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Abstract: Unipolar depression is associated with insomnia and autonomic arousal. The aim of this
study was to quantify the effect of a single bout of aerobic exercise on nocturnal heart rate variability
and pre-sleep arousal in patients with depression. This study was designed as a two-arm, parallel-
group, randomized, outcome assessor-blinded, controlled, superiority trial. Patients with a primary
diagnosis of unipolar depression aged 18–65 years were included. The intervention consisted of a
single 30 min moderate-intensity aerobic exercise bout. The control group sat and read for 30 min. The
primary outcome of interest was RMSSD during the sleep period assessed with polysomnography.
Secondary outcomes were additional heart rate variability outcomes during the sleep and pre-sleep
period as well as subjective pre-sleep arousal. A total of 92 patients were randomized to either the
exercise (N = 46) or the control (N = 46) group. Intent-to-treat analysis ANCOVA of follow-up sleep
period RMSSD, adjusted for baseline levels and minimization factors, did not detect a significant
effect of the allocation (β = 0.12, p = 0.94). There was no evidence for significant differences between
both groups in any other heart rate variability measure nor in measures of cognitive or somatic
pre-sleep arousal. As this is the first trial of its kind in this population, the findings need to be
confirmed in further studies. Patients with depression should be encouraged to exercise regularly in
order to profit from the known benefits on sleep and depressive symptoms, which are supported by
extensive literature.

Keywords: aerobic exercise; depression; heart rate variability; polysomnography; sleep; pre-sleep;
arousal

1. Introduction

Insomnia and unipolar depression are bidirectional risk factors for one another [1–4].
Up to 90% of patients with unipolar depression report symptoms of insomnia [5–8]. Insom-
nia has detrimental effects on disease trajectory [9–13]. Insomnia is also the most frequent
residual symptom after remission [5,14], which in turn increases the risk of relapse [15,16].

Arousal is a central characteristic and possibly a common pathophysiological mech-
anism of insomnia and depression. The hyperarousal model postulates that arousal pro-
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cesses in multiple physiological systems cause insomnia [17]. The cognitive model of
insomnia hypothesizes that excessive negative thoughts trigger autonomic arousal, which
maintains insomnia [18]. The arousal regulation model of affective disorders posits that sen-
sation avoidance and withdrawal in unipolar depression are an autoregulatory reaction to
neurophysiologic hyperarousal [19]. Indeed, insomnia [17,20] and depression [21–26] have
been empirically shown to be associated with somatic, cortical, and cognitive hyperarousal.

Heart rate variability (HRV) is a universally acknowledged marker for arousal in the
context of unipolar depression for multiple reasons. It is well established that a clinical
diagnosis of depression and depression severity are associated with lower HRV during
the day [27–31] and night [32–36]. Lower HRV is also observed during and immediately
after exercise in patients with depression [37]. Moreover, there is evidence to suggest that
reduced HRV is an antecedent to depression [38,39]. Reduced HRV is a pathophysiologi-
cal mechanism [40–43] explaining the increased risk of cardiovascular disease (CVD) in
patients with depression [44–46].

There is no evidence that psychotherapy and antidepressants, i.e., guideline treatments
for depression, increase HRV in this population. On the contrary, tricyclic antidepressants
have been unequivocally shown to lower HRV [28,47–51]. Other antidepressants (e.g.,
selective noradrenaline or serotonin reuptake inhibitors) have produced mixed results,
suggesting no effect or a reduction in HRV [28,47–51]. Combined psychotherapy and
psychopharmacotherapy do not seem to increase HRV, despite strongly ameliorating
depressive symptoms [52]. However, there is evidence that biofeedback [53–55] and
breathing exercises [56] (as standalone or add-on therapies) increase HRV in patients with
depression. Moreover, a considerable portion of patients with depression fail to remit
when treated with guideline therapies [57–59]. Failure to remit increases the risk for CVD
in patients who were initially free of CVD [60–64]. There is a need for further adjuvant
therapies that lower arousal during the night in patients with depression, considering the
evidence presented above.

Exercise is a promising behavioral adjuvant treatment to lower arousal in depression.
Chronic mind–body [65,66] exercise and aerobic exercise [67,68] have been shown to
improve HRV in patients with depression. Regular exercise increases HRV in healthy
individuals [69,70] and patients with CVD [71,72], as reviews and meta-analyses have
shown. We have recently demonstrated that chronic exercise has positive effects on sleep
in patients with depression [73]. However, acute bouts of physical activity might have
adverse effects. This is reflected in current sleep hygiene recommendations, which state that
exercise should not be performed after 2 pm, as this might increase arousal [74]. Findings
on the acute effect of moderate-intensity aerobic exercise on the subsequent night’s HRV
have been equivocal. While most trials did not detect a difference in nocturnal HRV [75–81],
one study found that moderate aerobic exercise decreased HRV [82]. To our knowledge,
there are no trials investigating the acute effects of a single bout of aerobic exercise on HRV
in depression. Moreover, we are not aware of any trial investigating the acute or chronic
effects of exercise on pre-sleep arousal. Hence, there is a gap in the literature concerning
arousal-reducing adjuvant therapies for patients with depression.

