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Abstract: The development of artificial intelligence (AI) algorithms has permeated the medical field
with great success. The widespread use of AI technology in diagnosing and treating several types
of cancer, especially colorectal cancer (CRC), is now attracting substantial attention. CRC, which
represents the third most commonly diagnosed malignancy in both men and women, is considered
a leading cause of cancer-related deaths globally. Our review herein aims to provide in-depth
knowledge and analysis of the AI applications in CRC screening, diagnosis, and treatment based
on current literature. We also explore the role of recent advances in AI systems regarding medical
diagnosis and therapy, with several promising results. CRC is a highly preventable disease, and
AI-assisted techniques in routine screening represent a pivotal step in declining incidence rates of
this malignancy. So far, computer-aided detection and characterization systems have been developed
to increase the detection rate of adenomas. Furthermore, CRC treatment enters a new era with
robotic surgery and novel computer-assisted drug delivery techniques. At the same time, healthcare
is rapidly moving toward precision or personalized medicine. Machine learning models have the
potential to contribute to individual-based cancer care and transform the future of medicine.

Keywords: artificial intelligence; colorectal cancer; colonoscopy; screening; computer-aided detection;
computer-aided diagnosis; robotic-assisted surgery; therapy; precision oncology

1. Introduction

Artificial intelligence (AI) is the field of computer sciences devoted to building smart
machines capable of performing tasks that typically require human-level intelligence [1].
Several AI applications are all around us, yet it can be hard to understand and evaluate
their impact on today’s society. Over the last decade, the significant contribution of deep
learning techniques and support vector machines (SVMs) to this advanced technology has
played a critical role in medicine and healthcare systems.

In general, AI applications in the medical field have two main branches: virtual
and physical. Machine learning (ML) and deep learning (DL, a subset of ML) constitute
the virtual component of AI [2]. ML algorithms are further classified into supervised,
unsupervised and reinforcement learning (Figure 1). Meanwhile, the most important deep
learning scheme, a convolutional neural network (CNN), represents a particular type of
multilayer artificial neural network that is highly efficient for image classification [3]. To
date, the progress in the development of neural network models has permeated the field
of medicine with great success [3]. In addition to the virtual part, the physical branch of
AI includes medical devices and robots, such as the da Vinci Surgical System (Intuitive
Surgical Inc., Sunnyvale, CA, USA) and nanorobots for targeted drug delivery [2].

Curr. Oncol. 2021, 28, 1581–1607. https://doi.org/10.3390/curroncol28030149 https://www.mdpi.com/journal/curroncol

https://www.mdpi.com/journal/curroncol
https://www.mdpi.com
https://doi.org/10.3390/curroncol28030149
https://doi.org/10.3390/curroncol28030149
https://doi.org/10.3390/curroncol28030149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/curroncol28030149
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com/article/10.3390/curroncol28030149?type=check_update&version=1


Curr. Oncol. 2021, 28 1582

Figure 1. An overview of the differences between artificial intelligence (AI), machine learning (ML), and deep learning (DL).

This novel technology has made unique contributions to the diagnosis and therapy of
several types of cancer, including colorectal carcinomas. With the intent of improving the
screening, diagnosis, and treatment strategies for colorectal cancer (CRC) patients, current
studies have shown that AI-guided care can play a pivotal role in clinical practice [4,5].
Recently, researchers designed AI models to reduce the rates of missed adenomas and the
risk of developing cancer by improving CRC screening outcomes [5,6]. Computer-aided
detection and characterization systems are now attracting increased interest and attention.
The AI assistance for colorectal polyp detection and optical diagnosis in colonoscopy may
help endoscopists make accurate and timely diagnoses [5].

Furthermore, CRC treatment enters a new era with robotic surgery and novel computer-
assisted drug-delivery techniques. At the same time, healthcare is rapidly moving toward
precision or personalized medicine [7]. Machine learning models have the potential to
contribute to individual-based cancer care and transform the future of medicine. Our
review herein aims to provide in-depth knowledge and analysis of the AI applications
in CRC screening, diagnosis, and treatment based on current literature. In addition, we
explore the role of recent advances in AI systems regarding medical diagnosis and therapy,
with several promising results.

