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Abstract

Insect seminal fluid proteins are powerful modulators of many aspects of female physiology and behaviour including
longevity, egg production, sperm storage, and remating. The crucial role of these proteins in reproduction makes them
promising targets for developing tools aimed at reducing the population sizes of vectors of disease. In the malaria mosquito
Anopheles gambiae, seminal secretions produced by the male accessory glands (MAGs) are transferred to females in the
form of a coagulated mass called the mating plug. The potential of seminal fluid proteins as tools for mosquito control
demands that we improve our limited understanding of the composition and function of the plug. Here, we show that the
plug is a key determinant of An. gambiae reproductive success. We uncover the composition of the plug and demonstrate it
is formed through the cross-linking of seminal proteins mediated by a MAG-specific transglutaminase (TGase), a mechanism
remarkably similar to mammalian semen coagulation. Interfering with TGase expression in males inhibits plug formation
and transfer, and prevents females from storing sperm with obvious consequences for fertility. Moreover, we show that the
MAG-specific TGase is restricted to the anopheline lineage, where it functions to promote sperm storage rather than as a
mechanical barrier to re-insemination. Taken together, these data represent a major advance in our understanding of the
factors shaping Anopheles reproductive biology.
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Introduction

Anopheles gambiae mosquitoes are the principal vectors of human

malaria, a disease with devastating consequences for public health and

the economic development of disease-endemic countries. The creation

of new tools to control vector populations is a focal point of intensive

efforts to eradicate the burden of malaria. As mosquitoes generally

copulate only once during their lives [1], interfering with the mating

process is a promising avenue for research into vector control.

Unfortunately, very little is known about the molecular or physiological

basis of mating and insemination in malaria vectors. Of particular

concern is our lack of knowledge about factors and pathways ensuring

male reproductive success, such as those that result in sperm storage,

oviposition, and the inhibition of remating in females. Improving our

understanding of mating biology might not only inform currently

proposed strategies for vector control [2], but could potentially allow

the development of entirely novel tools for combating malaria.

In sharp contrast with this scenario, a wealth of information is

available on the mating biology of some non-vector insect species,

particularly the fruit fly Drosophila melanogaster. Seminal fluid proteins

(generally named Acps) derived from the male accessory glands

(MAGs) and transferred to females during copulation have been

demonstrated to be crucial regulators of sperm storage and viability

and to be the triggers of oviposition and the reduced receptivity to

remating experienced by D. melanogaster females after mating

(reviewed in [3]). Recently, large numbers of MAG-expressed

proteins have been identified in numerous insects (e.g., honeybees

[4], butterflies [5], crickets [6], medflies [7]) including two mosquito

vectors: Aedes aegypti [8] and An. gambiae [9]. However, assigning

specific functions to these seminal fluid proteins has proved to be

difficult. Even in D. melanogaster, where genetic tools are well

developed, only a handful of the .100 secreted Acps identified in

the MAGs have been functionally characterized [3]. Our current

knowledge of the importance of seminal fluid proteins to mating

biology in An. gambiae is limited, and their role in reproduction is

inferred mainly by the presence of similar functional classes amongst

Anopheles and Drosophila Acps [9]. For instance, in contrast to our

understanding in Drosophila [10] and Aedes aegypti [8] where many
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Acps have been identified in mated females, not a single MAG-

expressed protein has been demonstrated to be transferred to

females in An. gambiae (but see [11]).

MAG secretions in An. gambiae are deposited into the atrium of the

female reproductive tract in the form of a gelatinous mating plug

(Figure 1) [12,13]. Mating plugs are a common feature in the

reproduction of many organisms including invertebrates, reptiles,

and mammals [14], however, among mosquitoes, they are exclusive

to anopheline species [15]. The An. gambiae plug is formed entirely

within the male and is digested by the female over a period of 24 h.

Nothing is known about its composition or how the liquid contents

of the MAGs coagulate to form a solid mass during mating. Even

the function of the plug is unclear. One prominent hypothesis is that

the mating plug of An. gambiae serves as a physical barrier to re-

insemination by blocking access to the spermatheca [15,16]. Indeed,

Gillies [13] observed rare instances of females with two plugs and

sperm trapped between them. Alternatively, the mating plug might

act to prevent loss of sperm from the female storage organ, ensuring

male reproductive success [17]. However, early researchers (e.g.,

[12,18]) dismissed both of these possibilities and proposed that the

mating plug serves no function and is simply a vestige of the

ancestral dipteran spermatophore.

Here, we show that the plug is a crucial determinant of An.

gambiae reproductive success. By studying its composition, we were

able to identify the mechanism of plug formation, which is based

on the cross-linking activity of a MAG-specific transglutaminase

(TGase) on seminal proteins. RNAi-mediated depletion of this

TGase in males prevents plug formation and transfer, and severely

impairs fertility. Females that do not receive a mating plug cannot

retain sperm in their sperm storage organ, the spermatheca, and

therefore do not become inseminated. Moreover, we show that the

plug provides little defence against re-insemination.

