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Alpha-synuclein (α-syn) is biochemically and genetically linked to Parkinson’s disease
(PD) and other synucleinopathies. It is now widely accepted that α-syn can be released
in the extracellular space, even though the mechanism of its release is still unclear. In
addition, pathology-related aggregated species of α-syn have been shown to propagate
between neurons in synaptically connected areas of the brain thereby assisting the
spreading of pathology in healthy neighboring neuronal cells. In neurons, calcium
channels are key signaling elements that modulate the release of bioactive molecules
(hormones, proteins, and neurotransmitters) through calcium sensing. Such calcium
sensing activity is determined by the distinct biophysical and pharmacological properties
and the ability of calcium channels to interact with other modulatory proteins. Although
the function of extracellular α-syn is currently unknown, previous work suggested the
presence of a calcium-dependent mechanism for α-syn secretion both in vitro, in
neuronal cells in culture, and also in vivo, in the context of a trans-neuronal network in
brain. Mechanisms regulating extracellular α-syn levels may be of particular importance
as they could represent novel therapeutic targets. We discuss here how calcium channel
activity may contribute to α-syn aggregation and secretion as a pathway to disease
progression in synucleinopathies.

Keywords: alpha-synuclein, Parkinson’s and related diseases, protein aggregation, secretion, calcium, voltage
gated Ca2+ channel, neurodegeneration

INTRODUCTION

The affected neurons in Parkinson’s disease (PD) brains contain dense filamentous inclusions
called Lewy bodies that primarily consist of the presynaptic protein α-synuclein (α-syn), a
small neuronal protein that is abundant throughout the central nervous system under normal
conditions (Goedert et al., 2017). The causal role of α-syn, a protein physiologically present in

Abbreviations: α-syn, alpha-synuclein; 6-OHDA, 6-hydroxydopamine; CaM, calmodulin; DLB, dementia with Lewy bodies;
DMV, dorsal motor nucleus of the vagus; ER, endoplasmic reticulum; HVA, high-voltage activated; iPSC, induced pluripotent
stem cell; ISF, interstitial fluid; LVA, low-voltage activated; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NAC
domain, non-amyloid component domain; PD, Parkinson’s disease; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase;
SNpc, substantia nigra pars compacta; STN, subthalamic nuclei; VGCCs, voltage-gated calcium channels; VTA, ventral
tegmental area.
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all neurons, in the pathogenesis of PD is further highlighted
by human genetic studies that have linked multiplications and
coding-region point mutations of the SNCA gene encoding for
α-syn with familial PD (Houlden and Singleton, 2012). Increased
levels of aggregated α-syn species have been strongly correlated
with neuronal cell death partly due to a potent impairment of
the degradation capacity of cellular proteolytic systems. Apart
from acting in the cytoplasm, α-syn is normally secreted in
the interstitial fluid (ISF) of the brain and can be taken up
by neuronal cells (reviewed in Stefanis et al., 2019). High
burden of extracellular α-syn has been shown to promote the
production and transfer of pathology-linked, possibly hyper-
aggregated, α-syn material. Under pathological conditions, such
as PD, these pathologically relevant species of α-syn have the
ability to propagate along interconnected neuronal networks
leading to a progressive degeneration of neuronal function and
ultimately cell death (Bieri et al., 2018).

It is now established that α-syn binds membranes with high
affinity and this binding determines its functions especially
at the synaptic sites. In particular, α-syn has been implicated
in the process of neurotransmitter release where a number
of potential roles of the protein in the maturation of
synaptic vesicles, vesicle docking, priming and fusion have
been proposed. The suggested mechanisms involve in part
a direct or indirect interaction with the SNARE complex,
but whether α-syn promotes or disrupts the formation of
SNARE complex is still under debate (reviewed in Huang
et al., 2019). How aggregated α-syn assemblies interfere with
neurotransmitter release thereby affecting the functionality
of neuronal synapses also remains elusive. In PD brains,
deposits of small oligomers/aggregates of α-syn can be detected
in the presynaptic sites prior to the formation of Lewy
bodies and synaptic deficits seem to precede cell death in
the course of the disease (Calo et al., 2016). The presence
of abnormal α-syn assemblies extracellularly could modify
neurotransmission and drastically affect the network dynamics
of interconnected microcircuits and enhance the progression
of disease pathology by facilitating the cell-to-cell transfer of
pathological synuclein species.