2. Artificial Intelligence, Colorectal Cancer and Genomics

Overall, integrating AI algorithms with genetic testing has shown several promising
results for CRC. Based on gene expression, Hu et al. [8] performed a simulation experiment
to classify 53 colon cancer patients with the Union for International Cancer Control (UICC)
II into two groups: relapse and no relapse after surgery. The researchers compared the
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classification accuracy obtained by the S-Kohonen (91%), Back-propagation (BP, 66%), and
SVM (70%) neural networks. They suggested that the S-Kohonen neural network is more
effective for colon cancer classification. Based on SVM analyses, Xu et al. [9] conducted
a study to identify differentially expressed genes (DEGs) to distinguish patients with a
high recurrence risk of colon cancer. Interestingly, they identified a 15-gene signature that
may be useful as a predictor of recurrence risk and prognosis for colon cancer patients.
In 2019, Zhang et al. [10] proposed a sensitive and low-cost method for detecting the
B-rapidly accelerated fibrosarcoma (BRAF) gene mutation, which involves a substitution
of valine to glutamic acid at codon 600 (V600E). When used to test for the v-raf murine
sarcoma viral oncogene homolog B1 (BRAF) V600E mutation in colorectal carcinomas, the
current model demonstrated 100% diagnostic sensitivity, 87.5% diagnostic specificity and
93.8% diagnostic accuracy. This novel approach, which was based on near-infrared (NIR)
spectroscopy in conjunction with counter propagation artificial neural network (CP-ANN),
can also help distinguish between the BRAF V600E mutant and the wild type.

In 2015, a research group designed artificial neural networks to investigate the cor-
relation between genetic and environmental factors to DNA methylation in CRC [11]. A
few years later, Wang et al. [12] combined gene expression profiling data from The Cancer
Genome Atlas (TCGA) database and analysis with AI algorithms to improve CRC diagnosis.
They used BP and learning vector quantization (LVQ) neural networks to build four diag-
nostic models; Cancer/Normal, M0/M1, carcinoembryonic antigen (CEA) testing (<5/≥5),
and clinical staging (I–II/III–IV). The predictive accuracy and area under the curve of the
Cancer/Normal, M0/M1, CEA and Clinical stage models were 100%, 1.000; 87.14%, 0.670;
100%, 1.000; and 100%, 1.000, respectively. Furthermore, Wan et al. [13] proposed a machine
learning method using tumour-derived cell-free DNA that resulted in high sensitivity and
specificity. Their technique may constitute a promising future direction for further research
in early-stage CRC detection. In another study, Kel et al. [14] designed a method referred to
as “walking pathways” to identify potential methylated DNA biomarkers and then applied
AI techniques in order to analyze cancer-specific enhancers.

Increasing evidence shows that non-coding RNAs (ncRNAs) contribute to every
stage of colorectal tumorigenesis and cancer progression by influencing essential signaling
pathways, including WNT/β-catenin, phosphoinositide-3-kinase (PI3K)/ protein kinase B
(Akt), epidermal growth factor receptor (EGFR), NOTCH1, mechanistic target of rapamycin
(mTOR) and TP53 [15]. As current studies shed light on ncRNAs’ role in cancer diagno-
sis and treatment, identifying specific ncRNA expression alterations in colon tissue and
plasma/serum samples may prove valuable in early CRC diagnosis, prognosis prediction
and targeted therapy. Chang et al. [16] used artificial neural network analysis to compare
the expression profiles of 380 micro RNAs (miRNAs) in stage II colorectal tumours and
normal tissues. They identified a 3-miRNA signature (miR-139-5p, miR-3, and miR-17-92)
for predicting the tumour status in stage II CRC. With the intent of optimizing this method
and improving the prediction accuracy, a team of researchers designed a novel compu-
tational algorithm for miRNA-target prediction in colorectal carcinomas using a Naive
Bayes classifier [17]. The current model, which was named as CRCmiRTar, was also able
to unravel the CRC-specific interactions between miRNAs and target messenger RNAs
(mRNAs). In fact, identifying disease-specific miRNA target interactions may significantly
contribute to the development of potential drug targets.

