURE 5 | The similarities of simulated data with real in vivo data obtained by PRank score. (A and B) The consistencies obtained by single-dose data (purple) and
repeat-doses data (yellow), respectively.
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vitro data which is going to participate the simulation, is
generated by applying same chemical compound. Additionally,
same sequencer (platform), and post-processing of in vivo and in
vitro data are highly recommended.

In this study, the data involved a large number of different
compounds and treatment durations, also applied to relatively
small dataset (validation), but we did not find any available
sequencing data that matched our study strategy. The lack of
large-scale sequencing data in this context makes this struggling
for has not demonstrated an approach for sequencing data.
However, we performed RNA sequencing to prove the stability
and reliability of post-modified NMF in our previous study,
which contained sequencing data obtained from multiple human
tissues and human cancers (Liu et al., 2018a). This strategy has
promising potential to be utilized with toxicogenomic
sequencing data in the future. We will continue collecting
related data and try to apply the strategy to sequencing data
once we find an appropriate and available dataset. Additionally,
it is reasonable to believe that with the development of emerging
genetic technologies, the strategy that we proposed might be able
to utilize miRNA, ncRNA, and other kinds of genetic data.

Further Perspective and Challenges
In this study, a computational strategy is presented to improve
IVIVE problem in silico. The strategy is able to extract drug effect
and inner-environmental components from the original in vivo
data, further by combining in vitro datawith inner-environmental
component to narrow the gap between two experiential systems.
Moreover, by keeping inner-environmental components that
been obtained, more simulations can be perform with
upcoming in vitro data.

Nevertheless, several directions still remain to investigate. As
for NMF algorithm which is the focus of this study, reference-
free is an advantage for NMF but also can be regarded as a
delicate factor during iterations. Iterations need to avoid local
optimize and also to guarantee the stability and robustness (Post-
Modified NMF Deconvolution Method). For biological part, as we
mentioned, due to conventions at processing, the number of
replications of samples is lacking for mathematical calculation.
And the quality control of batch affect, environmental difference,
mult i -plat form operat ions are also need to count
into consideration.

For this study, the different inter-lab and different inter-
platform problem still needs to be further discussed. Thus, for
the 119 compounds and 15 compounds that we performed in
application and validation parts, respectively, we shared tables
for the “environmental component” (W*

env), and the average of
the corresponding weight matrix (H*

in vivo) obtained in this
study for further research in the supplementary materials
(Tables S3–S5). Therefore, if any available in vitro data
generated with the corresponding compounds is included in
this study, the list can be utilized to transfer the in vitro data
into simulated in vivo data (details shown in Generation of
Simulated In Vivo Data Based on In Vitro Data). Additionally,
we believe that with the utilization of our strategy, the variation
caused by inter-lab and inter-platform situations can be
further investigated.
Frontiers in Pharmacology | www.frontiersin.org 10
MATERIALS AND METHODS

Materials
Toxicogenomics Database
The rat data were downloaded from a large-scale toxicogenomics
database named Open TG-GATEs (Open Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation Systems, http://
toxico.nibiohn.go.jp/english/) (Uehara et al., 2010; Igarashi et al.,
2014). This is a database that stores gene expression profiles and
traditional toxicological information obtained in vivo (rat) and in
vitro (primary rat hepatocytes). In total, 170 compounds with
multiple doses, measure-times, and treatment durations were
involved. In more detail, there are two kinds of treatment
durations for in vivo data: one treatment duration is a single-
dose trial, and the other treatment durations is a repeat-doses
trail. Three systems in this study specifically included gene
expression data obtained in vitro and in vivo (single
dose/repeat doses). In other words, each compound involved
in vitro data, single-dose in vivo data, and repeat-doses in
vivo data.

For each compound, the in vitro data consisted of three doses
(low, medium, and high) and three treatment time points (2, 4,
and 24 h). The in vivo data were obtained from adult rats that
were 6 weeks old. For single-dose data, the rats were treated with
three doses (low, medium, and high), and liver tissue was
collected at four time points (3, 6, 9, and 24 h) after treatment.
For in vivo repeat-doses data, the rats were treated with three
doses (low, medium, and high) and with different treatment
durations (3, 7, 14, and 28 days). After the last exposure and dose
the animals were killed 24 h later and that liver tissue was
collected and isolated. Every time point (or duration) had
corresponding control samples.