Considering the relevance of sleep for patients with depression outlined above, we
chose to study the effects of exercise on nocturnal arousal. Therefore, the primary aim of
this trial was to quantify the effect of a single bout of aerobic exercise on nocturnal arousal
measured by HRV during sleep in patients with depression. Secondary aims were to
investigate intervention effects on pre-sleep HRV and pre-sleep arousal. We hypothesized
that the intervention would significantly decrease (1) nocturnal, (2) pre-sleep HRV, and
(3) subjective pre-sleep arousal.

2. Methods

This study was a two-arm, parallel-group, randomized, controlled, outcome assessor-
blinded, superiority trial. We recruited patients within the psychosomatic in-patient
rehabilitation unit of the clinic OBERWAID in St. Gallen, Switzerland. The study was
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conducted in accordance with the Declaration of Helsinki [83], and the Ethics Committee
East Switzerland, St. Gallen, Switzerland approved the study protocol (EKOS 18/089).
We prospectively registered the trial in the clinicaltrial.gov registry on 17 September 2018
(NCT03673397). We published a detailed study protocol with the study’s rationale [84].
There were no amendments. Analysis of nocturnal HRV deviates from the published
protocol. We chose the method presented here because it allows for a more precise analysis
than hourly segments after falling asleep. We adhere to the CONsolidated Standards of
Reporting Trials (CONSORT) [85] and the Guidelines for Reporting Articles on Psychiatry
and Heart rate variability (GRAPH) [86] guidelines in this publication. The data underlying
this article are available in the Harvard Dataverse at https://doi.org/10.7910/DVN/
WASN36 and will be shared at reasonable request to the corresponding author. The focus
of this paper is on the secondary outcomes of HRV, while the primary outcome is presented
elsewhere [87].

2.1. Participants

We screened patients who were admitted to the in-patient psychosomatic rehabili-
tation unit of the clinic OBERWAID. We conducted the trial in the first five days of the
psychosomatic in-patient rehabilitation. The first author or another representative of the
clinic OBERWAID obtained written informed consent from all participants involved in
the study. Inclusion criteria were: (1) 18–65 years old and (2) a diagnosis of depression
(confirmed by experienced psychiatrists according to ICD-10). We applied the following
exclusion criteria: (1) regular use of hypnotic agents (patients were included if no hypnotic
agents were taken two weeks before study participation), (2) factors precluding exercise
testing or training according to the American College of Sports Medicine’s Guidelines
for Exercise Testing and Prescription [88], (3) use of beta-blockers (except carvedilol and
nebivolol), (4) use of opioids, (5) history of epilepsy, (6) restless legs syndrome (defined
by the validated cut-off in the restless legs syndrome screening questionnaire [89]), (7)
oxygen desaturation index ≥ 15 (indicative of at least moderate sleep apnea) in the baseline
polysomnography, and (8) BMI > 40. We provide a rationale for each criterion in our study
protocol [84].

2.2. Patient Characteristics

We implemented multiple assessments to characterize patients at baseline. We mea-
sured daytime blood pressure as the average of two consecutive measurements on the
non-dominant arm while seated after a 5 min resting period. We assessed somatic multi-
morbidity with a self-assessment and a physician-rated questionnaire. The Patient Health
Questionnaire Somatic Symptom Scale (PHQ-15) is a self-administered questionnaire mea-
suring the severity of somatic symptoms (e.g., back pain) within the previous four weeks.
It is composed of 15 items on a three-point Likert scale (0 = not bothered at all to 2 = bothered
a lot). This questionnaire covers 90% of physical complaints reported in outpatient set-
tings. Its validity has been demonstrated [90]. We used the Patient Health Questionnaire-9
(PHQ-9) to assess depressive symptom severity [91]. Nine items (e.g., “feeling down, de-
pressed or hopeless”) are scored on a four-point Likert scale (0 = not at all to 3 = nearly every
day). The validity of the cut-offs (mild to severe depression) have been demonstrated [91].
We measured anxiety using the Hospital Anxiety and Depression Scale (HADS) [92]. The
anxiety subscale contains seven items (e.g., “I get sudden feelings of panic.”), each on a
four-point Likert scale (e.g., 0 = not at all to 3 = most of the time). Diagnostic test accuracy and
other psychometric properties have been demonstrated [92,93]. We used the Pittsburgh
Sleep Quality Index (PSQI) to assess subjective sleep problems [94,95]. Subjective sleep
quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, the use
of sleeping medication, and daytime dysfunction are measured with 18 items. The cut-off
value of ≥ 5 has been shown to distinguish good from poor sleepers [96]. We assessed sleep
reactivity with the Ford Insomnia Response to Stress Test (FIRST) [97,98]. Sleep reactivity
is defined as the likelihood of sleep disturbances in response to stressful situations (e.g.,
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“How likely is it for you to have difficulty sleeping after an argument”). There are nine items on a
four-point Likert scale (1 = not very likely to 4 = very likely). Its reliability and validity have
been demonstrated [99]. Lastly, we administered the Dysfunctional Beliefs and Attitudes
about Sleep Scale (DBAS) [100]. The sixteen items (e.g., “I am worried that I may lose control
over my ability to sleep.”) are rated on a Likert scale (0 = strongly disagree to 10 = strongly
agree). The reliability and validity of this questionnaire has been demonstrated [100].