In another study, a research group from Spain evaluated the performance of a
6-miRNA signature (miRNA19a, miRNA19b, miRNA15b, miRNA29a, miRNA335, and
miRNA18a) in plasma samples using a robust predictive model for the differentiation be-
tween healthy individuals and patients with CRC and advanced adenomas [18]. The SVM
classification model demonstrated 85% sensitivity and 90% specificity. Afshar et al. [19]
proposed an artificial neural network model, which accurately classified the sample data
into cancerous and non-cancerous by screening four CRC-specific miRNAs retrieved from
the Gene Expression Omnibus (GEO) database. In addition, Xuan et al. [20] suggested
using a dual CNN prediction model for discovering potential disease-related miRNAs.
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Their AI-based system, CNNDMP, explores the deep features of miRNA similarities, the
disease similarities, and the miRNA-disease associations. Case studies on breast, colorectal
and lung cancer confirm the powerful abilities of the CNNDMP for identifying potential
disease-related miRNAs.

To date, AI systems enable clinicians to predict the prognoses of patients with CRC.
Based on various machine learning methods, Gründner et al. [21] used gene markers to train
predictive models for measuring disease-free survival, overall survival, radio-chemotherapy
response and relapse. In another study, the researchers detected 40 SVM-classified sig-
nature genes in metastatic colorectal neoplasms, as well as adenosine monophosphate
(AMP)-activated protein kinase (AMPK) signaling and ubiquitin-mediated proteolysis
pathways [22]. These genes may be utilized as biomarkers for the prognosis of metastatic
CRC. Despite the lack of experimental validation, the current model can precisely distin-
guish the metastatic CRC samples from the non-metastatic ones. Recently, Ge et al. [23]
conducted a study to investigate the role of immune cells and immune-related gene expres-
sion in the surrounding tumour microenvironment of CRC. They used a deconvolution
algorithm, CIBERSORT, to analyze the infiltration of 22 immune cell types in the tumour
microenvironment and immune-related gene expression in 404 CRC and 40 adjacent non-
tumorous tissues. In general, their findings may eventually help clinicians accurately select
the targets for immunotherapies and individualize strategies for managing CRC patients.

3. Colorectal Cancer Screening

CRC represents the third most commonly diagnosed malignancy in both men and
women [24]. It is responsible for a significant increase in the estimated number of cancer-
related deaths worldwide [24]. Approximately 60–70% of CRC patients with clinical
manifestations are diagnosed at advanced stages of the disease [25]. However, early-stage
detection may improve the patients’ clinical outcomes in terms of avoiding delays in
treatment and reducing CRC morbidity and mortality [26].

CRC is a highly preventable disease, and routine screening appears to be an important
step in declining the incidence rates of this malignancy [27]. The alterations from normal
mucosa to a premalignant growth and then to a malignant lesion take almost 15 to 20 years.
The polyp–cancer sequence evolves slowly and may eventually take 10 or more years for
colorectal polyps to transform into malignant structures [28].

Effective screening methods have been developed to identify abnormal tissue, which
may be indicative of either a premalignant precursor lesion or an early-stage tumour [29–31].
Available modalities for CRC screening include invasive (colonoscopy and flexible sigmoi-
doscopy) and minimally invasive (capsule endoscopy) techniques, imaging examinations
(computed tomographic colonography), blood and stool tests, such as guaiac fecal occult
blood test (FOBT), fecal immunochemical test (FIT), and multitarget stool DNA (MT-sDNA)
test [32,33]. Machine learning algorithms may be utilized as non-invasive and cost-effective
methods to screen the CRC risk in large populations using personal health data [34].

