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ABSTRACT
Recently, there has been a remarkable increase in rice production owing to genetic improvement 
and increase in application of synthetic fertilizers. For sustainable agriculture, there is dire need to 
maintain a balance between profitability and input cost. To meet the steady growing demands of 
the farming community, researchers are utilizing all available resources to identify nutrient use 
efficient germplasm, but with very little success. Therefore, it is essential to understand the under-
lying genetic mechanism controlling nutrients efficiency, with the nitrogen use efficiency (NUE) 
being the most important trait. Information regarding genetic factors controlling nitrogen (N) 
transporters, assimilators, and remobilizers can help to identify candidate germplasms via high- 
throughput technologies. Large-scale field trials have provided morphological, physiological, and 
biochemical trait data for the detection of genomic regions controlling NUE. The functional aspects 
of these attributes are time-consuming, costly, labor-intensive, and less accurate. Therefore, the 
application of novel plant breeding techniques (NPBTs) with context to genome engineering has 
opened new avenues of research for crop improvement programs. Most recently, genome editing 
technologies (GETs) have undergone enormous development with various versions from Cas9, 
Cpf1, base, and prime editing. These GETs have been vigorously adapted in plant sciences for novel 
trait development to insure food quantity and quality. Base editing has been successfully applied to 
improve NUE in rice, demonstrating the potential of GETs to develop germplasms with improved 
resource use efficiency. NPBTs continue to face regulatory setbacks in some countries due to 
genome editing being categorized in the same category as genetically modified (GM) crops. 
Therefore, it is essential to involve all stakeholders in a detailed discussion on NPBTs and to 
formulate uniform policies tackling biosafety, social, ethical, and environmental concerns. In the 
current review, we have discussed the genetic mechanism of NUE and NPBTs for crop improvement 
programs with proof of concepts, transgenic and GET application for the development of NUE 
germplasms, and regulatory aspects of genome edited crops with future directions considering 
NUE.
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1 Introduction
Over the last three decades, global rice production 
has increased by three fold despite the increases in 
rice production constraints and input costs. Rice 
ensures food and nutritional security to more than 
half of the world’s population.1 As such, rice 
demands a great effort for the development of high- 
yield, nutritious, climate-resilient, and resource 
use-efficient varieties to meet the caloric demands 

of the ever-increasing human population.2 Rice 
production increased remarkably during and after 
the green revolution period due to the development 
of high input-responsive rice germplasm. However, 
the improved germplasm requires more synthetic 
fertilizers, pesticides, and a frequent supply of irri-
gation water. Nitrogen (N) is an integral nutrient 
for plant growth and development.3 N is primarily 
found in photosynthetic metabolites, proteins, and 
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nucleic acids and plays a key role in metabolic and 
growth-related activities.4,5 Cultural and agro-
nomic management practices can help to achieve 
efficient utilization of N fertilizers. The nitrogen use 
efficiency (NUE) of several agronomically impor-
tant crops is of great interest for academia and 
research. NUE is based on the economic benefit 
from per unit application of N fertilizer. Several 
researchers have suggested definitions for NUE; 

however, it has been unanimously accepted that 
NUE is the result of N uptake efficiency (NUpE) 
and N utilization efficiency (NUtE).6–8 Improving 
NUE enhances crop economics i.e., grain quality, 
yield, and biomass.9 10 N is primarily applied as 
synthetic fertilizer while a smaller portion is con-
tributed by grain legumes from N fixation.

Plants uptake N through their roots in the form 
of nitrate (NO3

−) or ammonium (NH4
+) and it is 

Figure 1. Illustration explaining various traits essential for the identification of NUE genotypes and different OMICS for the functional 
characterization of genes controlling NUE in rice.
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actively utilized to complete metabolic processes.11 

Being mobile in nature, N losses from soil are 
greater than any other element; moreover, crop 
species differ in their N uptake ability. Despite the 
positive influence of N on yield and yield related 
components, plants can only uptake 30–50% of the 
supplied N depending on the soil type, environ-
mental condition, and plant population.9 N loss 
from soil is caused by volatilization, denitrification, 
and leaching, ultimately polluting the air and 
water12–14 while simultaneously increasing the 
cost of production.15 It has recently been reported 
that 24–39% of wheat, rice, soybean, and maize 
production areas have demonstrated stagnation or 
collapse of yield.13,16 Therefore, it is crucial to opti-
mize N fertilizer application or improve crop NUE 
to achieve high production while also reducing 
environmental pollution and production cost. 
Several studies have developed germplasms with 
improved NUE through classical plant breeding, 
molecular techniques, and genetic engineering 
methods.17 Moreover, genetic engineering 
approaches have not yet been extensively adopted 
compared to traditional breeding techniques for the 
development of germplasm with improved NUE.15 

Identifying NUE rice genotypes requires a detailed 
survey of different morphological, physiological, 
and biochemical traits, along with functional 
genetic studies based on various -omics 
approaches18 (Fig. 1).