Results

The Mating Plug Is Composed of Multiple MAG Proteins
To identify MAG proteins that are transferred to females during

copulation, we examined the composition of mating plugs

dissected from the reproductive tracts of recently mated An.

gambiae females by mass spectrometric (MS) proteomic analyses

[19–23]. To determine the source of the proteins found in the

plug, we also analyzed the composition of the MAGs, and the atria

of virgin females (Figure 1 and Figure S1), followed by reverse

transcription PCR (RT-PCR). These analyses identified 27 plug

proteins: 15 derived from the male, six derived from the female,

and six found in both male and female reproductive tissues

(Figure 1). Five of the male-derived proteins (Acps) were previously

shown to be exclusively expressed in the accessory glands, and

included four proteins located within a ‘‘male fertilization island’’

on chromosome arm 3R [9]. The 10 remaining male-derived

proteins in the plug were not previously known to play a role in

reproduction and included five proteases. Even though proteases

have been shown to be important components of the seminal fluid

of other Diptera [3,8,10], a previous study had failed to identify

these enzymes in the MAGs of An. gambiae [9]. The six plug

proteins derived from the female reproductive tract included two

secreted atrium-specific serine proteases (AGAP005194 and

AGAP005195) whose transcripts were previously shown to be

strongly downregulated 24 h after mating (Figure 1) [24].

Multiple gel bands in particular from 50 to 140 kDa in the MS

proteomic analysis of mating plug samples contained peptides

derived from one particular protein, AGAP009368, which we

have named Plugin (Figure S1). Plugin was found by MS in both

MAG and mating plug samples (Figure 1), and quantitative RT-

PCR revealed that it is expressed exclusively in the MAGs

(Figure 2A). Western blot analysis confirmed this tissue specificity

and showed the presence of high molecular weight bands in plug

extracts (Figure 2B). Within the MAGs, Plugin was detected by

immunofluorescence primarily in the anterior region of a secretory

epithelium and in the channels formed by an actin-rich muscle

network lining the outside of the glands (Figure 2C, 2D).

Plugin lacks any recognizable protein domains, but is gluta-

mine-rich (134/557 residues, Figure S1). Many of these glutamine

residues are excellent candidates for TGase-mediated cross-linking

sites, as they often occur in tandem with a lysine at the +2 position,

and are located in a region of the protein predicted to be

intrinsically disordered [25]. This observation, combined with the

MS identification of both Plugin tryptic peptides in the digests of

high molecular weight gel bands and a MAG-derived TGase

(AGAP009099) in the mating plug, suggested that plug formation

may be mediated by cross-linking of Plugin by this TGase.

The Plug Is Formed by TGase-Mediated Cross-Linking of
Plugin

We tested for TGase activity in males using a monodansylca-

daverine (MDC) incorporation assay [26], which allows the

incorporation of the fluorescent amine MDC into TGase

substrates to be detected under UV illumination. High levels of

TGase activity were detected in homogenized MAGs, but not in

the mating plug (Figure 3A), nor other male and female tissues

(unpublished data). MDC was incorporated into proteins that

perfectly matched the observed sizes of Plugin, strongly indicating

that this protein is the primary substrate for TGase in the MAGs.

This incorporation was blocked by the addition of EDTA and

GTP, which suggests that the TGase activity in the MAGs is

calcium-dependent. These inhibitors also greatly reduced the

formation of the higher molecular weight Plugin-immunoreactive

bands in the MAG samples (Figure 3A).

The high levels of TGase activity observed in the MAGs

prompted a closer investigation of An. gambiae TGases. Unusually

for insects, which are believed to possess only a single TGase [27],

An. gambiae mosquitoes have three genes (AGAP009098,

AGAP009099, and AGAP009100), clustered on chromosomal arm

Author Summary

Male seminal fluid proteins trigger a wide range of
behavioural and physiological changes in females and
can have important effects on reproductive success. In
many animals, seminal fluid is transferred to females as a
gelatinous mass termed a mating plug. Although many
hypotheses have been put forward to explain the function
of mating plugs, their precise role in most organisms
remains unclear. We have studied the composition,
mechanism of formation, and function of the mating plug
in the mosquito Anopheles gambiae, the principal vector of
human malaria. We show that the plug is formed through
the action of a transglutaminase enzyme that links seminal
fluid proteins together resulting in semen coagulation.
This process is similar to the way seminal fluid is
coagulated in mammals. Interfering with the production
of this transglutaminase prevented plug formation.
Females that did not receive a plug failed to store sperm
correctly, with important consequences for fertility. Our
data show that the mating plug is an important feature of
An. gambiae reproduction, and reinforce the notion that a
deeper understanding of mosquito reproductive biology
can aid efforts to eradicate these disease vectors.

