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INTRODUCTION

The search for the underlying causes of migraine has been ongoing for decades, with genome-wide
association studies (GWASs) enabling the discovery of common single nucleotide polymorphisms
(SNPs) associated with this disorder, along with suggestive candidate genes (examples include
PHACTR1, TRPM8 and PRDM16) (1–3). Suggestive candidate genes have predominantly been
selected based on their genomic location and on expert knowledge. The term “suggestive candidate
gene” reveals the level of evidence of the finding (i.e., suggesting a link between a gene and
condition) thereby indicating that validation is necessary.

Gene prioritization, especially relying on computationally-intensive multi-omics analyses [e.g.,
weighing score based on evidence source (4)], has been used to help identify candidate genes truly
associated with a condition (5–7). Gene prioritization is conducted to rank “genes according to
their likelihood of being associated with the disease” and thus researchers can distinguish between
credible and non-credible suggestive candidate genes, and thus select the most credible genes
to further study (8). Meta-analyses of GWASs have also helped to confirm findings (2, 3). Even
though some SNP-condition associations are non-reproducible, it is not enough evidence to rule
out those findings. As we know, many common conditions are multifactorial in nature and the
genetic architecture and regulatory networks differ between individual patients (9, 10).

Despite of the initial methodologies used to identify suggestive candidate genes being similar
across migraine GWASs, the use of downstream gene prioritization varies. This may in part
be explained by the continuous advancements of bioinformatics tools over time, but may also
be explained by a lack of defined systematic gene prioritization efforts, particularly focused on
causality. Adding an additional gene prioritization step in future GWASs to further prioritize
identified suggestive candidate genes may (i) reduce the reporting of false positives, and (ii)
enhance our etiological understanding of the disorder. As the number of suggestive candidate
genes increases together with the number of publications, there is a growing need for valid gene
prioritization (11). Here, the current and potential future state of gene prioritization in migraine
GWASs will be discussed.

GENE PRIORITIZATION IN MIGRAINE

Depending on the study objective, gene prioritization might help to answer the question: “What
is the likelihood of the suggestive candidate genes truly causing common migraine?” Yet, here it is
important to keep in mind that evidence points to a multifactorial etiology of common migraine
(12), and that the causes of common migraine are largely unknown.

Further Validation of Suggestive Candidate Genes Needed
GWASs have provided some clues about the migraine etiology, particularly at the SNP level. One
limitation of this approach is the uncertainty of causality. For instance, the genotyped SNPs found
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to be significantly associated with migraine might be in linkage
disequilibrium (LD) with the causal variants, rather than being
causal themselves, and the LD structure might contain numerous
genes (13, 14). Researchers have sought to find out how these
SNPs may be associated with the disorder, and have frequently
looked into whether those SNPs are located in coding or non-
coding regions. If located in a non-coding region, suggestive
candidate genes have primarily been identified focusing on
the genes located nearest to the SNPs or on functionally-
relevant genes in the proximate genomic region of the SNPs.
It has however been found that “only about one-third of
causal genes are the nearest gene to the GWAS hit” (13),
and the implication of non-coding variants is rarely studied.
So, even though the GWAS methodology itself is hypothesis-
free, the identification of suggestive candidate genes has
predominantly been hypothesis-driven. Findings from GWAS
in migraine have been discussed by van den Maagdenberg and
colleagues (15).

When examining existing migraine GWASs, suggestive
candidate genes have primarily been identified by (i) examining
genes in proximate genomic region (2, 3, 16–21), (ii) reporting
the genes for coding SNPs (2, 3, 19, 20, 22, 23), (iii) reporting
nearest gene (21, 22), and (iv) using LD analysis outputs for
guidance (2, 16–19, 24). These methodologies cannot be used to
infer causality, and selection of suggestive candidate genes in the
proximate genomic regions of SNPs of interest is generally based
on expert knowledge (and today’s knowledge). Therefore, GWAS
findings may be biased toward the perspectives held by those
experts. For example, in addition to migraine being described
as a neurovascular disorder, several other theories have been
proposed throughout the years. Recently, researchers have started
to describe migraine as a purely neurological condition (e.g., with
“primarily neuronal origin with the vascular manifestations”) (25).
Other theories have arisen throughout the past decade where
researchers present migraine as a neuro-glio-vascular disorder
(26) or dysfunctional neurolimbic pain network (27).