Genome-editing technology (GET) is a reliable, 
cost-effective, and versatile approach that has been 
widely adopted by plant science researchers. The 
associated efficiency in generating genetic modifi-
cations for desirable phenotypes has opened new 
avenues of research.19 However, traditional plant 
breeding tools and classical GETs have been unable 
to meet the demands of high precision, efficiency, 
and timeliness, leading researchers to adapt novel 
plant breeding techniques (NPBTs). These NPBTs 
include clustered regularly interspaced short palin-
dromic repeats and CRISPR-associated protein 
(CRISPR/Cas), CRISPR-CRISPR from Prevotella 
and Francisella 1 (Cpf1), base editing (BE), and 
prime editing (PE), and have proven to be powerful 
tools for successfully modifying genomic sequences 
in a simple and precise manner.20 The use of these 
GETs gas been reported in several crop plants 
where desirable phenotypes were successfully 

obtained. Moreover, NPBTs have enabled the pro-
duction of transgene-free plants that are categor-
ized as non-genetically modified (GM) crops. The 
transgene-free plants do not contain exogenous 
genes and therefore escape the strict regulatory 
framework of GM crops. The extraordinary 
NPBTs with reference to GETs are now available 
and can be utilized for various crop improvement 
programs to ensure food and nutritional security 
for the ever-increasing human population. 
Acknowledging the importance of NUE and recent 
developments in NPBTs, we provide a non- 
comprehensive review highlighting the multiple 
factors influencing NUE and explore how genetic 
understanding will improve our knowledge of the 
utility of genetic factors to enhance NUE through 
various GETs, with a focus on how these GETs can 
be applied to modify genes to improve NUE in rice. 
Moreover, detailed information has been provide 
on the regulatory policies for genome edited crops 
around the world and future directions with per-
spective to NUE.

2 Genetics Mechanism for NUE

Advances in marker-assisted selection, biotechno-
logical tools, and genomics have helped to reveal 
that NUE is multigenic in nature. Genomic regions 
associated with NUE have been investigated in 
Arabidopsis, rice, maize, and wheat.21–23 The agro-
nomic attributes, namely grain weight, yield, pro-
tein content, and NUE characteristics, namely 
N harvest index, grain N content, and 
N remobilization, are considered to be indicators 
for NUE in plants. In rice, four quantitative trait 
loci (QTLs) responsible for grain N content have 
been identified, with two being for shoot N content 
on chromosomes 8, 9, and 10 under both low and 
normal N levels. Similarly, two QTLs controlling 
harvest index and one QTL for physiological NUE 
on chromosomes 5 and 7 were identified, respec-
tively. In wheat, major QTLs for root NUE, shoot 
dry weight, and grain yield have been identified.24 

Moreover, in barley fifteen QTLs influencing NUE 
have been identified.25 The results of studies per-
formed on different crops are challenging to inter-
pret and inconsistent, ultimately requiring larger 
plant populations, the existence of genetic diversity, 
and conducting multiple trials across growing 
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seasons.2 Moreover, the identified QTLs must be 
functionally characterized to understand their key 
roles associated with NUE. The genetic mechan-
isms of N transporters, assimilators, and remobili-
zers are discussed in detail below.

2.1 Genetic Mechanisms of N Transporters

N in soil is typically available in the form of NO3
− 

under aerobic conditions or as NH4
+ in a flooded 

situation. Mechanistically, these two forms (NO3
−ˍ 

and NH4
+) are uptaken from the soil by specialized 

N transporters involving two physiological phenom-
ena, namely the high-affinity transport system 
(HATS) and low-affinity transport system (LATS). 
HATS works under low N concentrations (<250 μM) 
by employing Nitrate Transporter 2 (NRT2) and 
Ammonium Transporter 1 (AMT1) for the uptake of 
NO3

− and NH4
+, respectively. Whereas, under the 

LATS system, NPF (NRT1/PTR) works under ele-
vated N concentrations (>250 μM) to uptake NO3

− 

and NH4
+.26,27 In rice, ammonium transporters 

(AMT) grouped into four subgroups from 
OsAMT1 to OsAMT4 among three AMT from 
OsAMT1 involved in high-affinity transport, and 
seven members of OsAMT2, OsAMT3, and 
OsAMT4 act as low-affinity NH4

+ transporters.28 

AMT transporter proteins are reportedly more effec-
tive in improving NUE than nitrate transporters for 
ammonium-preferring rice cultivars. Given that 
NO3

− uptake in rice is much lower than NH4
+, 

results have suggested that NO3
− and NH4

+ efficient 
uptake has the potential to increase NUE along with 
the improving rice grain production.15 In the root 
zone of rice, ammonium oxidation involves root 
aerenchyma, thus releasing oxygen which leads to 
the formation of NO3

− which is then taken up by 
plants.29 Nitrate transporter1/peptide transporter 
(NRT1/PTR) family genes are recognized as the 
main transporters for nitrate, amino acids, peptides, 
glucosinolates, indole-3-acetic acid, abscisic acid, 
etc.27 Genes from this family regulate the transport 
and allocation of NO3

− within the plant body 
organs30,31 The NRT1 and NRT2 gene families are 
known as the main regulators of low and high affi-
nity transporters in low nitrate environments.32 

Over 80 genes have been identified in the NRT1 
and NRT2 families, but only a select few have were 
found to belong to the NRT1 family.33,34

22 Genetic Mechanisms of N Assimilation

The NH4
+ incorporation into plant cells is reduced 

to nitrite by the nitrate reductase enzyme in the 
cytosol.35 From there, nitrite is translocated to the 
plastids and chloroplasts where it is then converted 
to ammonium by the nitrite reductase (NiR) 
enzyme. This ammonium derived from nitrate, or 
that produced by photorespiration or amino acid 
recycling, is generally assimilated in the plastids by 
the glutamate synthase (GS/GOGAT) cycle.10 GS/ 
GOGAT, a vital enzyme for N assimilation and 
remobilization, has two isoforms, namely GS1, 
which is responsible for primary ammonium 
assimilation in roots or re-assimilation of ammo-
nium in leaves, and GS2, which regulates ammo-
nium assimilation in chloroplasts. Among the three 
GS members in rice, OsGS1.1 and OsGS1.2 are 
reportedly expressed in all organs and a reciprocal 
response to ammonium supply in the rice roots has 
been observed. GOGAT is divided into two types, 
which differ in their electron donor specificity, 
namely ferredoxin-dependent (Fd-GOGAT) and 
NADH-dependent (NADH-GOGAT). Among 
these, one ferredoxin and two NADH-dependent 
enzymes have been identified in rice plants.36 To 
increase the overall NUE of a crop plant, it is 
essential to increase the N assimilation efficiency. 
In addition to improvements in N assimilation, 
carbon (C) assimilation is also a critical factor 
involving several enzymes; therefore, detecting 
enzyme activity is essential for the development of 
rice varieties with high NUE.37