To reduce the influence of irrelevant variables on the
measurements to guarantee external validity, the data with the
highest doses, longest timepoints, and longest durations, as well
as their corresponding control data, were used for our
investigation. Specifically, the “in vitro” data are in vitro data
that were obtained with the high dose at 24 h, “in vivo single”
data are single-dose in vivo data that were obtained with the high
dose at 24 h, and “in vivo repeat” are the repeat-doses in vivo data
generated under the high dose at 28 days. A total of 24,023
biological samples can be utilized in Open TG-GATEs. Based on
119 common compounds (Table S1), 7,021 pairwise
combinations for compounds were generated.

The Generation of Gene Expression Profiles
For application data, the microarray data downloaded from
Open TG-GATEs were processed by Factor analysis for Robust
Microarray Summarization (FARMS) (Hochreiter et al., 2006).
For each compound, there were three and two replicate samples
for in vivo and in vitro data for every time point, respectively.
Every dosing sample had its matched control samples as well.
Specifically, there were three control samples in vivo and two
control samples in vitro for each time point for each compound.
After quantile normalization of the probe-level data, we
calculated the probe intensity ratios by referencing the
corresponding control measurement for the blank cell culture
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(without compound) to correct the compound batch. Next, the
probe-level names were transformed into their corresponding
gene-level names by using a CDF (Version 15.1.0, ENTREZG)
file (Dai et al., 2005). Later, in order to obtain expression values
per gene, intensity ratios at the probe set level were summarized.

The original in vivo single-dose data were stored as a matrix
13,934 rows and 715 columns, and each column represented the
group of 13,934 gene expression profiles for one biological
sample. Similarly, the in vivo repeat-doses data were a matrix
with 13,934 rows and 706 columns (control samples in repeat
doses of some compounds had no biological repetition), and in
vitro data were 13,934 rows and 476 columns. We marked the
gene expression profiles of the in vitro data, single-dose in vivo
data, and repeat-doses in vivo data as “in vitro,” “in vivo single,”
and “in vivo repeat,” respectively.

Validation Datasets
The validation rat data contains two microarray datasets from
different years and platforms, and can be both downloaded from
NCBI-GEO database (Barrett et al., 2012). The in vivo data is
obtained from data set (GSE68110) at 2008 (Ellinger-Ziegelbauer
et al., 2008) onAffymetrix Rat Expression 230AArray platform. 30
compounds included with different dosages (low/middle/high).
And the in vitro data set (GSE119933) was generated coordinate
with in vivo at 2018 (Grinberg et al., 2018) on Rat Genome 230 2.0
array, 29 compounds with different treatment durations (1d/3d/
7d/14d) are involved. Similar to the usage of GT_GATE, only the
compounds that have control samples and at the highest dosage or
longest treatment would be utilized for this study. That is, samples
with high dosage group from in vivo data, and 14d treatment from
in vitro data are involved in this study (Table S2).

Data preprocessing and all subsequent analyses were
performed using MATLAB as well. After filtering, 15 common
compounds (Table S2) are selected. Each compound has three
experimental samples with three controls for in vivo and in vitro
data, respectively. And 10324 common genes left after
overlapping two platforms, 105 pairwise combinations for
compounds were generated.

Methods
Decision of the Number of Main Factors
Factor analysis was first released by J. Pearson (Holgado–Tello
et al., 2010) and C. Spearman (Woolley et al., 2010) to determine
the number of species; then, R. M. Wallace further added the
matrix rank method to address multicomponent systems
(Wallace, 1960; Wallace and Katz, 1964). We used factor
analysis to decide upon the number of main factors in our
study (discussed in Confirm the Number of Factors (k Value) for
Deconvoluting by Factor Analysis). This statistical method
(Bartholomew et al., 2008) is able to describe a group of main
components generated among observed, correlated variables.
Components can be regarded as several factors that potentially
can lower the number of unobserved variables and maintain the
main characters of the variables in the meanwhile. For example,
in our case, it is possible that variations in multiple observed
variables mainly reflect the variations in two underlying
variables. Factor analysis searches for such joint factors in
Frontiers in Pharmacology | www.frontiersin.org 11
response to unobserved latent variables. Hence, factor analysis
helps to deal with data sets in which there are large numbers of
observed variables that can be reflected by a smaller number of
latent variables.