To account for some of these limitations, additional
gene prioritization has been conducted in some migraine
GWASs. Examples of applied downstream gene prioritization
methodologies include tissue-based gene expression analysis (3),
and expression quantitative trait locus (eQTL) analysis using
human control tissues [e.g., umbilical cords (16), cerebellum and
frontal cortex (3), thyroid and brain (17)]. Despite of the use
of some advanced tools to prioritize suggestive candidate genes
in migraine GWASs, there is still a gap in gene prioritization
efforts that need to be addressed (e.g., causality is not thoroughly
examined). The existence of this gap can in part be explained by
the difficulty in obtaining relevant omics data of diseased tissue,
especially for neurological conditions.

Additional Gene Prioritization Step in
Future GWASs
Due to the emergence of advanced bioinformatics tools, gene
prioritization in GWASs can be taken a step further. This
opportunity is important to consider as the combination of
GWAS and eQTL does not inform us about whether “gene
expression and the trait are affected by the same underlying causal

variant” as stated by Zhu and colleagues (28). Causality cannot
be inferred. Referring to the disease-associated loci, Cano-Gamez
and Trynka state that “it is unclear which genes they regulate” (29).

There are several other reasons why filtering of the list
of suggestive candidate genes is important, including (i)
evidence sources such as the GWAS catalog (30, 31) are used
in downstream bioinformatics analysis to examine potential
involvement of genes in disease and (ii) researchers want to reveal
how the genetic background of an individual influences their
biological functions and disease susceptibility. If the cause(s)
of a disorder is known, health professionals can provide more
targeted treatment instead of just trying to manage symptoms.
Importantly, applying our knowledge about genetic causes of
familial/monogenic migraine may help us separate signal from
noise among the GWAS findings (as causality in these cases
have been established), and thus examine the clinical relevance
of suggestive candidate genes in common migraine.

Currently, we know of the following monogenic forms
of migraine: Familial hemiplegic migraine type 1 (FHM1;
mutations in the calcium channel gene CACNA1A), type
2 (FHM2; mutations in the sodium/potassium-transporting
ATPase gene ATP1A2) and type 3 (FHM3; mutations in the
sodium channel gene SCN1A) (32, 33). Those genes all seem
to affect neurotransmission, susceptibility for cortical spreading
depression and cognitive function (34–42). Among families with
migraine, mutations in several other genes, such as KCNK18
(potassium channel gene), ATXN1 (chromatin-binding factor
gene) and CACNA1B (calcium channel gene), have been found
(32, 43, 44). These six genes are involved in regulation of
membrane potential (GO:0042391), based on ToppGene [a
candidate gene prioritization tool] phenotype and functional
annotations (45).

The first step toward conducting additional gene prioritization
in future GWASs is to understand each component of a gene
prioritization tool. A gene prioritization tool “represents a unique
combination of evidence sources, prioritization strategy and input
requirements”, as defined by Zolotareva and Kleine (46). Testing
data, training data and evidence sources are used as inputs.
Training data (genes used to prioritize) has previously been
created based on established genes underlying familial forms of
a disease, for example for Alzheimer’s disease (46). To obtain
training data, a list of genes previously linked to migraine
(e.g., causative rather than susceptible) can be created based
on the biomedical literature (46–48). Information stored in
databases such as ClinVar (focus on genomic variation in human
health) (49) and OMIM (based on reviews of the biomedical
literature by experts) (50, 51) can also be utilized to enhance the
decision process.

When using gene prioritization tools like ToppGene (45),
ToppNet (45) or pBRIT (52), the user also needs to define
the testing data (genes to prioritize). To obtain testing data,
identified suggestive candidate genes in migraine GWAS can
be used. Alternatively, the complete list of suggestive candidate
genes can be identified through the NHGRI-EBI GWAS catalog
(i.e., a curated collection of all published human GWAS)
and corresponding R package gwasrapidd (30, 31). For some
tools, the user can adjust training parameters (or use default
settings). If using ToppGene, this includes choosing evidence
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FIGURE 1 | Proposed gene prioritization for future GWASs. (A) Suggested gene prioritization workflow. According to the described approach (i.e., creating training

data focused on known familial migraine genes), the gene prioritization strategy will seek to prioritize suggestive candidate genes in relation to the genes forming the

training data. This prioritization may be based on features such as similarity (e.g., focused on genetic sequence, involvement in biological pathways, or accompanying

(Continued)
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FIGURE 1 | phenotypes) and/or proximity (e.g., in PPI network or focused on gene location and linkage) (46). Other tools then those described here exist (46, 53, 54).