2.3 Genetic Mechanisms of N Remobilization

N remobilization is an important process that 
involves the translocation of N from old senescing 
plant parts to younger parts during a vegetative 
stage or into storage organs during the reproductive 
stage.38 Although N remobilization is comprised of 
various metabolic events, it is a vital process to 
enhance NUE in crop plants.10 In cereal crops, 
a major contribution of the grain N comes from 
remobilized N from vegetative organs, and generally 
this contribution ranges 60–92% depending upon 
the rate of N remobilization and total 
N remobilization efficiency. Seed N content is 
important for proper germination and subsequent 
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germinated seedling growth and establishment. 
Coordination between N remobilization and senes-
cence-induced protein degradation is required to 
improve N remobilization efficiency because the 
onset of senescence triggers the translocation of 
N to reproductive organs. In rice plants, 
N translocation from senescing organs accounts 
for 80% of N in the rice panicle. GS and GOGAT 
enzymes are known to regulate this N translocation 
to reproductive organs.36 GS1.1 and NADH- 
GOGAT1 play an important role during the 

N remobilization process.36 Studies have shown 
that delayed leaf senescence increases grain yields 
due to an extended photosynthesis duration which 
contributes more photosynthates to the final grain 
yields; however, this elongation reduces the rate of 
N remobilization and subsequently grain 
N content.10 Several genomics studies and QTL 
analyses have highlighted GS involvement in 
N remobilization efficiency in various crops.39 

Moreover, Fig. 2 shows several genes/gene families 
that play key roles in controlling components of 

Figure 2. Genes/Gene families involved in plant NUE (modified from.31,40

Table 1. A list of genes available in rice genome controlling NUE.
Gene Function Source Reference

NRT1.1 [NPF 6.3,CHL1) Nitrate transporter Oryza sativa L. 41

NRT2.1 Nitrate transporter Oryza sativa L. 42

NRT3.1 [NAR2.1] Nitrate transport component Oryza sativa L. 43

AMT1.1 Ammonium transporter Oryza sativa L. 44

GS1 Glutamine synthetase [cytosolic] Oryza sativa L. 45

GS2 Glutamine synthetase [plastidic] Oryza sativa L. 46

GOGAT Glutamate synthase Oryza sativa L. 47

AlaAT Aminotransferase Oryza sativa L. 48

ENOD93–1 Early nodulin Oryza sativa L. 49

OsGOGAT1, OsAMT1 Increase NUpE in low N conditions Oryza sativa L. 50

glnA Grain yield in high, moderate and low N conditions Oryza sativa L. 51

ASN1 N content in grains Oryza sativa L. 52

SHMT1 Photosynthesis and grain number per panicle Oryza sativa L. 53

AAP1 Tiller number and grain yield Oryza sativa L. 54

AAP3 Tiller number and grain yield Oryza sativa L. 55

AAP5 Tiller number and grain yield Oryza sativa L. 56

AAP6 Amino acid uptake from roots, Amino acid transport 
and grain protein content

Oryza sativa L. 57

Pup1/OsPupK46 2/PSTOL1 Tissue P concentration and relative tiller 
number

Oryza sativa L. 58

qNGR9/DEP1 Plant height response to N Oryza sativa L. 59

TOND1 Relative plant dry weight under N-deficient 
to N-sufficient conditions

Oryza sativa L. 60

qNGR2/GRF4 Ammonium uptake Oryza sativa L. 61

DRO1 N uptake and leaf N concentration after heading Oryza sativa L. 62

MADS25 Increase the expressions of NO3 
– transporter genes Oryza sativa L. 63

DEP1 Ammonium uptake and assimilation Oryza sativa L. 59

NAP NAC transcription factor positively regulating leaf senescence Oryza sativa L. 64
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NUE, such as N remobilization, transporters, 
uptake, and assimilation, which may prove to be 
valuable targets for GETs. Moreover, a list of genes 
available in rice genome has controlling NUE been 
given in Table 1. Few genes enlisted in Table 1 have 
been studied through transgenic approaches how-
ever, there is need to utilize NPBTs to achieve 
precision.

3 NPBTs for Targeted Mutagenesis

NPBTs enable plant scientists to make precise mod-
ifications to the genome. Classical GETs induce 
double-strand breaks (DSBs) at a particular geno-
mic location and harnesses non-homologous end 
joining (NHEJ) and homology-directed repair 
(HDR) pathways for repair. However, the BE and 
PE system does not require DSBs for genetic 
manipulation. These both system holds ability to 
generated single base pair mutation with more pre-
cision. NPBTs are paving the way for further devel-
opments to modify the genome for broader 
objectives, especially for food and nutritional 
security.