We defined the intensity of the intervention based on the individual anaerobic thresh-
old. Consequently, all patients performed a submaximal graded exercise test on a bicycle
ergometer (ergoselect 200, Ergoline, Bitz, Germany) before randomization. We determined
the anaerobic threshold according to the method of Dickhuth et al. [101] using a specialized
software program (Ergonizer, Freiburg, Germany). A detailed description of the graded
exercise testing can be found in the study protocol [84].

2.3. Randomization

We randomized patients once eligibility was confirmed through baseline polysomnog-
raphy. We used a nondeterministic unweighted minimization algorithm [102] with a
random element of 0.8. The allocation ratio was 1:1. We selected sex, age, depression
severity (PHQ-9 score), and subjective sleep quality (PSQI score) as minimization factors.
We wanted to ensure the baseline balance of these factors because they are potentially asso-
ciated with insomnia symptoms or moderate the effects of exercise interventions [103–105].
Our allocation concealment consisted of four steps: (1) requesting randomization after
baseline measurement, (2) using a random element, (3) requesting randomization by four
different study nurses, and (4) not disclosing the full details of minimization to study nurses,
in accordance with the Standard Protocol Items Recommendations for Interventional Trials
(SPIRIT) guideline [106].

2.4. Graded Exercise Test, Intervention, and Control

The intervention consisted of a single session of supervised moderate-intensity aerobic
exercise on a bicycle ergometer (ergoselect 200, Ergoline, Bitz, Germany). The warm-
up period lasted five minutes, with a linear increase from 50% to target intensity. We
defined target intensity as 80% of the individual anaerobic threshold (defined by graded
exercise testing), i.e., moderate intensity. The duration of the exercise intervention was
30 min. Thereby, the intervention corresponds to the minimum daily physical activity
recommendation [107]. We recorded perceived exertion in the 5th, 15th, and 30th minute
as well as the average Watt and heart rate (Polar® H7 chest strap, Polar OY, Finland)
throughout the intervention. Patients allocated to the control group sat and read magazines
when the intervention group was exercising. The exercise and control conditions started at
approximately 16:45.

We implemented several procedures to limit the risk of performance bias. Patients
were instructed to refrain from moderate or vigorous exercise on the days of the submax-
imal exercise test, as well as before and after the polysomnographies. In addition, we
assessed contamination through other physical activity with accelerometers. All patients
wore a validated [108] (vivofit®2, Garmin, Schaffhausen, Switzerland) accelerometer on
their non-dominant wrist on the days before and after the polysomnographies. Lastly,
the therapy schedule and rules (e.g., timing of meals, consumption of alcohol) of the in-
patient rehabilitation clinic limited the variability of many behavioral aspects and ancillary
treatments which could influence sleep.

2.5. Baseline and Follow-Up Assessments

Outcome assessments at baseline and follow-up were repeated in an identical fashion.
Since we could not blind participants in exercise trials, we used objective and subjective
measurements to assess arousal.



J. Clin. Med. 2021, 10, 4028 5 of 19

2.5.1. Polysomnography and Heart Rate Variability

We performed polysomnography with the SOMNOscreen™ plus RC (Somnomedics,
Randersacker, Germany) using the following montage: one EEG channel (Fp2-A1, 512 Hz),
two EOG channels (1 cm below and 1 cm lateral of the outer right canthus as well as 1 cm
above and 1 cm lateral of the outer left outer canthus, 512 Hz), one EMG channel (Chin1–
Chin2, 512 Hz), one ECG channel (below the midpoint of the right clavicle and below the
left breast crease, in line with the midpoint of the left clavicle, 512 Hz), a thoracic respiratory
effort channel (inductance plethysmography belt, 32 Hz), finger photoplethysmography
(non-dominant arm, 128 Hz), body position (stored every 30 s), movement (32 Hz), and
ambient light (stored every 30 s). Two trained scorers rated sleep stages independently
according to the American Association of Sleep Medicine guidelines [109]. Both scorers
demonstrated good agreement with the gold standard ratings in the AASM inter-scorer
program [110]. Scorers were blinded against allocation, time point, and each other’s ratings.
Participants were instructed to lay in bed for at least five more minutes after they woke up.