3.1. Colonoscopy

The detection and resection of precancerous lesions during a colonoscopy are of utmost
importance to reduce the risk of developing CRC. Several studies have shown that even
though a colonoscopy is considered the “gold-standard” screening test, it is not perfect [35].
Indeed, it is worth mentioning at this point that interval cancer may be occasionally
detected in patients with a previously negative colonoscopy [35]. Interval colorectal cancer
is defined as a primary cancer diagnosed after a negative scheduled screening test within a
time period equal to the screening interval. In fact, previous research revealed that 8.6%
of cases with CRC occur within three years following a colonoscopy, which has yielded a
negative result [36].

High adenoma detection rate (ADR) is inversely correlated with adenoma miss rate
(AMR) and the risk of post-colonoscopy CRC [37,38]. Corley et al. demonstrated that
every 1% increase in ADR is associated with a 3% reduction in the risk of CRC develop-
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ment and a 5% reduction in the risk of fatal CRC [38]. Overall, ADRs may range from
7% to 53% between different endoscopists [38]. During the procedure, AMRs also vary
greatly between 6–27% depending on several factors [39]. Current evidence reveals that
these factors include the quality of preprocedural bowel preparation, time of withdrawal,
operator experience and training, use of sedation, cecal intubation rate, visualization of
flexures (blind spots), use of image-enhanced endoscopy and presence of flat or diminutive
(≤5 mm) and small (<10 mm but >5 mm) polyps [38,40–42]. Regarding the size of lesions,
a systematic review and meta-analysis showed that the total AMRs for adenomas between
1–5 mm, 5–10 mm, and larger than 10 mm were 26%, 13% and 2.1%, respectively [43].

Furthermore, several studies suggest that ADRs may be increased up to 30–50% with
an additional observer’s contribution to patients undergoing screening colonoscopy [44,45].
In view of the high risk of developing CRC, the assistance of real-time automatic polyp
detection systems could significantly reduce missed diagnosis rates and help clinicians
detect polyps in real-time. This subject represents an area of particular and growing interest
in the field of AI-assisted colonoscopy, along with the recent advancements in technology
and modern science. To date, technological progress is considered a necessary step in
minimizing the risk of missed diagnosis and helping endoscopists to visualize and evaluate
precancerous polyps. In fact, the significant role of computer-aided detection (CADe) and
diagnosis (CADx) systems during colonoscopy in automated polyp detection and further
characterization is recently discovered [5]. Current novel technologies have been applied
in order to aid adenoma detection by using deep learning techniques. With the intent of
improving ADRs, computer algorithms driven by CNNs may accurately detect and localize
the presence of premalignant lesions [46]. A CNN represents a particular type of artificial
neural network and deep learning technique that is highly effective at performing medical
image analysis [47] (Figure 2).

Figure 2. A convolutional neural network (CNN) design for colorectal polyp classification. CNN is a multilayer artificial
neural network typically composed of three types of layers; convolution, pooling, and fully connected layers. Feature
extraction from an input image is performed from the first two layers. The fully connected layers are used to map these
features into a final output. CNN, convolutional neural network.

Recently in the first prospective randomized controlled trial, Wang et al. [48] studied
the effect of a deep learning-based CADe model on polyp and adenoma detection rates.
Out of 1058 patients, 536 were randomized to a conventional colonoscopy, and 522 were
randomized to a colonoscopy with a computer-aided detection (CADe) system. Hollow
blue tracking boxes appeared on the screen to highlight the specific region of interest
and show the detected by algorithm polyps. In the CADe group, the results obtained
revealed an increase in both ADR (29.1% vs. 20.3%, p < 0.001) and the mean number of
identified adenomas per patient (0.53 vs. 0.31, p < 0.001), when compared with the standard
colonoscopy group. Interestingly, the high ADRs of the present automated polyp detection
system were attributed to the detection of a large number of diminutive polyps (185 vs. 102,
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p < 0.001). The results of this study also revealed that there was no statistical difference
in the detection of large adenomas between the two groups (77 vs. 58, p = 0.075), but a
major increase in the number of detected hyperplastic polyps in the CADe group was
noted (114 vs. 52, p < 0.001). Indeed, the impact of AI-assisted colonoscopy on identifying
small polyps, which could eventually be missed even by highly skilled endoscopists, is
widely realized. Even though there is a tendency to underestimate the correlation between
malignancy and the small size of polyps, high detection rates in diminutive polyps may
lower the risk of interval CRC. Mori et al. [49] demonstrated that CADx assistance during
a colonoscopy might also help endoscopists distinguish neoplastic from non-neoplastic
polyps, leading to a “diagnose-and-leave” strategy for the last ones.