3.1 CRISPR/Cas9 Genome Editing System

GETs have revolutionized the field of genetic 
through efficient and precise manipulation of 
genomic DNA.65 The GETs categorized into first 
generation i.e., meganucleases, zinc finger 
nucleases (ZFNs), second generation transcription 
activator like effector nucleases (TALENs) and 
third generation includes CRISPR (clustered reg-
ulatory interspaced short palindromic repeats)/ 
Cas9 (CRISPR-associated proteins) and related 
CRISPR/Cas systems.66 In comparison to other 
GETs, CRISPR/Cas9 system is widely exploited 
by researchers owing to efficient, accurate, easy 
in handling and cost effective.67 The Cas9 system 
requires short guide sequence (sgRNA) to direct 
Cas9 nuclease to cleave the target site.68 The Cas9 
holds ability to cleave the double stranded DNA 
target site complementary to sgRNA and success-
fully deployed various living backgrounds e.g., 
bacteria,69 eukaryotic cells,70 animal cells, mam-
malian system71,72 and plants.73,74

32 CRISPR/Cpf1 Genome Editing System

The CRISPR system from Prevotella and Francisella1 
is known as Cpf1, heretofore Cas12a. The CRISPR/ 
Cpf1 gained researchers attention owing to the sig-
nificant benefits of efficiency and accuracy in genome 
manipulation.75 The Cpf1 endonuclease is compara-
tively smaller to Cas9 therefore, needs shorter 
CRISPR RNA (crRNA) with more working 
efficiency.76 Cpf1 binds upstream of the protospacer 
adjacent motif (PAM) guided by single RNA and 
cleave the DNA at a distance from the seed region, 
proximal end of the PAM by introducing staggered 
cuts of 5 base pair (bp).77 The Cpf1 system bypass the 
need of trans-activating crRNA (tracrRNA) during 
processing of Cpf1-associated CRISPR repeats to 
mature into crRNAs.78 This mechanism efficiently 
cut the target region to a short T-rich PAM, however 
Cas9 system require G-rich PAM sequence. The Cpf1 
system keep PAM sequence intact which may vary 
based on its origin of ortholog whereas, create tar-
geted mutagenesis into the desired DNA. There are 
several online tools especially Cpf1-database which 
helps to find the potential target site and design the 
gRNA in a fast, easy and simple way. Moreover, the 
online Cpf1-database helps to identify Cpf1 and 
LbCpf1 through recognition of DNA sequence.79

33 BE Genome Editing System

Base editing (BE) is a worthy addition to GETs for 
achieving more efficient genome manipulation with 
irreversible based conversion at target site. BE is 
much simpler and precise in nature allowing con-
version of nucleotides without formation of DSBs 
within target DNA.80,81 The conversion of cytosine 
(C) to thymine (T) called cytosine BE (CBE) was 
firstly developed demonstrated high efficiency.82,83 

The CBE system consist of four elements i) single 
sgRNA, ii) dCas9, iii) C deaminase and iv) uracil 
DNA glycosylase inhibitor (UGI). With the in- 
depth molecular understanding of deaminases, 
another system called adenine BE (ABE) developed 
with conversion efficiency of adenine (A) to gua-
nine (G).82,84,85 The BEs restrict indels formation 
both at target and off-target site/s without require-
ment of DSBs DNA modification,86,87 further 
allowing single bp conversion i.e., bp substitutions 
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without depending on donor DNA.80 Recently, sev-
eral other BEs have been developed other than CBE 
and ABE e.g., RBEs (conversion from C to U). In 
comparison to the previous GETs, BEs proved 
being more efficient, precise and less time consum-
ing to achieve nucleotide/s substitution in different 
plant species.

3.4 PE Genome Editing System
The recent development in GET has been taken 
place with the addition of new technique called 
prime editing (PE). PE technique allows the 
manipulation of all 12 base-to-base conversion 
(transition and transversion) bypassing DSBs in 
targeted DNA.88 PE utilize Cas9 nickase bind 
with reverse transcriptase and PE guide RNA 
(peg RNA), consist of primer binding site 
(PBS), target sequence and a sequence to iden-
tify the targeted site. The PE system has 
achieved indels from (approximately 44–80bp), 

and point mutations with more precision and 
efficiency. The investigated nine rice and seven 
wheat lines at protoplasts showed mutation effi-
ciency of approximately 19.2%.89 The hybridi-
zation of target DNA-pegRNA PBS and target 
DNA-reverse transcript) resulting minimum 
off-target effects. The following technique ham-
pered the modification in promoter/introns 
easier, allowing the allelic replacement in target 
site feasible. It is noteworthy, the mutation effi-
ciency of PE is similar to BE system however, 
showed specificity much higher than previously 
discussed GETs. The PE system is at foundation 
stage further developments and application for 
crop improvement program will took place with 
the passage of time. Lastly, the available litera-
ture on GETs application for rice crop 
improvement has proved it a viable approach 
to achieve an objective in a shortest period of 
time. The schematic illustration for the applica-
tion of GETs for crop improvement program 

Figure 3. The basic flow chart of genome editing scheme for rice NUE improvement. (1) Selection of desirable germplasm. (2) The 
extraction of genomic DNA from selected germplasm. (3) Primarily analysis of genome through bioinformatics techniques to identify 
genes controlling NUE. (4) Selection of gene/genes of interest identified through bioinformatics analysis, available literature/online 
database. (5) Selection of target site based on GETs and availability/selection of vector. (6) Construction of vector holding gene of 
interest/target site. (7) Vector transformation through different transformation techniques (protoplast, agrobacterium transformation, 
and particle bombardment etc. (8) Utilization of Cas genome engineering machinery for targeted modification and extraction of 
genomic DNA from transgenic plants for mutation identification analysis. (9) The utilization of designed primers for PCR amplification 
of the target gene site to get Sanger sequencing results. (10) Screening of transgenic mutant plants based on Sanger sequencing 
results (type of mutation) and phenotypic changes. (11) Selection of transgene-free mutant plants for further collection of (morpho-
logical, physiological and biochemical) phenotypic data and interpretation of results.
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has been described in Fig. 3. The GETs 
mechanism described and proof of concepts in 
crop plants established facts to adopt for 
enhance NUE in rice.