ECG pre-processing and HRV analysis was carried out while being blinded against
allocation and time point using Kubios HRV (Version 3.4.2) (University of Eastern Finland,
Kuopio, Finland) [111]. The validity of Kubios HRV has been demonstrated [112]. QRS
detection was based on the Pan-Tompkins algorithm [113], including bandpass filtering.
Artifacts were identified using a validated algorithm [114]. We visually inspected beat
detection, manually adding missed beats when necessary. Ectopic beats were replaced
by phantom beats using cubic spline interpolated RR values. Detrending was performed
using the smoothness priors approach (λ = 500, fc = 0.035 Hz) [115]. We computed power
spectral density using Lomb–Scargle periodogram (LSP) [116,117] with a moving aver-
age filter (width 0.02 Hz). We chose LSP instead of Fast Fourier Transformation (FFT)
and autoregressive modeling (AR) for multiple reasons. FFT and AR require resampling
(thereby introducing bias [118,119]) and a trade-off between frequency resolution and
time resolution [120,121]. LSP, however, makes no assumptions of models, is more ac-
curate [122–124], is less noisy [125], has higher reliability [126], and is more sensitive to
physiological changes [125–127] compared to FFT. Based on the aforementioned specifica-
tions, we report low-frequency power (LF, 0.04–0.15 Hz [ms2]), high-frequency power (HF,
0.15–0.4 Hz [ms2]), and the LF/HF ratio [128]. Time-domain parameters include the heart
rate, the root mean square of successive differences of normal-to-normal intervals (RMSSD),
and the standard deviation of all normal-to-normal intervals (SDNN). Although there is an
ongoing debate about the physiological correlates of some HRV variables, RMSSD and HF
are generally accepted to be measures of vagal modulation [129,130].

We assessed HRV (1) during the last 5 min segment before the first epoch of any sleep
stage, (2) during the sleep period (i.e., from the first to the last episode of any sleep stage),
and (3) during each sleep stage. The methodological details and the rationale for this choice
are presented in Table S1. We excluded any 5 min segment from the analysis which had
either ≥5% artifacts or in which the patient was upright. Correction for heart rate was
not necessary, since the heart rate did not differ between both groups in any of the HRV
analyses. Sleep period RMSSD was the primary HRV marker of interest, since it has a clear
physiological interpretation in the context of arousal (i.e., vagal tone).

2.5.2. Pre-Sleep Arousal

We asked participants to complete the Pre-Sleep Arousal Scale [131] upon awakening
from baseline and follow-up nights. The Pre-Sleep Arousal Scale assesses cognitive (eight
items) and somatic (seven items) pre-sleep arousal symptoms. Patients rate how intensely
they experienced each of the symptoms as they attempted to fall asleep. All 15 items (e.g.,
“a jittery, nervous feeling in your body”) are scored on a five-point Likert scale (1 = not at
all to 5 = extremely) and summed up for each factor separately [131,132].
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2.6. Statistical Methods

We examined whether there was a first-night effect in the control group. Since we
found no first-night effect, we included baseline and follow-up measures in the analysis
using an ANCOVA model [133]. We used baseline outcome and minimization factors [134]
as covariates, allocation as the independent variable, and follow-up outcome as the depen-
dent variable. We checked all statistical prerequisites. We computed robust standard errors
in the case of heteroscedastic residuals (using HC3) [135]. Predefined sensitivity analyses
for the primary outcome of interest (i.e., follow-up RMSSD) were performed to gauge
the influence of several factors: influential data points, smoking status, as well as use of
beta-blockers, any class of antidepressants, and tricyclic antidepressants. We used multiple
imputation with predictive mean matching to replace missing values [136] and conducted
intent-to-treat analyses. The missing completely at random assumption was met using
Little’s test [137]. All analyses were performed using the software R, version 3.6.3 [138].

Sample size calculation was based on another outcome (i.e., sleep efficiency, see study
protocol [84] for comprehensive details). We did not perform an a priori or post hoc sample
size calculation for secondary outcomes.