3.2. Virtual Colonoscopy

Virtual colonoscopy or computed tomographic colonography (CTC) is a modified com-
puted tomography (CT) examination, which was first described in 1994 by Vining et al. [50]
and represents an alternative screening tool to conventional colonoscopy for CRC patients.
With the intent of improving colorectal polyp detection and classification, AI-based al-
gorithms may provide computer-aided solutions to achieve optimal diagnostic perfor-
mance and image quality in CTC. According to the Haralick texture analysis method,
Song et al. [51] presented a virtual pathological model to explore the usefulness of high-
order differentiations, including gradient and curvature. The results of this research
revealed that the area under the receiver operating characteristic (ROC) curve (AUC) of
classification in distinguishing colorectal lesions (neoplastic and non-neoplastic) was im-
proved from 0.74 (by using the image intensity solely) to 0.85 (by also using the texture
features from high-order differentiations). In another study, Grosu et al. [52] developed a
machine learning method to distinguish between benign and precancerous CTC-detected
colorectal polyps in an average-risk asymptomatic CRC screening sample. The current
classification algorithm showed promising results with a sensitivity of 82%, a specificity of
85%, and an AUC of 0.91.

Meanwhile, AI may also contribute to other challenging issues, such as the automatic
detection of flat neoplastic lesions, eventually reducing the interval cancer risk. According
to the Paris classification, adenomas may present as either protruding (pedunculated and
sessile) or non-protruding (elevated, flat and depressed) lesions [53,54]. In fact, the presence
of flat colorectal adenomas may represent an aggressive pathway in tumorigenesis and a
determining factor in increased AMRs [55]. In previous research, Taylor et al. [56] designed
a CADe model to examine its diagnostic capability for flat early-stage CRC (T1) using CTC.
The CADe system, which was applied at three settings of sphericity, revealed that there
was noted an inverse correlation between adenoma detection sensitivity and sphericity
(83.3%, 70.8% and 54.1% at sphericity of 0, 0.75, and 1, respectively), and a direct correlation
between accuracy and sphericity. Hence, the current study indicates that novel applications
of computer-aided systems through CTC may effectively detect even flat CRC.

3.3. Capsule Endoscopy (CE)

CE is a minimally invasive technique, usually well tolerated by the patients, which can
be used as an alternative approach for CRC screening, especially in incomplete colonoscopy
cases. Colon capsule endoscopy is generally based on the use of laxatives and requires
manual interpretation and analysis of the acquired images for colorectal lesion detection.
Overall, the capsule moves through the gastrointestinal (GI) tract depending on intestinal
motility. However, CE prolonged reading time, which may take about 45 min, can be partic-
ularly time-consuming [57,58]. It is worth noting that AI-based techniques may lead to high
ADRs by automating the reading and examination of the results and reducing the associ-
ated risk of human error [59,60]. In a research work conducted by Blanes-Vidal et al. [59],
a novel algorithm was developed to match CE and colonoscopy-identified polyps based
on three variables: their estimated size, location and morphology. Another algorithm was
also proposed in this study based on a deep convolutional neural network for automatic
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colorectal polyp detection and localization [59]. The current innovative AI-assisted model
resulted in high sensitivity (97.1%), specificity (93.3%), and accuracy (96.4%) for identifying
polyps when compared with the manual process of polyp detection.

3.4. Blood Tests

Furthermore, the impact of AI-assisted techniques on blood tests to identify early-stage
CRC is thoroughly examined. Regarding blood fluorescence spectroscopy, Soares et al. [61]
proposed a classification model composed of a binary SVM (first level) and a one-class
SVM (second level) classifier. At the first level, CRC samples were differentiated from
normal samples (87% sensitivity, 95% specificity). As for non-CRC samples, at the sec-
ond level, there were either non-malignant lesions or no findings at all (60% sensitivity,
79% specificity).