Aggregation in the extracellular space may be favored by
high local accumulation of α-syn. As such, the regulation of
extracellular α-syn levels could be used therapeutically providing
we understand the mechanism(s) of α-syn secretion and how
this is triggered. Previous work indicated the presence of a
Ca2+-dependent mechanism for α-syn secretion both in vitro,
in neuronal cells in culture, and also in vivo, in the context of
a trans-neuronal network in mouse brain, where α-syn release
is mediated by presynaptic Ca2+ channels (Emmanouilidou
et al., 2010, 2016). It is possible that abnormal function of
the specific Ca2+ channel(s) regulating α-syn secretion could
alter the levels of α-syn released to the extracellular space in a
manner that favors the local aggregation of the protein at least
in certain extra-synaptic sites. The aggregated assemblies may
then be internalized by neighboring neurons acting as seeds to
recruit the intracellular α-syn and facilitate the templating and
subsequent release of pathological α-syn species by a cell-to-cell
propagation mechanism.

The main presynaptic Ca2+ channels are the voltage-gated
calcium channels (VGCCs) and the ligand-gated ion channels.
The VGCCs consist of ten calcium channel isoforms, nine of
which are widely expressed in the nervous system. VGCCs
are responsible for calcium influx thereby controlling neuronal
calcium homeostasis. As summarized in Table 1, dysregulation
of VGCCs expression or activity has been linked with many
neurological disorders such as Alzheimer’s disease, Parkinson’s
disease, Multiple Sclerosis, iron, and zing neurotoxicity (Cataldi,
2013). In this review we focus on the role of VGCCs in PD
and especially in neuronal degeneration that is apparent in PD.
Up to date, there is no direct evidence that presynaptic calcium
channels regulate α-syn propagation. In the paragraphs that
follow, we try to analyze the role of Ca2+ signaling in α-syn
aggregation and secretion, as they depict the major precursor
mechanisms for α-syn propagation.

CALCIUM AND α-SYNUCLEIN

Calcium homeostasis is important for the maintenance of
neuronal integrity, since it is involved in synaptic transmission,
neuronal plasticity, and cell survival. Activation of calcium
signaling cascades is a result of intracellular calcium elevation,
either via calcium influx or via calcium release from intracellular
stores, such as the endoplasmic reticulum (ER) (reviewed in
Yang et al., 2019). Among the different events that trigger α-syn
pathology, the disruption of calcium homeostasis stands out
as a possible mediator of aggregation and abnormal secretion
of α-syn.

α-syn aggregation can be enhanced by alterations in
intracellular calcium concentration in a direct or indirect
manner. It has been shown that a transient increase of
intracellular calcium leads to an increase in α-syn aggregates
in human cell lines expressing α-syn (Nath et al., 2011; Follett
et al., 2013). The mechanism through which calcium promotes
α-syn aggregation is not clear. It has been shown that subsequent
to calcium binding, the calcium-binding protein, calmodulin
(CaM), changes its conformation and binds to α-syn inducing
α-syn fibrillization (Lee et al., 2002; Martinez et al., 2003). CaM
along with calbindin are calcium-binding proteins that are
used by the cell as buffering proteins to maintain intracellular
calcium homeostasis. The interplay between the presence of
calbindin and the progression of PD was initially proposed after
the discovery of a subgroup of calbindin-positive dopaminergic
neurons that exhibited less pathologic features compared to
calbindin-negative dopaminergic neurons in rat substantia
nigra pars compacta (SNpc) and postmortem human brain
material from PD patients (Gerfen et al., 1985; Yamada et al.,
1990). Furthermore, a study in human brain tissues from
dementia with Lewy bodies (DLB) patients showed that the
Lewy bodies were exclusively formed in calbindin-negative
neurons, a result that was confirmed using the mouse rotenone
model, where α-syn aggregation was evident primarily in
calbindin-negative neurons (Rcom-H’cheo-Gauthier et al.,
2016). In the same line of evidence, striatal administration
of a calbindin-expressing adenoviral vector in macaque
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TABLE 1 | Voltage-gated calcium channel blockers and their effect on PD pathophysiology.