3. Results

We screened 448 patients between September 2018 and January 2020. We randomized
92 patients to either the aerobic exercise intervention (N = 46) or the control condition
(N = 46), as shown in Figure 1. Reasons for data loss included dropouts (N = 2 in each
group), ECG measurement failure (N = 3 in the intervention arm), and a patient who
removed the polysomnographic equipment during the night (N = 1 in the control group).
We excluded multiple patients due to ECG abnormalities (N = 5 and N = 4 in intervention
and control arm, respectively). This resulted in N = 36 and N = 39 complete ECG datasets
(i.e., baseline and follow up) for the intervention and control arm, respectively. During
the sleep period (sleep onset until the last awakening), the average amount of corrected
beats was 0.34% (range: 0.02–2.13%). Baseline characteristics of the study sample are
presented in Table 1. As reported previously for this study [87], the inter-rater reliability of
polysomnographic scoring was good, and the daily steps during the trial as well as the rate
and intensity of adverse events did not differ between the groups.

3.1. Sleep Period

There was no evidence that heart rate differed between the groups during the sleep
period (β = −0.43, 95% CI: −1.44–0.58, p = 0.40). The intent-to-treat analysis ANCOVA of
follow-up RMSSD, adjusted for pre-intervention levels and minimization factors, did not
detect a significant effect of the allocation during the sleep period (see Table 2 and Figure 2).
The difference between the mean change scores (baseline to follow up) of both groups
corresponds to the coefficient for allocation (see Table 2). This finding was confirmed in all
pre-specified sensitivity analyses (i.e., only using complete data, excluding patients who
smoked, used either beta-blockers, any antidepressant, or only tricyclic antidepressants).
We identified one influential data point using Cook’s distance and DFBETAs, but excluding
this data point did also not alter the finding.
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Table 1. Baseline characteristics.

Intervention Group (N = 46) Control Group (N = 46)

Age 46 (37, 53) 48 (43, 51)

Sex female 32 (70) 33 (72)

male 14 (30) 13 (28)

BMI 25.0 (21.8, 29.2) 24.4 (22.2, 27.7)

Systolic blood pressure (mmHg) 121 (115, 131) 121 (112, 134)

Diastolic blood pressure (mmHg) 80 (74, 88) 81 (72, 87)

Smoking

never smoked 26 (57) 24 (52)

stopped smoking
since ≥12 months 8 (17) 10 (22)

currently smoking or
stopped since <12

months
12 (26) 12 (26)
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Table 1. Cont.

Intervention Group (N = 46) Control Group (N = 46)

Alcohol

less than 1 day/week 5 (15) 6 (18)

1–2 days/week 14 (41) 6 (18)

3–6 days/week 7 (21) 12 (37)

daily 8 (23) 9 (27)

PHQ15 12.5 (8.3, 15.8) 12.5 (8.0, 14.0)

PHQ9 14.0 (12.0, 17.0) 15.0 (12.0, 17.0)

HADS anxiety 11.0 (9.3, 14.0) 11.5 (9.0, 14.0)

Antidepressant medication 19 (41) 21 (50)

DBAS 4.6 (3.6, 5.7) 4.8 (3.8, 5.4)

FIRST 27.0 (24.0, 29.8) 27.5 (21.3, 29.8)

PSQI 10.0 (7.00, 13.8) 9.5 (6.3, 12.0)

Sleep efficiency a 91.3 (84.4, 93.5) 88.8 (82.5, 94.0)

Total sleep time a 439.0 (393.3, 479.5) 416.7 (382.3, 463.1)

Sleep onset latency a 14.0 (5.5, 23.3) 14.5 (6.8, 27.2)

Wake after sleep onset a 30.8 (18.0, 43.3) 37.8 (19.1, 62.6)

Number of awakenings a 17.0 (13.5, 23.5) 15.8 (11.4, 20.8)

RMSSD 32.1 (20.7, 49.0) 34.4 (24.5, 51.4)

SDNN 37.8 (27.2, 55.0) 34.7 (29.5, 52.6)

LF (ms2) 858 (474, 1659) 780 (436, 1852)

HF (ms2) 382 (159, 925) 410 (253, 810)

Somatic pre-sleep arousal 10.0 (9.0, 12.8) 12.0 (9.0, 15.0)

Cognitive pre-sleep arousal 15.0 (13.3, 18.0) 15.0 (11.0, 20.0)
Note: Continuous variables are presented as medians with interquartile ranges (median (Q1, Q2)) and categorical
variables are presented as absolute numbers and percentages (N (%)). a measured polysomnographically.
Abbreviations: BMI = body mass index; PHQ15 = Patient Health Questionnaire 15; PHQ9 = Patient Health
Questionnaire 9; HADS anxiety: Hospital Anxiety and Depression, anxiety subscale; DBAS = Dysfunctional
Beliefs and Attitudes about Sleep Scale; FIRST = Ford Insomnia Response to Stress Test; PSQI = Pittsburgh Sleep
Quality Index; RMSSD = root mean square of successive differences between normal heartbeats; SDNN = standard
deviation of normal-to-normal RR intervals; LF = low-frequency power (0.04–0.15 Hz (ms2)); HF = high-frequency
power (0.15–0.4 Hz (ms2)).