Factor analysis was first used in psychometrics and then
commonly used in chemistry (Subbarao et al., 1996), biology
(Meng et al., 2011; Love et al., 2004), personality theories (Ford
et al., 1986;Cattell, 1987;Kahn, 2006), andmarketing (Stewart, 1981;
Churchill and Iacobucci, 2006; Polit andBeck, 2008). Factor analysis
can compress large data to achieve higher data quality, investigate a
significant explanation, and simplify completed problems. The
original data matrix is marked as V. By recombining observed
variables linearly, the original matrix V can be represented with a
group of new underlying variables. To generate the factors of V, the
covariance matrices Z is calculated by V.

Z = V 0V (1)

The size of V is r × c; then, the size of Z is c × c. Then, we
diagonalize the covariance matrix Z, and the diagonalized matrix
l is generated.

Q−1ZQ =

l1, 0,…, 0

0, l2,…, 0
…

0, 0,…, lc

2
6664

3
7775 = l (2)

Q=[q1,q2,…,qc] is the matrix consisting of eigenvectors and
meeting the orthogonality (Q−1 = Qt, the symbol “t” in formulas
represents the transposition of the corresponding matrix), Q−1 is
the inverse matrix of Q, and li is the eigenvalue that meets the
criteria:

Zqj = liqj , where j = 1,…, c : (3)

Then, we can utilize l to calculate reduced eigen value (REV)
based on V by the following equation:

REVj = lj= r − j + 1ð Þ c − j + 1ð Þ (4)

Furthermore, a list of ratios could be derived by the REVs:

ratiot =
REVt

REVt+1
, where t = 1… j − 1: (5)

Eventually, the maximum ratio can be regarded as the most
significant factor, and the minimum ratio can be regarded as the
least significant factor. In this study, the number of factors that
added more than 99% cumulative contribution were considered
main factors (details shown in Confirm the Number of Factors (k
Value) for Deconvoluting by Factor Analysis). Those main factors
were able to reflect V and could be visualized to obtain
better observations.

Post-Modified NMF Deconvolution Method
Non‐negative matrix factorization (NMF) is a series of
unsupervised learning methods that is able to factorize a
nonnegative matrix V into 2 nonnegative matrices (W and H)
(Lee and Seung, 1999). The post-modified NMF that we used in
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this study is an unsupervised learning algorithm that is capable of
estimating the gene expression profiles and contents of the major
components in samples without any prior reference knowledge.
NMF is frequently used in blind source separation because of its
nonnegative conception. The ultimate objective of NMF can be
described as: given a matrix V, NMF finds nonnegative matrices
W and H. W⬝H is a lower‐rank approximation of V. NMF
estimates the basis matrix W (m × k nonnegative matrices)
and the coefficient matrix H (k × n nonnegative matrices) from
the original matrix V (m × n nonnegative matrix). In practical
application, the factorization rank k should meet the conditions
that k ≪Min (m, n). After deconvoluting and iterating from the
original matrix V to the sum of the loss function F (V, WH)
(Gaujoux and Seoighe, 2010), a regularization function F (W, H)
is reached at the minimum, and the optimized W and H are
generated (Hoyer, 2004; Kim and Park, 2007). The original NMF
algorithm can be written as:

V ≈ W �H (6)
Vj =ok

i=1WjHij j = 1, 2, …, the number of columns in Vð Þ
(7)