(B) Example of ToppGene (45), ToppNet (45), and pBRIT (52) outputs showing a selection of ranked suggestive candidate genes from migraine GWASs. Online

resources: https://toppgene.cchmc.org/; http://143.169.238.105/pbrit/.

sources/features (e.g., the Gene Ontology (GO) resource to
explore gene functions (53), and PubMed to explore the
biomedical literature). Overall, evidence sources (together
with computational approaches) have been used to estimate
gene similarity/proximity focused on the testing and training
data (46).

This proposed additional gene prioritization step is visualized
in Figure 1A.

Gene Prioritization Efforts in Existing
GWASs
Use of established gene prioritization tools can help us to
more confidently predict whether a suggestive candidate gene
is credible or not or, more likely, to uncover how credible a
suggestive candidate gene might be (i.e., ranking by score). This
may help us to facilitate the selection of genes that are most likely
to be associated with the migraine, beyond the capabilities of
expression data.

The suggestive candidate genes GJA1 and KCNK5 (2) (rarely
reported in migraine GWASs) ranked in the top 2 based on
ToppGene and pBRIT outputs (Figure 1B; being mindful that
databases continuously get updated). Both genes are involved
in regulation of membrane potential (GO:0042391) as are the
majority of genes known to cause familial/monogenic migraine.
Yet, Gormley and colleagues stated that “loci identified to date do
not support the idea of common variants in ion channel genes being
strong susceptibility components in prevalent forms of migraine”
(2). However, recent migraine GWAS findings point in another
direction. Hautakangas and colleagues found a risk variant in
CACNA1A that seemed to be specific for migraine with aura,
and stated that “CACNA1A seems involved in both monogenic and
polygenic forms of migraine” (55).

This indicates that the proposed gene prioritization step
(Figure 1A) is likely to be beneficial for future migraine GWASs.

DISCUSSION

Here, use of gene prioritization to score and rank suggestive
candidate genes in migraine was discussed. In some migraine

GWASs, expression data from control human tissues (difficulty
in obtaining diseased human brain tissues) have been used to
prioritize suggestive candidate genes. Even if diseased human
brain tissues were used, such analysis is not able to infer causality
of the genetic variants. Hence, the overall goal with this opinion
piece is to advance the conversation about gene prioritization in
GWAS, presented from the perspective of migraine.

As we already know of genes implicated in the causation of
familial/monogenic migraine, this information may have a role
to play when prioritizing suggestive candidate genes in future
migraine GWASs. Our knowledge about familial/monogenic
migraine (e.g., hallmarks of less prevalent migraine types)
can potentially help us to better understand underlying
causes of common migraine. One question worth answering
is “does common migraine share genetic risk factors with
familial/monogenic migraine?”. Recent evidence points to some
degree of shared genetic risk factors (55).

When using gene prioritization approaches, one needs to
pay attention to limitations. For example, there may be a
difference in prioritization performance between monogenic and
polygenic disorders (focusing on predicting novel disease genes)
(56), potentially due to “the assumption of functional coherence
among genes contributing to the same disease” and the fact that
“complex diseases tend to perturb multiple biological processes”,
as stated by Linghu et al. (56). Moreover, the choice of gene
prioritization tool(s) and the combination of gene prioritization
components (evidence sources, prioritization strategy and input
requirements) is key to enhance accuracy and precision. So, how
do you best separate signal from noise?

The proposed gene prioritization approach is likely to be
relevant for other fields, and could be used beyond that
of causation. For example, the gene prioritization could be
conducted from the perspective of disorder chronification or
treatment effectiveness which then will guide the creation of
training data (i.e., genes used to prioritize).
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