Table 2. ANCOVA table for intent-to-treat analysis of RMSSD during sleep period at follow-up.

Term Estimate (β) Standard Error (β) 95% Confidence Interval p-Value

Intercept 6.78 6.03 −5.42 18.98 0.27

Baseline RMSSD 0.93 0.04 0.84 0.84 0.001

Age −0.10 0.10 −0.30 0.10 0.61

Sex (male a) 1.21 1.70 −2.22 4.64 0.48

PHQ9 0.08 0.17 −0.26 0.42 0.64

PSQI −0.16 0.18 −0.51 0.19 0.37

Allocation
(exercise b) 0.12 1.53 −2.98 3.22 0.94

Note: age, sex, PHQ9, and PSQI were entered as covariates because they were used as minimization factors.
Abbreviations: RMSSD = root mean square of successive differences between normal heartbeats; PHQ9: Patient
Health Questionnaire 9; PSQI: Pittsburgh Sleep Quality Index. a Sex was coded as follows: 1 = male, 2 = female.
b Exercise was coded as follows: 1 = control, 2 = exercise.
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Figure 2. Baseline and follow-up RMSSD by allocation.

There was no evidence that any of the other HRV outcomes were affected through the
intervention during the sleep period (see Table 3). Sensitivity analyses based on complete
data only, excluding patients who smoked, used either beta-blockers, any antidepressant,
or only tricyclic antidepressants, also confirmed these results.

Table 3. Coefficients of exercise allocation in intent-to-treat analysis ANCOVA models predicting HRV outcomes during
sleep period.

Outcome Estimate for Exercise Allocation a (β) Standard Error (β) 95% Confidence Interval p-Value

SDNN −0.27 1.78 −4.08 3.53 0.88

LF −130 260 −791 531 0.64

HF 16 75 −135 167 0.83

LF/HF-ratio −0.17 0.34 −0.85 0.51 0.62

Note: All models used baseline values of the outcome as well as minimization factors (sex, age, PHQ9 score, and PSQI score) as covariates
and allocation as the independent variable. The coefficient for allocation is the difference of the mean change score in the exercise group
compared to the control group. Abbreviations: SDNN = standard deviation of normal-to-normal RR intervals; LF = low-frequency power
(0.04–0.15 Hz (ms2)); HF = high-frequency power (0.15–0.4 Hz (ms2)). a Allocation was coded as follows: 1 = control, 2 = exercise.

3.2. Sleep Stages

We found no evidence that heart rate differed during any sleep stage (N2: β = −0.70,
95% CI: −2.26–0.85, p = 0.37; N3: β = −0.21, 95% CI: −2.64–2.22, p = 0.86; non-REM:
β = −0.40, 95% CI: −1.71–0.91, p = 0.54; REM: β = −0.40, 95% CI: −2.47–1.67, p = 0.70).
There was no evidence that the aerobic exercise intervention affected RMSSD during stage
two or stage three sleep, nor during REM or non-REM sleep (see Table 4). Since most
patients did not have an uninterrupted 10 min segment of N1 sleep on both nights needed
for this analysis, we could not perform the analysis for this stage of sleep.
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Table 4. Coefficients of exercise allocation in intent-to-treat ANCOVA models predicting RMSSD outcomes during different
sleep stages.

Sleep Stage Estimate for Exercise Allocation a (β) Standard Error (β) 95% Confidence Interval p-Value

N2 −0.69 4.75 −10.41 9.02 0.88

N3 −7.15 7.11 −23.10 8.81 0.34

non-REM 0.29 1.81 −3.32 3.90 0.87

REM −4.93 8.04 −22.42 12.55 0.55

Note: All models used baseline values of the outcome as well as minimization factors (sex, age, PHQ9 score, and PSQI score) as covariates
and allocation as the independent variable. The coefficient for allocation is the difference of the mean change score in the exercise group
compared to the control group. Abbreviations: N2 = stage two sleep, N3 = stage three sleep, REM = rapid eye movement sleep. a Allocation
was coded as follows: 1 = control, 2 = exercise.

3.3. Pre-Sleep

We had to exclude seven measurements (N = 4 at baseline, N = 3 at follow-up) in
addition to the missing data reported in Figure 1 from this analysis because these segments
either had ≥5% artifacts, the patient was upright, or the patient fell asleep within the
segment. We did not find any evidence that the intervention altered pre-sleep heart rate
(β = 0.53, 95% CI: −3.03–4.08, p = 0.77) or pre-sleep HRV (see Table 5).

Table 5. Coefficients of exercise allocation in intent-to-treat ANCOVA models predicting HRV outcomes during the
pre-sleep period.