VGCCs Blocker Experimental model Effect References

N-type
P/Q-type

ω-conotoxin
ω-agatoxin

Sprague–Dawley rats Decreased the dopamine release from striatal terminals Bergquist et al., 1998

R-type SNX-482 Sprague–Dawley rats Decreased the somatodendritic DA release in SN Bergquist and
Nissbrandt, 2003

T-type Ni2+ mifebradil STN slices + Wistar rats Reduced the burst activity in STN neurons and improved the locomotor
deficits in 6-OHDA lesioned rats

Tai et al., 2011

ML218 iPSCs derived from
dopaminergic neurons of
PARK-2 patients

Ameliorated the effect of rotenone treatment by rescuing the neuronal
apoptotic phenotype

Tabata et al., 2018

N-type ω-conotoxin Rat primary cortical neurons Diminished the elevation of intracellular calcium and dopamine release
that was triggered after extracellular α-synuclein application

Ronzitti et al., 2014

L-type
N-type

Nifedipine
ω-conotoxin

SH-SY5Y cells Diminished the elevation of intracellular calcium that was observed
when extracellular α-synuclein was applied to the cells

Melachroinou et al.,
2013

Isradipine Adult brain slices + C57BL/6
mice

Reversed the rotenone and MPTP-induced TH-loss and motor deficits Chan et al., 2007

Nimodipine Primary dopaminergic neurons Reduced the increased levels of cytosolic dopamine that are observed
after L-DOPA administration

Mosharov et al., 2009

Isradipine C57B1/6 mito-roGFP
transgenic mice

Reduced the mitochondrial oxidant stress in SNc dopaminergic neurons Guzman et al., 2010

Isradipine C57BL/6 mice Increased the survival of SNc dopaminergic cells after 6-OHDA-
induced degeneration

Ilijic et al., 2011

L-type Isradipine
Nimodipine

Primary dopaminergic neurons Prevented the MPP+-induced intracellular calcium elevation in SN but
not in VTA.

Lieberman et al., 2017

Isradipine 6-OHDA-treated mice Failed to achieve neuroprotection of SNc neurons, due to low selectivity
for Cav1.3 VGCCs

Ortner et al., 2017

Isradipine TH-mito-roGFP transgenic mice Decreased mitochondrial oxidant stress was achieved by reducing
Ca2+ oscillations in SNc

Guzman et al., 2018

Isradipine Ventral mesencephalic primary
neurons

Reversed the clustering of a-synuclein positive vesicles and α-synuclein
aggregation that is observed after dopamine administration

Lautenschläger et al.,
2018

monkeys protected the nigrostriatal dopamine system from
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
degeneration (Inoue et al., 2019). These data suggest that α-syn
aggregates are more prone to be formed in neurons with
decreased calcium buffering capacity possibly due to irregular
intracellular calcium levels.

Apart from calcium binding proteins, calcium-dependent
proteases, such as calpain, seem to play a role in α-syn
aggregation. In particular, increase in intracellular calcium
concentrations lead to pathologically increased calpain activity.
Mice deficient for calpastatin, a calpain-specific inhibitor, that
were crossed with A30P α-syn expressing mice, exhibited
higher calpain activity and increased α-syn aggregated species
(Diepenbroek et al., 2014).

Finally, it has been proposed that calcium binds directly to the
C-terminal of α-syn (Nielsen et al., 2001). Using time-resolved
circular dichroism spectroscopy and infrared spectroscopy, it
has been shown that calcium binding leads to exposure of
the non-amyloid component (NAC) domain of the monomeric
protein promoting the formation of β-sheet structures and thus
accelerating the formation of α-syn aggregates (Han et al., 2018).
In a different point of view, application of recombinant α-syn
monomers or oligomers to primary neuronal cultures induced
an increase in cytosolic transient [Ca2+] linking α-syn-induced
neurotoxicity with increased intracellular calcium signaling

(Angelova et al., 2016). By using the planar lipid bilayer approach,
the authors concluded that the interaction of α-syn with the
plasma membrane could facilitate calcium influx via affecting
membrane permeability (Angelova et al., 2016). Alternatively, it
has been proposed that α-syn aggregates can bind to the Ca2+

pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) on
the endoplasmic reticulum modulating the intracellular calcium
concentration. In this study, blockage of SERCA ameliorated the
α-syn aggregated-induced cell death in neuronal cells in culture
(Betzer et al., 2018).