In general, blood test results and demographic characteristics may be used to evaluate
a person’s risk of developing CRC. Information from a complete blood count (CBC),
including findings indicative of either microcytic iron deficiency anemia or a combination
of anemia and elevated red cell distribution width (RDW), may help physicians estimate
the cancer risk [62–64]. In fact, previous research revealed that RDW showed a sensitivity of
84% and a specificity of 88% for right-sided colon cancer [46]. In a binational retrospective
study, Kinar et al. [63] used electronic medical records of two independent (unrelated)
groups of individuals (Israeli and UK datasets) and designed an AI-assisted prediction
model (MeScore®, Calgary, Alberta, Canada) for identifying people at high risk for CRC.
Taking into account a few parameters (age, sex, and CBC data collected 3 to 6 months
prior to the cancer diagnosis), there were observed comparable results between these
two different populations. Indeed, the results obtained (for the Israeli and UK validation
sets, respectively: AUC for CRC detection was 0.82 ± 0.01 and 0.81, specificity at 50%
sensitivity was 88 ± 2% and 94 ± 1%) suggest that the current risk prediction model should
be generally applied in other groups as well in order to identify those individuals requiring
further clinical evaluation and screening. The present study revealed that the combination
of this model and FOBT contributed to a 2.1-fold increase in cancer detection in the Israeli
dataset. Moreover, Kinar et al. [65] proposed using additional markers to improve the
accuracy of the CRC risk prediction algorithm.

In a current study [66], a machine learning-based algorithm that incorporates basic
patient characteristics and demographic data with CBC test results was evaluated to
identify patients at increased risk for CRC that may benefit from more intensive screening.
The ColonFlag® software uses age, sex, and CBC information, including inflammatory
cells, platelets, and red blood cell parameters, to generate a risk score for every individual.
This AI application in routine blood tests is considered a passive test and a valuable option
in identifying high-risk patients for CRC development, especially when the score is above
the defined threshold.

The process of detecting and isolating circulating tumour cells in peripheral blood
samples, could also be used as a novel method for CRC detection. In a cohort study of
47 subjects, the CellMax (CMx®) platform, an AI system based on the aforementioned
procedure, achieved clinical sensitivity and specificity of 80% [67]. In addition, based on
machine learning techniques, a current research work reported that AI applications could
assist in analyzing the content of specific serum protein biomarkers, including leucine-rich
alpha-2-glycoprotein 1 (LRG1), epidermal growth factor receptor (EGFR), inter-alpha-
trypsin inhibitor heavy-chain family member 4 (ITIH4), hemopexin (HPX) and superoxide
dismutase 3 (SOD3) in order to identify CRC with 70% sensitivity at over 89% specificity
(AUC = 0.86) [68]. To date, blood-based screening approaches have been developed in an
effort to detect the tumour at early stages.

4. Polyp Detection

Even though the colonoscopy is widely accepted as the “gold-standard” of CRC
screening methods, it is worth mentioning that the current procedure is not 100% sensitive.
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Several factors, such as suboptimal bowel preparation, morphology and small size of
polyps, are considered to affect the sensitivity of the colonoscopy. Using colonoscopy and
histopathological data from the Netherlands cancer registry between 2001 and 2010, a
retrospective population-based study revealed that 86.4% of post-colonoscopy CRC cases
were associated with inadequate colon examination and missed or incompletely resected
lesions during the previous colonoscopy examination [69]. The proportion of missed post-
colonoscopy CRCs is higher for the patients with right-sided, flat or small polyps [36,69].
Currently, innovative software models are developed to improve ADR and, therefore, lead
to the prevention of interval CRC [70,71]. A summary of recent studies on AI systems for
colorectal polyp detection is presented in Table 1 [48,71–87].

Table 1. Summary of recent studies on AI systems for colorectal polyp detection.