Outcome Estimate for Exercise Allocation a (β) Standard Error (β) 95% Confidence Interval p-Value

RMSSD 0.21 2.61 −4.99 5.41 0.94

SDNN −1.00 2.58 −6.15 4.15 0.70

LF 34 155 −274 343 0.83

HF 100 130 −158 358 0.44

LF/HF-ratio 1.33 1.05 −0.76 3.43 0.21

Note: All models used baseline values of the outcome as well as minimization factors (sex, age, PHQ9 score, and PSQI score) as covariates
and allocation as the independent variable. The coefficient for allocation is the difference of the mean change score in the exercise
group compared to the control group. Abbreviations: RMSSD = root mean square of successive differences between normal heartbeats;
SDNN = standard deviation of normal-to-normal RR intervals; LF = low-frequency power (0.04–0.15 Hz (ms2)); HF = high-frequency
power (0.15–0.4 Hz (ms2)). a Allocation was coded as follows: 1 = control, 2 = exercise.

Cronbach’s α of the cognitive (baseline = 0.87; follow up = 0.90) and somatic
(baseline = 0.71; follow up = 0.78) pre-sleep arousal subscales were good. Intent-to-treat
ANCOVAs of follow-up pre-sleep arousal, adjusted for baseline levels and minimiza-
tion factors, also provided no evidence that the intervention altered somatic (β = −0.65,
95% CI: −2.04–0.74, p = 0.35) or cognitive (β = −0.15, 95% CI: −2.08–1.79, p = 0.88)
pre-sleep arousal.

4. Discussion

The primary goal of this trial was to quantify the effect of a single bout of 30 min
moderate aerobic exercise on arousal measured by HRV during sleep in patients with
depression. We did not find evidence that the intervention affected HRV during the sleep
period, nor in specific sleep stages. The absence of evidence was very robust. The findings
were confirmed across all outcome measures of HRV and in all of the sensitivity analyses.

To the best of our knowledge, this is the first trial to investigate the effects of a
single bout of aerobic exercise on arousal measured by HRV during sleep in patients
with depression. Trials in primarily young and healthy individuals have found mixed
results. There are diverging findings concerning the duration of an exercise intervention
on HRV in the subsequent night. Myllymäki et al. [139] found that an incremental bicycle
ergometer exercise until exhaustion lasting approximately 30 min did not alter HRV. This
was confirmed by another study, which showed that moderate-intensity aerobic exercise
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sessions lasting 30 or 60 min had no effect, while sessions of 90 min decreased nocturnal
HRV [75]. Trials concerning the effect of exercise intensity have also produced inconsistent
results. Except for one study [82], multiple [75–81] trials found no evidence that moderate-
intensity exercise altered HRV during the night. Five trials that directly compared moderate
and vigorous exercise intensities on nocturnal HRV found no difference [75–79], whereas
two trials found that high-intensity exercise reduced nocturnal HRV [80,81]. Another two
trials only comparing high-intensity exercise with a control condition also found that the
intervention reduced nocturnal HRV [79,140]. The effects of exercise timing during the
day are equally inconclusive. In healthy young males, exercising vigorously on three
consecutive days in the morning altered HRV (increasing LF and HF) outcomes during
sleep, but exercising in the evening did not have a discernable effect [141]. However,
Ramos-Campo et al. [77] found no evidence that morning or evening exercise affected HRV
during sleep in trained individuals. However, prolonged and intense exercise such as a
marathon [82] or a 75 km cross-country skiing race [142] have been shown to reduce HRV
during the following night. Many of these trials investigating the acute effects of exercise
on sleep were conducted with trained or healthy individuals. HRV in athletes tends to be
higher [143], whereas in patients with unipolar depression, HRV tends to be lower [30]
compared with healthy controls. This should be taken into account when interpreting these
results. Acute effects of aerobic exercise on HRV during sleep might depend on exercise
variables such as intensity, duration, volume, and timing during the day, as well as the
training status of study participants. Our results are in line with the findings presented
above, i.e., there is no evidence that a single moderate aerobic exercise session of 30 min
performed multiple hours before bedtime is a strong enough stimulus to alter HRV in the
subsequent night. All of these trials analyzed nocturnal HRV in fixed periods without
accounting for the different sleep phases.

We are aware of only one other trial which analyzed the acute effects of aerobic
exercise on HRV during different sleep phases. Yamanaka et al. [141] subjected healthy
young males to a 7-day dim light (<10 lux) protocol. Subjects performed vigorous-intensity
aerobic exercise during the morning or afternoon on three consecutive days for 90 min
each day (10 min of warming up, 45 min of exercise, 10 min of rest on a chair, 45 min of
exercise, and 10 min of cooling down). After three days, the morning group had higher
values in LF and HF during N1 and N2 as well as higher values in HF during N3. We
did not find any evidence that the intervention altered HRV during sleep stages N2 and
N3, as well as non-REM and REM sleep. However, sleep stage N1 could not be analyzed.
Possible reasons for theses diverging findings might be the dim light setting, the repeated
exercise stimulus over three days, and the specification of exercise variables (90 min at
vigorous intensity).