4 Transgenic Approaches for Improving NUE

Genetic engineering approaches have been under-
taken to enhance NUE in various crops; however, 
transgenic plants have proven unable to make any 
significant improvement in NUE for multiple 
reasons90,7 Recently, it has been demonstrated 
that a specific enzyme, GS, is essential for the 
synthesis of the Gln gene, which is responsible for 
nitrogen recycling and further influences the reduc-
tion of nitrogen in pholeum sap in rice.91 Over 
expression of the GS1 enzyme provides 
a significant improvement in grain yield per plant 
in rice.92 In maize, the knockout of gln1-3 and gln1- 
4 resulted in a reduced number of kernels and 
kernel yield; however, overexpression of Gln1-3 
resulted in a 30% increase in yield.93 When GS1 
was over expressed in wheat, a significant improve-
ment in root biomass, along with the number of 
ears and grains per plant was observed.94 Based on 
these observations in rice, maize, and wheat, it can 
be assumed that the GS1 enzyme holds significant 
importance for crop improvement and transgenic 
approaches can be employed for future studies. The 
phenotypic expression is largely based on transcrip-
tion factors involving regulatory networks,95 

enzymes, transporters, and genes related to NUE 
that influence nutrient uptake, redistribution, 
assimilation, and storage.96

Previously, OsAMT1.1 transporter mutant rice 
were used to increase the NUE in ammonium- 
preferring rice.97 In another study, the ammonium 
transporter OsAMT2.1 was expressed under vary-
ing nitrogen sources and OsAMT3.1 was found to 
exhibit weak expression under the same 
conditions.98 Several studies have investigated 
ammonium transport in rice via OsAMT genes 
but have had limited success.99,100 In rice, 
OsNPF8.9 (OsNRT1) was characterized as a low- 
affinity transporter gene responsible for N uptake 
through root epidermis,101 and an increase in 
N content in rice has been reported in response to 
its over expression.102 Similarly, the PTR gene 
OsNPF4.1 (SP1) is responsible for controlling 

panicle size28; OsNPF7.3 (OsPTR6) is involved in 
glutamine synthetase and N uptake30; OsNPF6.3 
(OsNRT1.1A) modulates N utilization within the 
rice plant103 ; and OsNRT1.1B regulates nitrate 
uptake and translocation.104 Regarding the high- 
affinity transporter group, four NRT2 and two 
NAR2 genes have been identified in rice, among 
which OsNRT2.3b and OsNRT2.4 work indepen-
dently. In contrast, OsNRT2.1, OsNRT2.2, and 
OsNRT2.3a interact with OsNAR2.1 to regulate 
nitrate uptake.105,106 Moreover, numerous studies 
attempted to improve NUE through the overex-
pression of N assimilation genes,40 but have had 
limited success and inconsistent results. 
Additionally, the transgenic plants must be evalu-
ated under both high and low N conditions. Some 
studies have demonstrated that over expression of 
OsGS1.1 and/or OsGS1.2 enhances GS activities, 
but there was no significant fluctuation in the rice 
grain yield,107 while another study found that over 
expression of OsGS1.2 caused an increase in NUE 
only under the controlled conditions of a growth 
chamber.45 Mutation of OsNADH-GOGAT2 (like 
OsGS1.1) was found to cause a reduction in spikelet 
number, growth rate, and grain filling rate108. 
Additionally, OsNADH-GOGAT1 (like OsGS1.2) 
mutants have been found to have reduced levels 
of amino acids and ammonium ions, along with 
a reduced tiller number.109 Over expression of 
NADH-GOGAT has been reported to cause 
a significant increase in Indica rice grain weight,47 

whereas OsGS1.3 regulates ammonium assimila-
tion in rice grains.36 In rice, three Gln1 genes were 
identified that encode GS1.39 These Gln1 genes are 
differentially expressed within the plant body and 
have different isoforms and functions in different 
plant tissues.110 In this regard, several studies have 
identified the genes encoding proteins involved in 
the processes of senescence and N remobilization.21 

In a study by,111 it was found that cytosolic GS 
(GS1) re-assimilates ammonium released from pro-
tein hydrolysis, which thereby regulates Gln synth-
esis in phloem sap and influences the 
remobilization efficiency in rice.91 Rice mutants 
lacking OsGS1.1 exhibited reduced growth and 
had a decreased rate of grain filling.121 Similarly, 
OsGS1.1 has also been found to be involved in 
mediating glutamine generation, including during 
the N remobilization process.112 OsGS1.1 is 
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essential for rice growth and yield, while OsGS1.2 
and OsGS1.3 are unable to compensate for the loss 
of OsGS1.1.36

The signaling molecule in plants is NO3
−, but 

signaling is also influenced by genes such as 
AtNPF6.3/NRT1.1 and protein kinases (e.g., 
AtCIPK8 and AtCIPK23).113,114 studied the poten-
tial role of AtNPF6.3/NRT1.1 in N assimilation and 
plant growth in rice and reported that overexpres-
sion of AtNPF6.3/NRT1.1 elevated the 
N assimilation under low N concentration. 
Transcription of DNA-binding One Zinc Finger 
(DOF) controls hormone signaling, tissue differen-
tiation, and other biological process in plants.115 

Transgenic rice for Zea mays Dof1 (ZmDof1) has 
been developed, and these mutant plants demon-
strated increased assimilation of both N and C in 
the roots, along with an increased photosynthesis 
rate.114 Similar findings were reported by,17 where 
the FERREDOXIN-NADP+ REDUCTASE gene was 
introduced in rice and maize, with the transgenic 
rice showing increased kernel weight while the 
transgenic maize displayed improved cob size. 
The overexpression of the Dof OsRDD1 gene in 

transgenic rice enhanced the N responsiveness, 
resulting high grain yield.116 Several studies have 
documented the key role of the G-protein pathway 
for N consumption during rice plant development. 
A major genomic region, Dense and Erect Panicles 1 
(DEP1), controls the number of panicles ultimately 
yielded.117 The mutant allele, dep1, was found to be 
associated with the ammonium transporter 
OsAMT1.1, ultimately increasing N uptake.59,118 

reported a transcription factor, AtHY5, responsible 
for light regulation. Moreover,,119revealed the 
potential role of AtHY5 in N uptake. In rice, culti-
var with high GS activity to recycle NH3 leave less 
NH3 compared to cultivars with less GS activity.120 