Mating Plugs Control Insemination Success
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3R. AGAP009099 was expressed exclusively in the MAGs

(Figure 3B), as confirmed by Western blot (Figure 3C), while the

other two genes were ubiquitously transcribed at much lower

levels (Figure 3B). These results suggested that AGAP009099 is

principally responsible for the TGase activity detected in the

MAGs. Within the MAGs, the AGAP009099 protein was

localized in a similar pattern to Plugin, however it was primarily

concentrated in the posterior part of the glands (Figure 3D).

The role of AGAP009099 in plug formation was then tested in

vivo by RNA interference-mediated knockdown. Injections of

Figure 1. Proteins of the mating plug of An. gambiae. A total of 27 proteins were identified by mass spectrometry analysis of mating plugs
dissected from recently mated females. The source of each protein found in the plug was determined initially by the comparative proteomic MS
analysis of MAGs compared to mating plug samples compared to virgin female atrium controls, and then refined by RT-PCR. The spermathecal
capsule (sc), in the figure shown next to the atrium (a), was not included in this analysis. The tissue of expression of the genes encoding the proteins
found in the plug are indicated by the letters m (MAGs), a (atrium), or b (for both). Proteins are named using their VectorBase identifiers (http://www.
vectorbase.org/index.php), unless currently unannotated. The novel accessory gland protein (NOVEL ACP1) is encoded by a predicted gene located
between AGAP009370 and AGAP009371, while the novel zinc carboxypeptidases (ZCPs) correspond to ab initio prediction located within the region
3R: 5051000-5067900 (see Table S3 for details). CAP, CRISP/Antigen5/PR-1; PAM, peptidylglycine a-amidating monooxygenase; PHM, peptidylglycine
a-hydroxylating monooxygenase; QPCT, glutaminyl-peptide cyclotransferase; PDI, protein disulfide isomerase; obp, odorant-binding protein; JH,
juvenile hormone; NPC, Nieman-Pick C; Hsp, heat-shock protein; NDP, nucleoside diphosphate.
doi:10.1371/journal.pbio.1000272.g001

Mating Plugs Control Insemination Success
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Figure 2. Plugin, an important component of the mating plug. Plugin protein, found mass spectrometrically in both mating plug and MAGs,
is produced specifically in the MAGs. (A) qRT-PCR showing that Plugin is expressed specifically in the MAGs. (B) Western blot analysis of Plugin using a
polyclonal antibody raised against a peptide fragment of the protein. Plugin is detected in MAGs and whole males (=), but not in the rest of the male
body (RB) or the whole female (R). Arrows indicate the multiple Plugin immunoreactive bands observed in the mating plug (MP). Actin was used as a
loading control. (C, D) Confocal analysis of Plugin expression in the MAGs of virgin 3-d-old males. Plugin (red) is concentrated in channels formed by
phalloidin-Alexa 488 (green)-labelled actin-enriched muscle cells. (C) Plugin is primarily expressed in the anterior (A) rather than the posterior (P)
MAGs or the aedegus (Aed). Inset in right image indicates the region analyzed in (D). Scale bar: 100 mm. (D) Central panel shows a Z-section of a

Mating Plugs Control Insemination Success
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male adults with double stranded RNA (dsRNA) targeting

AGAP009099 (ds9099) induced a significant reduction in both

transcript (mean = 67.0%, paired t test: t11 = 23.60, p = 0.0042)

and protein (mean = 58.1%, t test assuming unequal variances:

t47.2 = 24.25, p = 0.0001) levels relative to males injected with

control dsRNA (dsLacZ). When injected males were allowed to

mate with virgin females, 55 out of 367 females (15.0%) mated to

ds9099-injected males failed to receive a mating plug, compared to

4 out of 228 (1.8%) females mated to control males. This large and

statistically significant difference (contingency test, x2 = 27.55,

p,0.0001) demonstrates that AGAP009099 is crucial for the

formation of the mating plug.

The Mating Plug Ensures Correct Sperm Storage But Is an
Inefficient Barrier to Re-Insemination

We next assessed the function of the mating plug in Anopheles

reproduction. In the large majority of cases where ds9099-injected

males failed to transfer a mating plug, no sperm was found in the

female spermatheca by microscopic analysis (41/55 = 74.5%). The

absence of sperm was confirmed by our inability to amplify a Y-

chromosome specific sequence by quantitative PCR in these

spermathecal samples (Table S1). In these females, sperm were

observed in the atria, indicating successful transfer, but were not

appropriately stored and therefore would not be available for

fertilization. In contrast, when a mating plug was found in the

atrium, the spermatheca always contained sperm. Thus, the

mating plug is important for sperm storage and for ensuring

successful insemination.