Alpha-synuclein is considered to be secreted from neuronal
cells though a stimulus-dependent mechanism that is regulated
by the levels of intracellular Ca2+. It has been shown that
an increase in intracellular calcium stimulate the secretion of
α-syn in α-syn expressing SH-SY5Y cells (Emmanouilidou et al.,
2010). Importantly, the secretion of α-syn in mouse striatum
is thought to be regulated by the operation of presynaptic
calcium channels as has been shown using a reverse microdialysis
approach (Emmanouilidou et al., 2016). This is in accordance
with a recent study that proposes, using a similar experimental
setting, that the release of α-syn is dependent on neuronal activity
in vivo (Yamada and Iwatsubo, 2018). The above studies support
the idea that α-syn can be found in extracellular milieu not only
as a monomer but also as an oligomeric conformer that may be
internalized by neuronal cells.
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The work described so far supports a multifactorial
relationship of α-syn with calcium signaling where elevations in
intracellular Ca2+ can result in the aggregation and release of
α-syn or vice versa (Figure 1).

CHANNELOPATHIES AND
NEURODEGENERATION IN PD

In search of the mechanisms of disease progression in PD,
previous work has focused on the connection between α-syn
secretion, neurodegeneration, and alterations in calcium influx,
mainly via the VGCCs. In neurons, VGCCs are key signaling
elements that modulate the release of bioactive molecules
(hormones, proteins, and neurotransmitters) through Ca2+

sensing. Following neuronal spiking and K+ channels opening,
VGCCs modulate Ca2+ influx during repolarization back to the
resting membrane potential. In most cases, VGCCs open at high
voltages and close slowly during repolarization, leaving a time
window where calcium influx occurs. The amount of calcium ions

that enter the cell depend on the duration of the spike. Neurons
regulate the amount of calcium influx by reducing the duration
of the spikes (less than 1 ms) and by expressing calcium binding
proteins (reviewed in James Surmeier et al., 2012). The VGCCs
are divided to high-voltage activated (HVA) channels, which
are activated at high membrane depolarization, or low-voltage
activated (LVA) channels, which open at voltages near the resting
membrane potential (Armstrong and Matteson, 1985; Bean,
1985). The HVA channels include L-type(Cav1 family), P-, Q-,
and R-type (Cav2 family) VGCCs, whereas LVA channels include
only T-type channels (Cav3 family) (reviewed in Zamponi, 2016).

It is noteworthy that in PD degeneration occurs preferentially
in SNc dopaminergic neurons, while ventral tegmental
area (VTA)-residing dopaminergic neurons remain mostly
unaffected. It is proposed that differences in the regulation
of calcium balance in these two neuronal populations could
contribute to the onset and progression of neurodegeneration in
PD. In particular, the adult SNc neurons mostly rely on L-type
VGCCs for their basal activity and, more specifically, on the
Cav1.3 subtype of L-type channels that open at relatively negative