The matrices W and H were estimated using an alternating
least squares (ALS) algorithm, which was first proposed by
Paatero and Tapper (Paatero and Tapper, 1994) and improved
by Paatero and Albright et al. (Paatero, 1999). In the ALS
algorithm, W is initialized as a random dense matrix and used
to solve H using a least squares calculation step. The negative
elements inH are set to 0. The loss function F (V, WH) is applied
to measure the result of each iteration. In this function, the
factors W and H are chosen to minimize the root‐mean‐squared
residual D (the cost function) between V andW⬝H. That is, when
loss function F (W, H) is reached at the minimum, the optimized
W and H are generated. The iteration procedure is iterated until
W and H can minimize the cost function D (Berry et al., 2007).
The loss function F algorithm can be written as:

F W,Hð Þ = jjV − WH jj2F (8)

Moreover, for better biological utilization of a practical
situation, a normalized H* can be generated by normalizing
the H after deconvoluting. Specifically, by restricting the sum of
the values in each column ofH to 1, a normalizedH* is generated
(k components × n samples).

H = h1, h2, …, hj j is the number of columns in Vð Þ� �
(9)

H*
ij =

Hij

ok

l=1Hlj

(10)

After H being normalized as H*, with known H* and original
matrix V, W* can be generated accordingly. Notably, as the W*
might contain a tiny amount of negative values (less than 0.01%
in all compounds), we set the negative values to zero to keep the
matrix nonnegative. Similar to NMF, the essence of post-
modified NMF (Liu et al., 2018a) is a multivariate linear
Frontiers in Pharmacology | www.frontiersin.org 12
model. Each column of V is approximately expressed as a
linear combination of the column vectors in W* and the
coefficient matrix H* of corresponding columns. The
procedure results in a new W* as follows:

W* = VH*t H*H*t
� �−1 (11)

The symbol “t” in formulas represents the transposition of
the corresponding matrix.

In our study, for each compound in every system, the matrix
V was the original gene expression data, including the expression
of m genes in n mixed samples (m × n matrix), where m
represents the number of genes, and n represents the number
of samples. W* was a deconvoluted signal matrix, including the
expression profiles of m genes in k individual component‐types
(m × k matrix), and H* was a weight matrix that included the
relative weight of k component types in n mixtures (k × n
matrix). Matrices V, W*, and H* were all nonnegative.

Since the algorithm for generatingW* andH* needs iterations
for parameter optimization, which might lead to local minima,
repeated factorizations with random initial W* and H* may
yields different W and H pairs, which might include less optimal
results. To ensure reliable and conforming results, the
deconvolution procedure was repeated 100,000 times in total
for every compound. After 1,000 inner-iterations with a different
initial W* and H*, to select the results with the minimum root‐
mean‐squared error, yielded from (Boess et al., 2003), and then
repeat the whole processing 100 times to get the average result.
The averaged results were used for further analysis to ensure
reliability and optimization.

After factor analysis in Decision of the Number of Main
Factors, 2 factors were yielded from the in vivo data. We
sought to determine which factor represents the inner-
environment of the inner body and which factor represents the
response of the drug effect. After deconvoluting by post-modified
NMF, the matrix of the gene expression profiles of each
compound for in vivo data was factorized into two matrices:
W* represented the gene expression profiles, and H* represented
the weights of two factors. We compared each column of W*
with the corresponding control sample for each compound by
using pairwise Pearson correlation coefficients. The column with
the higher coefficient was considered the “environmental
component,” while the other column with the lower coefficient
from the control sample was considered the “drug-responding
component.” Thus, each column ofW* in formula (Cattell, 1987)
(Post-Modified NMF Deconvolution Method) represented the
estimated expression levels of m genes in a component, which
could be compared with the corresponding expression levels of
the matched control sample.

Identification of Biologically Significant Genes
The biologically significant genes identified between the dosing
samples and control samples may be potentially correlated with
phenotypic differences. For each compound in each assay system,
fold change (FC) values were generated by comparing the dosing
group VS the matched control group. Then, we ranked the genes
from the highest FC value to the lowest, and significant genes
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were selected from the top and bottom of the ranked list. To find
the best cut-off number of significant genes for our study, we
investigated the stability of ranked FC lists of each compound by
cutting at different amounts (from 50 to 550 by step 50). A stable
trend appeared after 200 genes from the ranked FC list. Hence,
we used 200 as the cut-off for selecting significant genes that were
both up- and downregulated. Furthermore, based on the
significant genes for each compound (Figure S5), the pairwise
similarity could be calculated for PRank processing.