Only 2.5% of field-caught female An. gambiae store sperm from

more than one male in their spermathecae [1]. One possible

explanation for the low numbers of multiple inseminations is that,

prior to the establishment of long-term mating refractoriness, if

females mate again within a few hours of the first copulation, the

presence of a plug might effectively block sperm from the second

male from entering the spermatheca. We directly tested this

hypothesis by mating females with wild-type males followed in

rapid succession by transgenic males to be able to distinguish

alleles from this second mating. Quantitative PCR of relative

quantities of the two sperm types showed that 24 of the 38 twice-

mated females tested (66%) had sperm from both males in their

spermathecae (mean % sperm from 2nd male = 38%, range = 7%–

56%), demonstrating that the mating plug is an inefficient physical

barrier to re-insemination.

A MAG-Specific TGase Is Not Present in Mosquitoes That
Do Not Produce Plugs

Anophelines are the only mosquitoes that produce mating plugs

[15]. If TGase activity underlies the ability to produce plugs, we

would not expect to find a MAG-specific TGase in species that

transfer uncoagulated seminal fluid, such as culicine mosquitoes.

To test this hypothesis, we searched for TGase genes in the

complete genomes of two culicines, Aedes aegypti and Culex

quinquefasciatus, the only other mosquito species sequenced to date.

We identified two culicine TGases retaining partial synteny with

the three genes identified in An. gambiae and the single one present

in Drosophila melanogaster (Figure 4A, Table S2). Phylogenetic

analysis of TGases from these and other insects revealed that

AGAP009100, Aedes 1, and Culex 1 cluster with the single TGase

from Drosophila (Figure 4B), suggesting that these genes may retain

the ancestral function. AGAP009098 clusters with the second

culicine TGase (Aedes 2 and Culex 2) in a mosquito-specific group.

No culicine TGase clusters with AGAP009099, consistent with the

lack of seminal coagulation in these mosquitoes. Importantly,

neither of the Aedes or Culex TGase genes showed enriched

expression in the MAGs (Figure 4C), and we found no evidence of

TGase activity in the glands of either species using the MDC

incorporation assay (Figure 4D). These two findings support the

conclusion from the phylogenetic analysis that culicines lack an

orthologue of the plug forming TGase and strengthen the

correlation between the presence of AGAP009099 in An. gambiae

and plug formation in this species.

Discussion

We have identified the molecular composition, mechanism of

formation, and function of the mating plug of An. gambiae. Our

MS analysis identified 15 MAG-expressed proteins that are

transferred to females as part of the mating plug. Two of these

proteins, the MAG-specific TGase AGAP009099 and its

glutamine-rich substrate Plugin, are responsible for the coagula-

tion of the liquid secretions of the MAGs into a solid mass. Some

of the other MAG-proteins from the plug, particularly the three

small Acp-like proteins AGAP009362, AGAP009370, and

AGAP012830, could represent important modulators of female

behavioural responses to copulation, such as a reduced receptivity

to further mating and induced oviposition [9]. To our knowledge,

these are the first proteins transferred to females during mating

that have been identified in Anopheles. Further studies will clarify

the role of these proteins in modulating female reproductive

biology and possibly in sperm function. The identification of a

number of female proteins, mainly proteases, associated with the

mating plug suggests a direct interaction between male and

female proteins that may be important for plug processing.

Indeed two of the female proteases identified on the plug

(AGAP005194 and AGAP005195) were shown previously to be

expressed exclusively in the atrium of virgin females and were

considerably downregulated at 24 h after mating [24]. This

transcriptional modulation is entirely compatible with a role of

these enzymes in plug digestion, which is mostly completed in the

female atrium by 24 h post-mating.

Mating plugs are found in a wide assortment of vertebrate and

invertebrate species, and many hypotheses have been advanced to

explain their function. However, in the vast majority of taxa,

empirical evidence for a specific role of the plug in mating remains

elusive [14]. Perhaps the most common presumption is that plugs

act as barriers to re-insemination. The high levels of monogamy

observed in wild mosquito populations are thought to be enforced,

at least over the short term, by the presence of a mating plug [15].

We have shown that the plug provides little defence against the

storage of sperm from subsequent males. This is consistent with

the observed mating behaviour of An. gambiae. In this generally

monoandrous species, virgin females enter a swarm of males,

mate, and leave the swarm while still in copula [28,29]. It is

unlikely that a female would re-enter the swarm (and indeed

double plugs are almost never observed in the field [12,30]), and

therefore there would be very little selective pressure for a plug

that acts as a physical block.