FIGURE 1 | Interplay of α-syn and Ca2+. Elevation of intracellular Ca2+ levels through voltage-gated calcium channels (VGCCs) may lead to aggregation of α-syn via
indirect interactions with calcium binding proteins such as Calmodulin, or via direct binding of Ca2+ to α-syn that leads to exposure of NAC domain (A), elevation of
intracellular amounts of α-syn may lead to VGCCs opening and calcium influx that results in increased formation of reactive oxygen species (ROS) and
neurodegeneration (B). It still remains unclear whether elevation of intracellular Ca2+ is the cause or the result of α-syn aggregation which promotes the release and
propagation of α-syn -the release is accomplished either through exosomes or through other proposed secretory mechanisms (C).
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membrane potential (Mercuri et al., 1994). SNc dopaminergic
neurons also express calcium binding proteins at lower level
compared to VTA dopaminergic neurons (Foehring et al., 2009).
These differences seem to be developmentally coordinated;
it has been shown that during the embryonic stage and until
postnatal week 3, the SNc dopaminergic neurons rely mostly
on voltage-dependent Na+ channels, until a developmental
switch renders Cav1.3-VGCCs the primary voltage-gated
channels responsible for their pacemaking activities (Chan
et al., 2007). In support for a critical role of VGCCs in
the susceptibility of dopaminergic neurons, application of
nimodipine, a Cav1.2/Cav1.3 blocker, in cultured L-DOPA-
treated midbrain neurons decreased the levels of cytosolic
dopamine suggesting a role of L-type channels in dopamine
metabolism and neuronal survival (Mosharov et al., 2009). In
addition, the L-type VGCCs were shown to be responsible for
the elevation of intracellular calcium in primary dopaminergic
neurons exposed to MPP+. Such calcium elevation was not
observed in α-syn knock-out cultures after MPP+ exposure,
suggesting that α-syn is implicated in intracellular calcium
changes under stress conditions (Lieberman et al., 2017).
Interestingly, increased intracellular calcium in SNc neurons
overexpressing α-syn led to increased mitochondrial oxidation
and neurotoxicity in these neurons, but not VTA neurons,
probably due to the fact that VTA neurons do not depend on
Cav1.3 VGCCs for neuronal firing (Lieberman et al., 2017).
In support to these observations, a recent study depicted the
importance of a fine balance between intracellular α-syn and
intracellular calcium. In mesencephalic neurons, calcium binding
in α-syn mediates the localization of the protein in synaptic
vesicles and, under conditions of increased calcium or α-syn,
this localization promotes synaptic vesicle clustering and α-syn
aggregation. In this system, isradipine treatment reversed α-syn
aggregation and improved neuronal survival (Lautenschläger
et al., 2018). Several other studies using pharmacological
inhibition emphasized on the importance of L-type channels
in degeneration. Blockage of L-type calcium channels with the
L-type inhibitor isradipine significantly reduced mitochondrial
oxidation, indicating that calcium influx via the L-type VGCCs
during pacemaking plays an important role in mitochondrial
oxidant stress (Guzman et al., 2010). Furthermore, systemic
administration of isradipine protected the striatal dopaminergic
terminals, as well as the somata of dopaminergic neurons, after
intrastriatal injection of 6-hydroxydopamine (6-OHDA) in mice
(Ilijic et al., 2011).

Apart from the degeneration of dopaminergic neurons in
SNpc of PD patients, the pathology is also evident in nuclei of
the brainstem and olfactory bulbs (Jellinger, 2008). Cholinergic
neurons in the dorsal motor nucleus of the vagus (DMV) in
the caudal medulla have been shown to exhibit early Lewy body
formation (Braak and Del Tredici, 2009). Interestingly, these
neurons are autonomous slow pacemakers receiving an increased
intracellular calcium load via the L-type VGCCs and they express
low levels of calcium binding proteins. To induce mitochondrial
stress, Goldberg et al. (2012) diminished DJ-1 from cholinergic
DMV neurons and showed that pharmacological blockage of
L-type VGCCs ameliorates the induced mitochondrial stress.

Further addressing a key role of L-type channels in PD,
examination of post mortem material has revealed significant
differences in the expression levels of these channels in PD
patients compared with healthy subjects suggesting a possible
role of the L-type family in the process of neurodegeneration,
probably, via increased calcium influx that may lead to
excitotoxicity. Immunostaining for Cav1 channels revealed that
the expression ratio of Cav1.3/Cav1.2 of Cav1 was increased
in early-stage PD brains compared to healthy controls (Hurley
et al., 2013). Furthermore, two independent drug epidemiological
studies targeting Cav1.3 channels concluded that administration
of dihydropyridines lead to a reduced risk of developing
PD (Ritz et al., 2010; Pasternak et al., 2012). However,
since both Cav1.2 and Cav1.3 channels have very similar
structural and pharmacological properties, the selectivity of
1,4-dihydropyridines is very low and the application of these
L-type inhibitors could also block Cav1.2 channels (Xu and
Lipscombe, 2001). In this context, isradipine-a well-known anti-
hypertensive drug- is currently in phase III clinical trials to
determine whether it can be effective against the progression
of PD (Biglan et al., 2017). Isradipine has previously been
used against neurodegeneration, but its selectivity is still under
debate (Ortner et al., 2017; Guzman et al., 2018). In general,
the variability in the blocking properties of dihydropyridines
during different membrane depolarization states of dopaminergic
neurons raises concerns about the usage of these drugs for PD
treatment, since higher doses of dihydropyridines might not be
tolerated during long-term treatment (Ortner et al., 2017).