We did not find evidence that a single bout of moderate-intensity aerobic exercise
altered objectively or subjectively measured pre-sleep arousal. We did not detect an effect
of the intervention on any of the HRV indices measured in the last 5 min before the first
epoch of sleep. Furthermore, there is no evidence to suggest that the somatic or cognitive
pre-sleep arousal questionnaire subscales differed between the groups. This is the first trial
to investigate the effect of aerobic exercise on pre-sleep arousal in patients with depression
or any other group of participants, to the best of our knowledge.

Oda and Shirakawa [76] investigated the acute effects of aerobic exercise on ‘emotional
comfort’ before falling asleep—an outcome potentially similar to pre-sleep arousal. An
amount of 40 min of moderate or vigorous exercise (ending one hour before going to bed)
led to higher ‘emotional comfort’ compared to the control condition. Although the construct
of ‘emotional comfort’ might be related to pre-sleep arousal, these findings are not transfer-
able to clinical populations because the trial only included healthy participants. Theoretical
considerations and data from previous trials suggest that reducing pre-sleep arousal, as
measured by HRV, might be beneficial in people with insomnia symptoms. Guidelines
recommend cognitive behavioral therapy for insomnia as a first-line therapy [144], to,
amongst other effects, reduce pre-sleep arousal [145]. There is some evidence that biofeed-
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back interventions that reduce pre-sleep arousal positively affect cardiac autonomic control
during the night [146,147] and objectively measured sleep quality [147,148].

These findings have implications for clinical practice and research. While our results
do not suggest that a single session of moderate-intensity aerobic exercise ameliorates
nocturnal HRV, they are in line with previous studies which failed to detect a negative effect
on nocturnal HRV. This contradicts the current sleep hygiene recommendations [74]. These
recommendations state that rigorous exercise might release endorphins, thereby hindering
sleep onset [74]. The evidence from our study suggests that moderate-intensity aerobic
exercise after 2 pm can be cautiously recommended as far as autonomic, cognitive, and
somatic arousal are concerned. Moreover, previous trials in healthy individuals found no
adverse effects on sleep from an acute exercise bout in the evening [149]. Considering that
arousal might be a common pathophysiological mechanism in insomnia and depression
and the paucity of literature concerning interventions that can reduce arousal, future
studies are needed. Such trials should try to identify interventions that can reduce arousal,
e.g., biofeedback or mindfulness-based stress reduction. Trials specifically investigating
exercise should focus on the effect that intensity, duration, and timing have on HRV or
other measures of arousal. More broadly, HRV has been recognized as an index of self-
regulation [150] and as a transdiagnostic biomarker of psychopathology [151]. Hence, in
future studies, it would be interesting to study the effects of exercise on HRV in the context
of self-regulation and interoception [152].

This study has several strengths and limitations. The risk of bias was limited through
multiple procedures: allocating patients using minimization with appropriate allocation
concealment (selection bias), blinding outcome assessors during polysomnography rating
and HRV data analysis (detection bias), avoiding contamination through other physical
activity and extraneous factors (performance bias), and using intent-to-treat analysis (attri-
tion bias). However, the external validity of this trial might be limited by two factors: the
exclusion of patients who used hypnotics (although this increases internal validity) and the
relatively normal levels of polysomnographically measured sleep variables (see Table 1).
Both these factors may not be representative of typical patients with depression. The a
priori sample size calculation for this study was not calculated for sleep period RMSSD,
but for another outcome which we have reported elsewhere [87]. Lastly, the menstrual
cycle was not considered as a potentially confounding variable. However, it seems unlikely
that this factor has influenced the results since the duration of the trial was very short
(i.e., measurements were conducted on two consecutive nights) and the statistical analyses
adjusted for baseline values. However, we cannot definitively exclude the possibility that
the menstrual cycle may have influenced susceptibility to exercise-induced HRV changes.

5. Conclusions

We found no evidence that a single 30 min bout of moderate-intensity aerobic exercise
affected pre-sleep or nocturnal arousal reflected by indices of HRV. Our findings need to be
interpreted cautiously, considering that this is the first trial of this nature in patients with
depression. The evidence base remains insufficient to explicitly recommend exercising
in the late afternoon or evening hours to ameliorate sleep. Non-inferiority trials and
studies investigating the interplay of exercise intensity, duration, and timing, with patient
characteristics (e.g., chronotype) are needed. This would further our understanding,
allowing for the formulation of personalized exercise prescriptions.
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