9.6 mm stack. Nuclei of epithelial (upper) and muscle (lower) cells, labelled with DAPI (blue), are clearly organized in two separate layers (highlighted
by the dotted line). Scale bar: 9 mm. Left and right images represent single xy sections of upper epithelial (luminal) and lower muscular (external)
layers, respectively. Scale bar: 18 mm.
doi:10.1371/journal.pbio.1000272.g002
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Figure 3. AGAP009099 is a MAG-specific TGase. AGAP009099 was found mass spectrometrically in both mating plug and MAGs. (A) MDC assay
of the MAGs and plug. High levels of TGase activity in the MAGs result in the cross-linking of Plugin (high molecular weight bands), which can be
prevented by TGase inhibitors (Buffer ‘‘2’’). Buffer ‘‘+’’: buffer promoting TGase activity. No autofluorescent proteins were detected (see the no MDC

Mating Plugs Control Insemination Success
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Instead, we have demonstrated that the plug plays an important

role in the reproductive biology of An. gambiae. By manipulating the

expression of the MAG-specific TGase, we have prevented plug

formation and transfer, resulting in the incomplete storage of

sperm by the female. The presence of a plug in the early post-

copulatory hours may be needed to facilitate sperm retention in

the sperm storage organ until motility is acquired. Indeed the

sperm of An. gambiae are deposited in a immotile state directly into

the spermatheca, immediately followed by plug transfer [12,31],

and become motile only .17 h after copulation [32]. In support of

this hypothesis, we observed sperm in the atria of females that did

not receive a plug, strongly suggesting that they had been

transferred but had leaked out of the spermatheca. Interestingly,

a role for the mating plug in sperm storage was dismissed by some

reaction). (B) qRT-PCR of Anopheles TGases. Upper panel: AGAP009099 is expressed exclusively in the MAGs. No expression was detected in the male
RB. Lower panel: AGAP009098 and AGAP009100 show low expression in all tissues tested. (C) Western blot of the MAGs using a polyclonal antibody
raised against a peptide fragment of AGAP009099. AGAP009099 is also detected in mating plug (MP) and whole males (=). Actin was used as a
loading control. (D) Confocal analysis of AGAP009099 expression in the MAGs of virgin 3-d-old males. AGAP009099 (red) is concentrated in channels
formed by phalloidin-Alexa 488 (green)-labelled actin-enriched muscle cells, in the posterior (P) rather than the anterior (A) MAGs. The right image is a
magnification (xy section) of the region indicated by the inset in the middle figure. Cell nuclei (blue) are labelled with DAPI.
doi:10.1371/journal.pbio.1000272.g003

Figure 4. Insect species that do not make a mating plug do not possess an orthologue of AGAP009099. (A) Synteny map of Dipteran
TGases. All insects included in the analysis possess one TGase (yellow) located just upstream of a conserved lipase. Mosquitoes possess a second
TGase (green), while An. gambiae possess a third gene (blue), absent from Ae. aegypti and C. quinquefasciatus. Arrows indicate the direction of the
reading frame. (B) Phylogenetic analysis of insect TGases. The bootstrap values of a 1,000 replicates are indicated. The scale bar represents the amino
acid divergence. (C) qRT-PCR of culicine TGases. Neither the ‘‘ancestral’’ TGase (Aedes1, Culex 1) nor the mosquito-specific TGase (Aedes2, Culex2)
shows high levels of expression in the MAGs. (D) TGase activity in the MAGs of three mosquito species. TGase activity was detected in the MAGs of
An. gambiae (in Buffer ‘‘+’’) but not Ae. aegypti or C. quinquefasciatus, despite the presence of protein in all samples.
doi:10.1371/journal.pbio.1000272.g004
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earlier researchers [12]. Using the forced copulation technique for

mating, females could be inseminated even when they did not

receive a plug [33]. However, the forced copulation required the

female to be anaesthetized during mating. One possible explana-

tion for these earlier results is that female activity is required for

sperm loss. Sperm backflow from the spermatheca into the atrium

occurring in plug-less matings may be a passive consequence of

female movement, or—more intriguingly—females may use the

mating plug as a male ‘‘quality check,’’ actively ejecting sperm

from males that fail to transfer it. As the spermathecae of a small

number of females that did not receive a plug contained

observable sperm, future investigations of the relative numbers

of sperm stored by these females could shed light on this issue. An

alternative or additional explanation for the observed lack of

sperm in the storage organs of females mated with plug-less males

is that the formation of a complete mating plug in the male

reproductive tract may be important for the correct delivery of

sperm to the female. Although sperm are directly deposited in the

spermatheca prior to plug transfer, it cannot be ruled out at this

stage that coagulation of seminal fluids within the MAGs may play

a role in the successful completion of the transfer process.

The expansion of the TGase family in mosquitoes, and the

acquisition of a function in seminal coagulation, underlies the ability

of An. gambiae to form mating plugs. The presence of multiple

TGases has not been previously reported in insects, but is common

in vertebrates, and nine have been characterized in mammals [27].

These proteins fulfil numerous functions including seminal

coagulation [34], which is achieved by the cross-linking of

glutamine-rich substrates such as semenogelins and seminal vesicle

secretory proteins by the prostate-specific TGase TGM4 [34–36].

Thus, mosquitoes and mammals have independently evolved highly

similar systems of semen coagulation. The convergent evolution of

similar systems for plug formation in mosquitoes and in mammals is

made all the more remarkable by the fact that other organisms have

developed very different TGase-independent mechanisms to

achieve similar results [37–39]. TGase-mediated cross-linking of

plug proteins seems to be finely controlled as the plug-forming

TGase and its major substrate (i.e., Plugin) are expressed in two

different compartments of the MAGs (Figure 2C, 2D, Figure 3D).