Author, Year Country Study Design AI Algorithm Type of Images Outcomes

Fernández-
Esparrach

et al., 2016 [71]
Spain Retrospective WM-DOVA

energy maps
24 videos containing
31 colorectal polyps

Sensitivity: 70.4%
Specificity: 72.4%

Geetha et al.,
2016 [72] India Ex vivo Hand

crafted
Still images,
703 frames

Sensitivity: 95%
Specificity: 97%

Yu et al.,
2017 [73] China Ex vivo CNN Videos, ASU-Mayo

18 colonoscopy videos
Sensitivity: 71%

PPV: 88%

Zhang et al.,
2017 [74] China Ex vivo CNN Still images Accuracy: 86%

AUC: 1

Billah et al.,
2017 [75] Bangladesh Ex vivo CNN 14,000 still images

Sensitivity: 99%
Specificity: 99%
Accuracy: 99%

Misawa et al.,
2018 [76] Japan Ex vivo CNN Videos

Per-frame sensitivity: 90%
Specificity: 63.3%
Accuracy: 76.5%

Per-polyp sensitivity: 94%
False positive rate: 60%

Urban et al.,
2018 [77] United States Ex vivo CNN Videos Sensitivity: 90%

Figueiredo
et al., 2019 [78] Portugal Retrospective SVM binary

classifiers

42 colonoscopy videos
containing 1680 frames

with polyps and
1360 frames

without polyps

Sensitivity: 99.7%
Specificity: 84.9%
Accuracy: 91.1%

Klare et al.,
2019 [79] Germany

In vivo,
prospective

cohort

KoloPol
software

Real-time
colonoscopy

Per-polyp sensitivity: 75%
ADR in CADe group

vs colonoscopy group:
29% vs. 31%

Yamada et al.,
2019 [80] Japan Ex vivo CNN Videos

Sensitivity: 97.3%
Specificity: 99%

AUC: 0.975

Wang et al.,
2019 [48] China Prospective,

RCT EndoScreener Real-time
colonoscopy

ADR in CADe group vs.
standard colonoscopy group:

29.1% vs. 20.3%, p < 0.001
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Table 1. Cont.

Author, Year Country Study Design AI Algorithm Type of Images Outcomes

Liu et al.,
2020 [81] China Prospective,

RCT Henan Tongyu Real-time
colonoscopy

ADR in CADe group
vs control group:

39.2% vs. 24%

Su et al.,
2020 [82] China Prospective,

RCT Deep CNNs Real-time
colonoscopy

ADR in CADe group
vs control group:
28.9% vs. 16.5%

Ozawa et al.,
2020 [83] Japan Ex vivo CNN 7077 images

Sensitivity: 92%
Accuracy: 83%

PPV: 86%

Gong et al.,
2020 [84] China Prospective,

RCT ENDOANGEL Real-time
colonoscopy

ADR in CADe group
vs. control group:

16% vs. 8%

Wang et al.,
2020 [85] China Double-blind,

RCT EndoScreener Real-time
colonoscopy

ADR in CADe group
(484 patients)

vs control group
(478 patients):
34.1% vs. 28%

Hassan et al.,
2020 [86] Italy Retrospective GI Genius 338 videos Per-lesion sensitivity: 99.7%

Repici et al.,
2020 [87] Italy RCT GI Genius Real-time

colonoscopy

ADR in CADe group
vs. control group:
54.8% vs. 40.4%

AI: artificial intelligence; WM-DOVA: Window Median Depth of Valleys Accumulation; CNN: convolutional neural network; PPV: positive
predictive value; AUC: area under the curve; SVM: support vector machine; ADR: adenoma detection rate; CADe: computer-aided
detection; RCT: randomized controlled trial.

Karkanis et al. [88] designed a CADe algorithm for polyp identification using color and
texture analysis of the mucosal surface based on color wavelet covariance (CWC) features.
By examining a dataset of 180 frame images extracted from 60 colonoscopic video sequences
containing small polyps, the current method demonstrated a sensitivity and a specificity
of 99.3 ± 0.3% and 93.6 ± 0.8%, respectively, for automatic colorectal polyp detection.
However, this CADe software was able to identify precancerous lesions in static endoscopic
images rather than being a real-time polyp recognition system during ongoing colonoscopy.