Pair Ranking (Prank) Method
The Pair Ranking (PRank) method was used to investigate the
consistency among the three rat TGx assay systems (Liu et al.,
2017; Liu et al., 2018b). The PRank score was utilized to measure
the similar extent between every system in the validation part as
well as in the application. Similar to the definition of the ROC
curve, the similarity score ranged from 0 to 1, and the higher
score was better.

Biologically significant genes were ranked according to their
fold change value. The procedure utilized to find the threshold
was the same as that in Liu’s work, and the threshold of 200 was
kept afterwards. That is, biologically significant genes were
obtained for each compound by finding the top and bottom
200 ranked genes by their fold change values (Figure S3).

Dice’s coefficient was employed to calculate the similarity
between the gene expression profiles of compounds, as suggested
Frontiers in Pharmacology | www.frontiersin.org 13
by the SEQC I study (Wang et al., 2014; Xu et al., 2016). The
pairwise compound similarity of any two compounds within a
system was calculated by using the total number of 400 genes
obtained for each compound. Notably, the regulated direction of
overlapping genes was taken into consideration in this situation.

Dice0s coefficient =
Ni,j,up + Ni,j,down

400
(12)

Ni,j,up and Ni,j,down indicate the number of overlapping up-
anddownregulated genes, respectively, between compound i and j.

The pairwise similarities are ranked from highest to lowest in
each system separately. Eventually, by using a receiver operating
(ROC) curve and the area under the curve (AUC), the PRank
score between any two systems can be calculated. To obtain the
PRank score, the ranked Dice’s coefficient is transferred into a
binary model (0/1) with 0.4 as the cut-off. This cut-off is close to
the 95% quantile. The built-in function perfcurve in MATLAB
R2018b was applied for ROC-AUC calculation.

Generation of Simulated In Vivo Data Based on
In Vitro Data
After deconvolution and component confirmation of in vivo
data, we determined that the in vitro gene expression profile had
high similarity with the “drug-responding component”
deconvoluted from the in vivo data. Additionally, the
“environmental component” tends to reflect more attribution
FIGURE 6 | Step by step illustration of generating the simulated in vivo data by combining in vitro data with environmental component from in vivo data.
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of the inner body. Thus, once the “environmental component”
was obtained, we obtained the simulated in vivo data based on
the in vitro expression profile by replacing the “drug-responding
component” with the in vitro data. The replacement procedure
can be formulized as follows:

Vin vivo = W*
in vivoH

*
in vivo (13)

Vin vivo is the original gene expressed profile for in vivo data
which contains m genes (rows) × n sample (columns). The gene
expression profile Vin vivo is deconvoluted into W*

in vivo (m × k
factors) and H*

in vivo (k factors × n) by using post-modified NMF
(Figure 6).W*

in vivo is composed of two columns of gene expression
profiles,W*

env and W*
drug , corresponding to the “environmental

component” and the “drug-responding component,” respectively;
and H*

in vivo is composed of two rows of gene expression
profiles,H*

env and H*
drug , corresponding to the weight of

“environmental component” and the “drug-responding
component,” respectively; the order of these two columns
depends on their similarity with matched control samples.

W*
in vivo = W*

env , W*
drug

h i
(14)

To prepare for replacement, the in vitro data Vinvivo is formed
into the same size (1 column × the number of genes) as W*

drug .
The average of the in vitro data for each compound is utilized,
which we named w in vivo.

Win vitro = avg Vin vitroð Þ (15)

Later, by replacing W*
drug with Win vitro, Wmodifiedis generated.

Wmodified = W*
env ,Win vitro

h i
(16)

Eventually, with the recombination of wmodified and H*
in vivo,

the simulated data Vsimulated are obtained.