These two proteins may be brought together in the aedegus during

copulation by contraction of the muscle cells surrounding the

MAGs, and a concomitant release of calcium from intracellular

stores could cause the activation of the secreted TGase.

Our findings reveal a crucial role of the mating plug in mosquito

reproductive biology and identify this important structure as a

potential target for the manipulation of mosquito fertility. This

discovery was only possible because we first identified the molecular

composition and mechanism of formation of the plug. Understand-

ing the basic genetics underlying mating biology is an essential

starting point for developing new tools that target mosquito

reproduction and may influence the design of novel vector control

strategies currently under development. The proteins identified in

this study will not only provide a powerful basis for understanding

other processes that regulate mosquito fertility, but will also allow

comparative studies of reproduction in other organisms. Indeed,

given the remarkable similarity between mechanisms of seminal

coagulation in mosquitoes and mammals, our results can inform

studies of mammalian, including human, reproduction.

Materials and Methods

Mosquito Procedures
Mosquitoes from a laboratory colony of the G3 strain were

separated by sex as pupae and raised in cages supplied with

sucrose ad libitum. Matings were performed as described previously

[24].

Mass Spectrometry
Reproductive tissues were dissected from virgin males (MAGs),

virgin females (atria), or recently mated females (mating plugs);

washed in fresh PBS; and stored on ice in 20 ml of a 5% (v/v)

acetic acid solution. The overall digest, chromatographic, and MS

strategies used have been described previously [19–23]. Briefly, the

supernatant was applied to SDS precast NuPAGE gels and

following electrophoresis, Coomassie-stained. Bands were excised,

destained, reduced, and alkylated with iodoacetic acid prior to

proteolytic digestion with trypsin. After extraction the peptide

mixtures were analysed by on-line nanoLC-MS and MS/MS

using Q-TOF technology on Q-TOF and Q-Star instruments and

by Mascot search of the MSDB/NCBI and An. gambiae database

initially, then using An. gambiae predicted proteome ReAnoXcel

[40] supplemented with the latest Ensembl and SNAP protein

predictions. Identified peptides were individually blasted against

the translated genome, and gene models corresponding to the

identified genomic regions were developed using ab initio

predictions informed by available ESTs, microarray data, and

manual models submitted to Vectorbase. The genomic location of

each gene model is provided in Table S3. The source of proteins

identified in the plug was confirmed by RT-PCR performed using

cDNAs from MAGs, testes, the rest of the male body, and virgin

non-bloodfed females.

MDC-Incorporation Assay
MAGs were dissected from 4-d-old virgin males, homogenized

with a micropestle in either TGase ‘‘+’’ buffer (50 mM Tris

pH 7.6, 1 mM DTT, 5 mM CaCl2) or TGase ‘‘2’’ buffer (TGase

‘‘+’’ buffer with 250 mM EDTA and 0.3 mM dGTP) and frozen/

thawed in dry ice three times before the addition of 5 mM MDC.

Samples were incubated at 37uC for 60 min, vortexed briefly, and

spun down 10 min at 13,000 rpm. Proteins in the supernatant

were separated by SDS-PAGE and visualized under UV

illumination using an LAS-3000 imaging system (FujiFilm). Plugin

localization was subsequently tested by Western blot. Total protein

loaded on gels was visualized using SimplyBlue SafeStain

(Invitrogen).

Polyclonal Antibodies
Affinity-purified polyclonal antibodies against Plugin and

AGAP009099 were raised in rabbits against peptide epitopes

(Plugin: NEHRDPQNHQLPSSC; AGAP009099: CGSRYTDP-

MEKKYES) by a commercial supplier (GenScript Corp., Piscat-

away, NJ).

Western Blots
Tissues were homogenized in 20 ml PBS containing a protease

inhibitor cocktail (Complete Mini, Roche) and frozen/thawed

three times on dry ice. Samples were centrifuged at 13,000 rpm

for 15 min at 4uC. The supernatant was heated at 70uC for

10 min and applied to precast NuPAGE (Invitrogen) gels under

reducing conditions according to the manufacturer’s instructions.

Proteins were transferred to a nitrocellulose membrane (under

reducing conditions) using the XCell II Blot module (Invitrogen).

Blots were immunostained using standard protocols using the

following primary antibody titres: anti-Plugin: 0.59 mg/ml; anti-

9099: 0.96 mg/ml; and anti-b-actin (1:1000 dilution of ab8229;

Abcam, Cambridge, MA). HRP-conjugated secondary antibodies

(Santa Cruz Biotechnologies: sc-2030 and sc-2314) were used at a
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dilution of 1:10,000. Bands were visualized using ECL Western

blotting detection reagents (GE Heatlhcare) on an LAS-3000

imaging system (FujiFilm).