Another gene, DOF18, induces the ammonium 
transporters AMT1, AMT2, and AMT3 to influence 
ammonium uptake from rice root tissue.53 

Transgenic approaches have been successfully uti-
lized with foreign DNA to develop GM crops that 
have gone on to pass through strict ethical, social, 
and biosafety-related regulatory frameworks. 
Genetic engineering mechanism manipulating 
genes available in rice genome to improve NUE 
are listed in Table 2.

Table 2. Transgenic approaches manipulating genes controlling amino acid metabolism and transport to improve nitrogen use 
efficiency in rice.

Gene Source
Promoter 

used Phenotype observed Reference

PTR6 Oryza sativa L. Ubiquitin Increased plant growth 30

AMT1.1 Oryza sativa L. Ubiquitin Increased ammonium, uptake and seed yield 121

AMT2.1 Oryza sativa L. CaMV 35S Increased Ammonium uptake 98

GS1 Oryza sativa L. CaMV 35S Increased N, decreased seed yield 107

GS2 Oryza sativa L. CaMV 35S Photorespiration capacity up 46

GOGAT Oryza sativa L. CaMV 35S Increased grain weight 47

AlaAT Hordeum 
vulgare L.

OsAnt1 Increased biomass and seed yield 122

GDHA Aspergillus CaMV 35S Increased DW, N, yield in field 51

DOF1 Zea mays L. CaMV 35S Increase nitrogen content 30%, enhance growth rate under low N, reduced glucose level 123

ENOD93–1 Oryza sativa L. Ubiquitin Increased shoot biomass and seed yield 49

glnA Escherichia col CaMV 35S Increase grain yield under high, moderate and low N conditions 124

GS1.1, GS2 Oryza sativa L. CaMV 35S Increase N assimilation and plant biomass 125

OsGOGAT1 Oryza sativa L. Activation 
tagging 
lines

Increase NUpE in low N conditions; increase N content of grains 126

ASN1 Oryza sativa L. Ubiquitin Increase N content of grains; no impact on grain yield 127

gdhA Aspergillus 
niger

CaMV 35S Increase ammonia assimilation and plant biomass under high N conditions 51

GDH Trichurus Ubiquitin Increase N assimilation, thousand grain 
weight, grain number and seed protein content under high, moderate and low N field conditions

128

SHMT1 Oryza sativa L. Actin Increased photosynthesis and grain number per panicle 53

ALAAT Hordeum 
vulgare L.

Ant1 Increase plant biomass, NUpE and 
final seed yield under high N conditions independently of soil N source [ammonia/nitrate]

122

ALAAT2 Cucumis sativa 
L.

Ant1 Increase NUpE and grain yield in high and moderate N conditions 129

AAP1 Oryza sativa L. CaMV 35S Increase tiller number and grain yield 54

AAP3 Oryza sativa L. CaMV 35S Decrease tiller number and grain yield 55

AAP5 Oryza sativa L. CaMV 35S Decrease tiller number and grain yield 130

AAP6 Oryza sativa L. CaMV 35S Increase amino acid uptake from roots, amino acid transport and grain protein content at final 
harvest; maintain grain yield

57
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5 NPBTs for Improving NUE in Rice

The green revolution has proven to be 
a breakthrough in agricultural production to ensure 
food and nutritional security. However, the germ-
plasm production potential remains dependent on 
fertilizer application,131 requiring resources to use 
efficient germplasms.132 The recent advances in 
marker-assisted selection, omics approaches, next- 
generation sequencing, validation of candidate 
genes, gene expression analyses, and GETs have 
aided in the development and screening of potential 
germplasms to achieve NUE genotypes. Sustainable 
agriculture requires crop germplasms with premium 
yield, resistance to biotic and abiotic stresses, envir-
onmental resilience, resource use efficiency, and less 
dependency on artificial fertilizers. The NUE is 
a ratio of yield to N supply, indicating whether 
the developed germplasm is lacking in NUE. 
Conversely, in many parts of the world, especially 
in developing countries, low-nutrients soils are 
common and there is often neither the funds nor 
the infrastructure to provide N-based fertilizers to 
small farmers. Therefore, geneticists are selecting 
genotypes/hybrids with the ability for high yield 
under low N for small farmers. The strong associa-
tion between yield under high and low N allows 
breeders to select for broad adaptability in nutrient- 
replete soils. The classical example of selecting for 
a plant’s ability to utilize N efficiently is Norman 
Borlaug’s introduction and selection of dwarfing 
genes that resulted in semi-dwarf high yield culti-
vars. These genes (Rht-B1 and Rht-D1), which were 
originally derived from a cross between a Japanese 
variety of dwarf wheat (Norin 10) and a high- 
yielding American variety (Brevor), became the 
model for the use of dwarfing genes to produce 
plants that use higher levels of N without the lod-
ging that is common in tall varieties.133 The dwarf-
ing genes altered stem strength and plant 
architecture and indirectly generated plants that 
could produce much higher yield under high (stan-
dardized) levels of fertilizer and hence had 
enhanced NUE.133