Vsimulated = Wmodified H*
in vivo (17)

According to (Cohen, 1992) and (Dai et al., 2006), by keeping
H*

in vivo and w
*
env , the simulated data can always be obtained based

on in vitro data that are currently available or in vitro data that
are upcoming.

Note that if linear regression is applied to correct win vitro in
equation (Cohen, 1992), then Win vitro would be modified by
W*

drug . Thus, in this situation, H*
in vivo and W*

in vivoand (W*
env and

W*
drug) are needed.
All calculation procedures and the identification of significant

genes were conducted in MATLAB (MathWorks®, R2018b). In
order to make Post-modified NMF and corresponding strategy
easier to use, we have released a functional MATLAB package
with detailed tutorial at github. (https://github.com/annlyuan/
Post_modified_NMF).
CONCLUSIONS

In this study, an in silico strategy based on post‐modified NMF
was proposed to factorize the inner-environmental factor from in
Frontiers in Pharmacology | www.frontiersin.org 14
vivo assays at the gene expression level. Drug effect and inner-
environmental components were obtained from the in vivo data.
This strategy first verified its applicability to TGx data and then
simulated the in vivo data by correcting the in vitro data.
Similarities between real in vivo data and simulated data were
higher than those obtained by directly comparing real in vivo
data with in vitro data. The results indicated that this strategy
could promptly generate substitutions for in vivo TGx.
Additionally, a simulation can be generated by using in vitro
data to reduce the launch of live-animal tests. Eventually, the gap
between in vivo and in vitro data at the gene expression level is
effectively narrowed.
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FIGURE S1 | The bar graphs for the factors obtained from each system after
factor analysis. (A) Represents the reduced eigen values (REVs) calculated by
factor analysis of each factor in in vitro (left), single-dose in vivo (middle) and
repeat-doses in vivo (right) data. (B) Represents the ratios of contribution calculated
based on REVs in in vitro (left), single-dose in vivo (middle) and repeat-doses in vivo
(right) data.

FIGURE S2 | The bar graphs for the factors obtained from each system of
validation data set after factor analysis. (A) Represents the reduced eigen values
(REVs) calculated by factor analysis of each factor in in vivo (upper), and the ratios
of contribution calculated based on REVs of in vivo (down) data. (B) Represents
the reduced eigen values (REVs) calculated by factor analysis of each factor in
in vitro (upper), and the ratios of contribution calculated based on REVs of in vitro
(down) data.

FIGURE S3 | Results of validation dataset. (A) In the comparison with original
in vivo data (light blue), the drug-responding component achieved higher
January 2020 | Volume 10 | Article 1489
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consistencies. (B) The comparison of applying linear regression or not. (C) The violin
plots of the absolute difference values between in vivo and in vitro (\Dice’s coefficient
of in vivo data - Dice’s coefficient of in vitro data\) of validation datasets.

FIGURE S4 | The attributions of applying linear regression to in vitro and “drug-
responding compound” in vivo data. Purple color and yellow color in this figure
always indicate the data from single-dose and repeat-doses systems, respectively.
(A) and (B) The consistencies between original in vivo data and simulated in vivo
data obtained by PRank score. The gray lines indicate the scores obtained based
on the simulated data (which are derived from applied linear regression between
“drug-responding compound” and in vitro data) compared with original in vivo data.
(C) and (D) The slope and intercept distributions, respectively, after launching linear
regression between original in vivo and simulated in vivo data.

FIGURE S5 | The stability of the ranked similarity list for each assay and system.
The data points were calculated by comparing the ranked similarity list with different
Frontiers in Pharmacology | www.frontiersin.org 15
numbers of differentially expressed genes by using Spearman’s correlation
coefficient.

TABLE S1 | The list of 119 common compounds.

TABLE S2 | The sample information of validation dataset (NA: no information
available, h: hour, d: day).

TABLE S3 | The W*
env and the average of H*env obtained by single-dose in vivo

data (format as .xlsx).

TABLE S4 | The W*
env and the average of H*env obtained by repeat-doses in vivo

data (format as .xlsx).

TABLE S5 | The W*
env and the average of H*env obtained by validation in vivo data

(format as .xlsx).
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