ELISA
Individual MAGs from males injected with ds9099 or dsLacZ,

were placed in a 110 ml PBS containing a protease inhibitor

cocktail (Complete Mini, Roche), homogenized in an ultrasonic

bath for 10 min, frozen/thawed on dry ice three times, and

centrifuged at 13,000 rpm for 15 min at 4uC. Duplicate 50 ml

aliquots of the supernatant were loaded into separate wells of a

flat-bottomed 96-well plate and incubated overnight at 4uC. A

standard curve was prepared from the MAGs of uninjected males

with a series of six 2-fold dilutions. ELISAs were carried out

essentially as described previously [41]. Anti-9099 was used at a

concentration of 0.96 mg/ml and the secondary antibody, sc-2314,

at a dilution of 1:2,000.

Immunostaining and Confocal Analysis
MAGs from 3–4-d-old males were dissected on ice, fixed in 4%

formaldehyde, washed in PBS, bleached with 2% hydrogen

peroxide to minimize autofluorescence, washed in PBS, then

blocked and permeabilized in PBS with 1% BSA and 0.03%

Triton X-100. Samples were incubated in either 2 mg/ml anti-

Plugin or 3 mg/ml anti-9099 in blocking buffer, then a 1:1,000

dilution of anti-rabbit Cy3 followed by a 1:250 dilution of Alexa

Fluor 488 phalloidin (Invitrogen) to stain actin. Tissues were then

mounted in DAPI-containing Vectashield medium (Vector

Laboratories, Inc.) and visualized using a Leica SP5 inverted

confocal microscope. Stacks were generated using 19 consecutive

0.5 mm optical sections.

RNA Interference
A 481 bp region of AGAP009099 was amplified from MAG

cDNA using the primers (FWD: 59-GAGCGGTCGTGGTCGA-

TAGTAAG-39 and REV: 59-CCCTCGTAGTTGTTGCTC-

CAGTT-39) and cloned into pLL10 [42]. This purified linearized

plasmid was used to make ds9099, and pLL100 for the synthesis of

dsLacZ (dsRNA targeting the bacterial LacZ transcript, which is not

present in mosquitoes), following established protocols [42,43].

Males were sexed as pupae and injected with 69 nl of dsRNA

(3 mg/ml) within 24 h of eclosion. Surviving males were allowed to

mate with 5–6-d-old virgin females 4–5 d after injection. Mated

females were immediately dissected to visually ascertain the

presence of a mating plug in the atrium and/or sperm in the

spermatheca. Males were dissected and their MAGs used for qRT-

PCR analysis of RNAi-induced knockdown, or for ELISA.

qRT-PCR
RNA extraction, cDNA synthesis, and SYBR-green based qRT-

PCR was performed as described previously [24] using the primers

listed in Table S1. The ribosomal protein gene RpL19 was used for

normalization in An. gambiae (AGAP004422), using previously

described primers [24].

Remating Assay
Wild-type 4-d-old virgin females were placed in a cage

containing approximately 250 wild-type males. Copulating pairs

were captured as described previously [24], the males removed,

and the females introduced into a cage containing approximately

250 males homozygous for the transgene dsRed (FC, unpublished

data). Females mating for a second time were recaptured and

placed in a cage without males for 48 h. After this period, females

were dissected in PBS, and individual spermathecae were placed

in 23 ml of grinding buffer (80 mM NaCl, 8.5 mM EDTA, 24 mM

Tris [pH 7.5], 0.5% SDS, and 5.5% sucrose). Samples were

placed in an ultrasonic water bath for 10 min or until each

spermatheca was ruptured. Three ml of 0.01 M Proteinase K was

added to each tube, and samples were heated at 37uC for 15 min,

then 95uC for 10 min. Samples were analyzed by SYBR green-

based qPCR using 5 ml of undiluted spermathecal DNA. Y-specific

primers (Table S1) were designed within the Y-specific region of

the chimeric An. gambiae scaffold AAAB01008227 amplified by

Kryzywinski et al. [44] using the primer pair 128125I. These

primers were tested on multiple male and female genomic DNA

extractions and only produced a product in males (two copies per

Y-chromosome, unpublished data). In both cases, matings were

completed in the space of 60 min. Females were rested for 45 min

between the two matings.

Phylogenetics
The selected amino acid sequences were subjected to multiple

alignments using the Clustal W (http://www.ebi.ac.uk/Tools/

clustalw/) and Clustal X (1.83) algorithms. A phylogenetic tree

was constructed by the neighbour joining method using p-distance

estimates, tested by the interior-branch test, and displayed using

TreeView (1.6.6) software. Reliability of each node was assessed

with 1,000 bootstrap replications. The genomic locations of the

TGase genes encoding the proteins used in the tree, as well as

Plugin, are reported in Table S2.