To resolve the regulatory concerns of trans-
genics, NPBTs that are faster, more predictable, 
and can be utilized in a wide range of plant species 
have been developed.134 Genome editing through 
endonucleases is the most widely adopted 

technique in plant sciences. The application of var-
ious genome editing techniques targeting various 
traits in different plant species has been described 
in detail, and enhancing NUE is no exception. 
A CRISPR/Cas9 APOBEC1 BE system has been 
used to target one site each from the NRT1.1B 
and SLR1 genes. The results demonstrated 1.4–-
11.5% C/T substitution while 1.6–3.9% of the edi-
ted plants accounted for C/G replacement. In 
another study, the BE technology using the rat 
cytidine deaminase enzyme (APOBEC1) has been 
successfully employed to induce point mutations in 
two agriculturally important genes, NRT1.1B and 
SLR1, in rice.135 NRT1.1B encodes a nitrogen trans-
porter and SLR1 encodes a DELLA protein. As 
previously reported, a C/T replacement 
(Thr327Met) in NRT1.1B could increase NUE in 
rice,104 and an amino acid substitution in or near its 
TVHYNP motif results in reduced plant 
height.104,136 The successful application of GETs 
has demonstrated the potential for improving 
NUE not only in rice but in many other crops 
important for food and nutritional security. The 
availability of genomics data can be further 
exploited to achieve desirable phenotypic manipu-
lation to support sustainable agricultural develop-
ment. Based on the successful utilization, it can be 
assumed that GETs hold the potential for a second 
green revolution to achieve the United 
Nations second sustainable development goal of 
zero hunger. The successful application of genetic 
engineering approaches and GETs in crop plants 
are dealt same in several countries and strict reg-
ulatory regimes are enforced thus require discus-
sion among all stakeholder involving researchers, 
policy makers and farming community.

6 Regulatory Aspects for Genome Edit Crops

The NPBTs is widely adapted for genome alterna-
tion of crop plants. The GETs are a valuable 
resource for the improvement of agricultural 
crops to withstand biotic, abiotic stresses and to 
develop environmentally resilient crops.20 The 
application of NPBTs in plant sciences has raised 
regulatory concerns both at national and interna-
tional arena to ensure biological, ecological safety, 
associated risk management, and legal guidelines 
on misuse of such sophisticated technologies.137 
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The NPBTs holds potential to resolve global nutri-
tional and food security concern however, there is 
a need of discussion among various stakeholders to 
differentiate among transgenic i.e., GM and gen-
ome edit crop plants. The anti-GM campaign is 
based on, i) the insertion of foreign DNA to plant 
genome causing harmful impact on human health 
and ii) the insertion of T-DNA with antibiotic 
resistance genetic factors e.g., Golden Rice and Bt 
Cotton. These arguments are perfectly resolved 
through NPBTs, GETs modify the endogenous 
genes similar to natural variations furthermore, 
GETs holds ability to introduce the point mutations 
in any gene of interest, not possible to achieve 
through classical GETs.1 The non-target mutation 
effects are reduced to minimum level through 
employing Cas9 variants e.g., Cpf1, base editing 
and prime editing.138 The gene transformation 
methods in GETs have made these techniques reli-
able and bio-safe e.g., Agrobacterium tumefaciens, 
a soil-borne bacteria used for gene transformation 
contain natural DNA, allowing to obtain transgene 
clean plants to bypass strict GM regulations.139

The large debate on GM and Genome edit crops 
require governmental intervention to formulate 
clear and uniform regulatory policies. The 
Cartagena Protocol on Biosafety advanced under-
standing for the international trade of GM organ-
isms/plants however, still several governments have 
a divergent opinion on development, commerciali-
zation, production and consumption.140 Presently, 
the genome edit crops are dealt with under two 
regulatory guidelines, i) process-based and, ii) pro-
duct based.141,142 Moreover, the regulation for gen-
ome edit crops varies among countries as few 
nations deal with genome edit crops same as GM 
others deal with such crops as non-GM.141 For 
instance, United States of America and Brazilian 
government agreed to regulate genome edit crops 
similar to developed through conventional 
breeding,143 Canadian regulatory guidelines states 
any plant based technology to develop new attri-
butes require to go through Canadian Food 
Inspection Agency regulations.144 The Court of 
Justice of the European Union (ECJ) has declared 
crops produced via NPBTs regulated the same as 
GMOs however, traditional mutagenic techniques 
with established biosafety records are exempted.145 

To ensure management and risk assessment, the 

state council of China formulated “Regulation on 
Administration of Agricultural Genetically 
Modified Organisms Safety”, categorized genome 
edit with GM crops.146 Similarly, the Indian, 
Japanese and New Zealand regulatory bodies cate-
gorize the genome edit crops similar to GM apply-
ing strict biosafety guidelines.147,148 Therefore, the 
already existing regulatory framework in particular 
countries are applied on genome edit crops. 
Moreover, the advancements in GETs to produce 
transgene free plants may help avoid the enforced 
biosafety related regulations as followed in conven-
tional transgenic plants.142 In nutshell, it’s the 
responsibility of all stakeholders to debate the reg-
ulatory framework and came up with uniform reg-
ulations promoting the safety of humans, animals, 
plants and the environment.

7 Future Directions

Based on the revolution of molecular biology and 
the discovery of CRISPR sequences in the microbial 
immune system, biotechnologists are now able to 
manipulate the any genome of interest in a specific 
and precise way. These NPBTs have provided abil-
ity to plant scientists for the precise and quick 
insert/manipulation of desirable traits than conven-
tional breeding.