Specific VGCCs have been implicated in α-syn-induced
neurotoxicity. In SH-SY5Y cells, treatment with either nifedipine
or ω-conotoxin, specific inhibitors for the L-type and N-type
VGCCs, respectively, diminished the intracellular calcium raise
induced by extracellular α-syn (Melachroinou et al., 2013). In rat
cortical neurons, Ronzitti et al. (2014) showed that the calcium
influx following application of extracellular α-syn was abolished
by ω-conotoxin, but not by nifedipine or ω-agatoxin (specific
inhibitors for L-type and P/Q type, respectively) indicating
a possible role for the N-type VGCCs on α-syn-induced
calcium increase.

Finally, targeting of T-type VGCCs has recently been
considered a neuroprotective strategy for neurodegeneration
and, more specifically, PD (Kopecky et al., 2014; Yang et al., 2014).
Tabata et al. (2018) highlighted the importance of T-type VGCCs
using induced pluripotent stem cell (iPSC) dopamine neurons
derived from PARK2 patients by applying pharmacological
or genetic silencing of T-type channels. In this study, the
specific T-type antagonist ML218 ameliorated the effects of
rotenone-induced mitochondrial stress by rescuing the apoptotic
phenotype thereby leading to neuroprotection. Similar results
were obtained after silencing of T-type VGCCs with specific
siRNAs, while overexpression of T-type VGCCs led to the
opposite effects. It has also been suggested that T-type VGCCs
play a role in locomotor deficits accompanied after 6-OHDA
lesion in rats. Specifically, in vitro as well as in vivo studies
on subthalamic nuclei (STN) neurons revealed that blockage
of T-type channels by the T-type specific inhibitors, Ni2+ and
mifebradil, reduced the pathologically increased oscillations of
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STN that may be responsible for the tremor and other motor
deficits present in PD. The above finding was also confirmed
by behavioral experiments, where 6-OHDA lesioned rats showed
a significant improvement in open field locomotor test after
direct microinjection of either Ni2+ of mifebradil in STN
(Tai et al., 2011).

CONCLUDING REMARKS

We can conclude that all different types of VGCCs have
been implicated in the progressive neurodegeneration present
in PD. This is highlighted by a plethora of studies in which
specific VGCCs are pharmacologically targeted in dopaminergic
neurons to assess their role in preserving normal dopamine
release and promoting cell survival under conditions of cellular
stress. Several parameters could contribute to the discrepancies
observed among the different studies. The different model
systems used, ranging from in vitro cell models, such as cell
lines and primary neurons, to the living rodent brain, could
affect the magnitude and interpretation of the effects observed
following the pharmacological manipulation of each VGCC. It
is also possible that the different α-syn species (monomers,
oligomers, and fibrils) have the ability to act through independent
molecular mechanisms to trigger alterations in intracellular
calcium. Finally, the pharmacological inhibition of certain
VGCCs could stimulate compensatory mechanisms in which
other calcium channels operate synergistically to regulate calcium
levels adding further complexity to the interpretation of the
results obtained so far.

Calcium influx can trigger α-syn aggregation thus providing
an alternative pathway to PD neurodegeneration. There is also
evidence that VGCCs can facilitate α-syn secretion under normal
or pathological conditions, even though the mechanism for the
stimulation of this process is still elusive. Abnormal function of
these specific VGCCs may cause local accumulation of aggregated
α-syn material into the extracellular space which could be
taken up by recipient neurons thereby promoting the cell-to-cell
spreading of disease pathology. As such, VGCCs that regulate
α-syn properties could indicate specific molecular pathways to
target as alternative therapeutic approaches for PD.
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