Supporting Information

Figure S1 The Plugin protein. (A) An example of the nano

LC-MS data created in this study. The total ion current trace

across the nanoLC chromatogram over 90 min in the analysis of

SDS PAGE band 13 of a MAG sample (gel Mr ,70 kD),

highlighting the region at 42.4 min for subsequent on-line MS/

MS analysis. (B) Elucidation of the true N terminus of the mature

Plugin protein: The data-dependent acquisition of an MS/MS

spectrum of a doubly charged quasimolecular ion, m/z 809.62+,

elution time 42.4 min, sequenced as VPL/IYGGVDQQFGL/

IPK. A weaker signal at m/z 859.12+ from the dataset is assigned

as the same sequence with an additional N-terminal Valine. The

predicted signal sequence, residues 1–16, for the Plugin protein

would suggest an N terminus beginning at Ala-17 of Ala-Val-Val-

Pro for the expressed product. The experimental data show that

the major processing event leads to an N terminus beginning at

Val-19 for the Plugin protein. (C) The complete amino acid

sequence of Plugin. The Plugin sequence was determined using a

combination of MS and molecular biological methods. The 59 end

was elucidated using the FirstChoice RLM-RACE Kit (Ambion)

according to the manufacturer’s instructions, starting with primers

against the genomic region matching initial peptides identified by

mass spec analysis which provided over 50% (underlined)

sequence coverage (outer primer: 59-TGCGCTAGTTGCTGCT-

TTTGGT-39; inner primer: 59-GCTGCTCCTGCTCCTTGA-

TCCT-39). The 39 end of the gene was identified by designing

primers against ab initio predictions in the region and sequencing

the resulting RT-PCR products until an in-frame stop codon was

identified. Putative transglutamination sites are highlighted in red.

The sequence from residues 19–234 is predicted to be intrinsically

disordered.

Found at: doi:10.1371/journal.pbio.1000272.s001 (0.34 MB PDF)

Table S1 Primers used for quantitative PCR. Primers

against Plugin and TGases were used for qRT-PCR. Ribosomal

genes were used as controls for normalization. For An. gambiae, we
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used primers against RpL19 (AGAP004422). For A. aegypti and C.

quinquefasciatus, we used a single set of primers against RpS7

(AAEL009496 and CPIJ006763, respectively), which perfectly

matched the sequences in both species. Primers against the Y-

chromosome of An. gambiae and the dsRed-containing transgenic

cassette were used to quantify relative sperm numbers by standard

quantitative PCR in the remating experiment.

Found at: doi:10.1371/journal.pbio.1000272.s002 (0.09 MB PDF)

Table S2 Genomic locations of Plugin and TGase gene
predictions. VectorBase IDs that refer to incomplete or

otherwise incorrect gene predictions are indicated by an asterisk.

The genomic positions of our corrected predictions are indicated

by the chromosome arm (CA, orientation in parentheses) or the

super contig (SC) number, as well as the specific location. Only

Plugin and AGAP009099 were fully sequenced. The reported

locations of other genes refer only to ab initio predictions. Ab initio

predictions for mosquito TGase genes were determined using

BLAST searches using known TGases from other species and

scanning the resulting genomic regions with ab initio gene

prediction software (Fgenesh, Genescan, and Augustus). Each

consensus sequence was analyzed for conserved domains using

PFAM 22.0 and SMART 5.1 to ensure it contained the three

canonical TGase domains.

Found at: doi:10.1371/journal.pbio.1000272.s003 (0.08 MB PDF)

Table S3 Summary of MS/MS results. Proteins identified

by MS/MS analysis of mating plugs (plug), male accessory glands

(MAGs), and virgin female atria (atrium) are listed on separate

spreadsheets. Protein identifiers are the same as those listed in

Figure 1, and the locations refer to the chromosomal arm followed

by the exact position of the predicted proteins on the AgamP3

genome assembly. The total number of residues in each protein

prediction (the signal peptide has been removed where appropri-

ate) is described in the column ‘‘protein size’’ followed by the

number of residues identified in the MS/MS analysis (‘‘identi-

fied’’). These values were used to calculate the percentage

coverage. ‘‘Total hits’’ refers to the complete number of peptide

matches to each protein, including redundant matches found in

multiple gel bands or in more than one replicate sample. ‘‘N-R

hits’’ refers to the number of non-redundant peptide matches

across all gel bands and replicates. The expected mass of each

predicted protein (signal peptides removed where appropriate) was

calculated using Protein Calculator (http://www.scripps.edu/

,cdputnam/protcalc.html). The observed mass refers to the

approximate distance migrated by the gel band in which the

peptides were identified. When peptides matching a single protein

were identified in multiple bands, approximate sizes are separated

by semi-colons. For peptides found in many bands, only the range

is provided. Mascot protein assignments were based on nano-LC

MS/MS data with ion scores.60 (p,0.05) together with multiple

matches and total protein scores, with outliers accepted subject to

visual inspection and sequence verification. Inclusion of assign-

ments in the table was then further subject to confirmation by RT-

PCR.

Found at: doi:10.1371/journal.pbio.1000272.s004 (0.07 MB XLS)
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