7.1 Gene Regulation

The genome editing techniques has been utilized 
not only for gene knockout and knockin but also 
for genetic regulations. The genome regulations 
primarily consist of activation or repression of 
genes achieved through fusion of transcriptional 
activators or repressors with DNA-domains of vec-
tor constructs i.e., dCas9, targeting only the regu-
latory domain of endogenous genes.73 Cas9 
technology has successfully edited SlCLV3 promo-
ters in Solanum lycopersicum generating regulatory 
mutation.149 To modulate the translation of 
mRNAs the upstream open reading frame of 
LsGGP2 resulted tolerant Lactuca sativa for oxida-
tive stress and elevated ascorbate content.81 The 
GETs influence the transcript level, and hold ability 
to manipulate the normal function of non- 
canonical RNAs for crop improvement. The GETs 
can engineer transcription mechanism of such 
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RNAs directly to understand their underlying func-
tion. Based on these observation, the gene regula-
tion mechanism can be exploited for activation/ 
repression of genomic regions controlling NUE in 
rice.

7.2 Mutant Libraries

The complete genome sequence of several crops 
e.g., Oryza sativa, Triticum aestivum, Zea mays, 
Gossypium hirsutum, Glycine max is available how-
ever, to analyze the functional aspects of genes is 
challenging in post-genomic era. The 3 K rice gen-
ome project has enabled to get genome sequence 
data of rice mega-varieties grown across large areas 
and under different ecosystems.150 To validate the 
functional aspects of genes influencing NUE in 
plant species through GETs are considered as an 
effective strategy therefore, the high throughput 
mutant libraries at whole genome level can proved 
to be a useful resource for elevation of NUE in crop 
improvement programs.

7.3 Multiplexing and Gene Stacking

In plants, the metabolic pathways are responsi-
ble for traits with economic importance. These 
metabolic pathways are controlled by complex 
genetic networks within a cellular system. 
Therefore, molecular techniques holding ability 
to manipulate several genes altogether are of 
great importance in both basic and applied 
research.32 The GETs allow the genetic manip-
ulation of several genes through multiplexing, 
editing multiple target sites.70 The application 
of Golden Gate cloning or Gibson Assembly 
method, multiple gRNAs were assembled driven 
by different promoters.151,152developed a simple 
strategy to engineer endogenous tRNA through 
simple and robust method expanding targeting 
and multiplex editing through CRISPR/Cas9 
system. The CRISPR/Cpf1 system had dual 
nuclease to cleave targeted DNA and its own 
CRISPR RNA.153,154 demonstrated feasibility of 
multiplex editing in rice through Cpf1 system. 
Moreover, multiple sgRNAs can also utilized to 
elevate genome editing in model and non- 
model crop plants with low gene transforma-
tion or induced mutation rate percentage. 

Therefore, the available genetic information 
for resource use efficiency in different crop 
species can be easily manipulated to achieve 
food security.

7.4 Targeted Epigenetic Modification

The advancement in technologies had provided 
opportunities to investigate chromatin modifi-
cations, gene expression, and genome 
structure.155 Plants are heavily dependent on 
epigenetic modifications to respond to environ-
mental stimuli therefore, these modifications 
are crucial. The alternation in epigenome can 
elevate the activities of promoters for genes 
related to biotic and abiotic stresses moreover, 
can activate the silent genes to generate novel 
traits for crop improvement. The epigenetics 
modification activate the endogenous gene 
expression through targeting a fusion protein 
of dCas9 and DNA methyl transferase oracetyl 
transferase to plant promoters utilizing gRNAs. 
The methyl transferase function can be altered 
via dCas9 and gRNA in plant genome target 
site to modify epigenetic makeup to achieve 
desirable gene expression. There is few litera-
ture describing exploitation of targeted genetic 
modifications for NUE and it can be recom-
mended for generation of germplasm with 
improved NUE.

7.5 Transgene Free Editing

The introduction of foreign DNA into the plant 
genome has arisen regulatory concerns and 
regarded as GMOs.156 Following the development 
of precision genome editing the researchers have 
focused on the generation of transgene free genome 
edit plants. The removal of Cas9 gene would also 
help to reduce the off-target mutation.157 Earlier 
the percentage of transgene clean plants was much 
lower however, the novel developments e.g., BE and 
PE systems enabled to generate higher number of 
transgene clean plants. A combination of BE system 
and DNA-free editing successfully deployed in 
wheat with C-to T conversion of 1.8%.158, 159 The 
ability to generate plants without transgene can 
help to skip strict regulatory regime adapted by 
several countries.
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8 Conclusion

The elevation in global rice production at low cost is 
vital for sustainable food and nutritional security. 
The improvement in NUE is a key constituent for 
agronomic, economic and environmental aspects 
therefore, plant breeders and molecular biologists 
are taking it as challenge. The NUE being polygenic 
and complex in nature is a hotspot for dissecting the 
genetic mechanism through classical and NPBTs in 
rice. So far, several genomic regions have been iden-
tified playing their integral role in controlling NUE. 
The availability of 3000 rice genome project database 
can further be utilized to understand the underlying 
genetic factors influencing the N transportation, 
assimilation and remobilization. Previously, the 
transgenic approaches successfully exploited 
through over expression of genes controlling NUE, 
thus providing the opportunity to explore negatively 
regulation genes for the development of resource use 
efficient crops with better agronomic traits. The 
recent developments in NPBTs have enabled plant 
scientists to modify the genome of a model and non- 
model plant species through targeted engineering of 
attributes essential for biotic, abiotic stress-resistant, 
environmentally resilient and resource use efficient 
crops. The GETs have revolutionized biological 
research, from novel traits developments, epigenetic 
modifications, transcription regulation, disease- 
resistant germplasm, multiplex genome editing and 
beyond. The continuous effort by researchers 
enabled utilization technology with more precision, 
cost-effectiveness and versatility however, the diver-
gent regulatory policies are an obstacle to overcome. 
There is a dire need to formulate uniform policies 
addressing biosafety, social and environmental 
aspects. Based on the proofs of concepts and promis-
ing future perspectives it can be concluded that 
NPBTs hold the potential to be an essential tool for 
plant breeding programs.
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