In 2016, Fernández-Esparrach et al. [71] developed and tested a model for using Window
Median Depth of Valleys Accumulation (WM-DOVA) energy maps, which defined the
presence of polyps and their boundaries, on 24 colonoscopy videos with 31 different polyps.
However, this method yielded only 70.4% sensitivity and 72.4% specificity for polyp detection.
In fact, the presence of vessels, stools, and folds gave rise to some false-positive results.

A deep learning detection model was proposed by Urban et al. [77] in order to evaluate
the ability of a computer-aided image analysis system based on CNNs to identify polyps.
In this work, a set of 8641 images with a total number of 4088 polyps derived from more
than 2000 colonoscopy videos was utilized for training the current deep CNN. The CADe
model detected polyps with an AUC of 0.991 and a cross-validation accuracy of 96.4%. In
the analysis of nine randomly selected colonoscopy videos (n = 28 resected polyps), four
expert reviewers detected eight additional polyps without the present CADe assistance
(n = 36) and an additional seventeen polyps with CADe assistance (n = 45). This AI-based
model showed a false positive rate of 7%.

Misawa et al. [76] designed a CADe system and evaluated its performance using
a sample of 73 videos with 155 different polyps. Their technique displayed promising
results in lowering AMRs, particularly when applied to small polyps. Frame-based (90%
sensitivity, 63.3% specificity, and 76.5% accuracy) and polyp-based (94% sensitivity and
60% false-positive rate for polyp detection) analyses were conducted in the current study.
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Another interesting research was performed in 2018 by Wang et al. [89] for auto-
mated polyp detection. A deep learning algorithm for colorectal polyp detection during
colonoscopy was developed using a sample of 5545 images obtained from 1290 patients.
Their method was evaluated based on four independent datasets. The researchers used
Dataset A (27,113 static images from 1138 patients during a colonoscopy with at least one
identified colorectal polyp showing per-image sensitivity, specificity, and AUC of 94.38%,
95.92%, and 0.984, respectively) and Dataset B (a public database of 612 images extracted
from 29 video sequences showing per-mage sensitivity of 88.24%) for colonoscopy image
analysis. They also used both Dataset C (a collection of 138 videos with histologically con-
firmed polyps from 110 patients with a per-image and per-polyp sensitivity of 91.64% and
100%, respectively) and Dataset D (54 unaltered videos without polyps with a per-mage
specificity of 95.4%) for colonoscopy video analysis. This technique significantly con-
tributed to real-time colonoscopy video analysis via processing at least 25 frames/second
with a latency of 76.80 ± 5.60 milliseconds.

In general, a colonoscopy is an operator-dependent procedure, even though it remains
the “gold-standard” procedure for polyp identification and localization. Therefore, one
of the main questions that remains to be answered is whether challenges associated with
the camera’s viewpoint, light conditions, size and morphology of colorectal polyps during
routine colonoscopy may be overcome with the contribution of CADe systems. Indeed,
AI-assisted models may be used as an «extra pair of eyes» and improve ADRs, especially
with real-time computer-aided colonoscopy. However, further data collection and research
are required to evaluate the performance of CADe systems in automatic polyp detection.

5. Polyp Characterization

In addition to polyp detection, computer-aided systems have shown great potential
to improve the accuracy of histology prediction and characterization of colorectal polyps
during a colonoscopy examination. In fact, an AI-based model may act as a virtual
assistant to the endoscopists by enhancing their learning phase, differentiating neoplastic
lesions from non-neoplastic mimickers, and predicting the presence or even the depth of
submucosal invasion in patients with colorectal carcinomas [90,91]. Artificial intelligence
for real-time optical diagnosis may also help determine the most appropriate treatment
approach and avoid any unnecessary polypectomies or their associated post-procedural
complications. With the intent of directing the rapid endoscopic technology development,
the Preservation and Incorporation of Valuable endoscopic Innovations (PIVI) initiative
(an American Society for Gastrointestinal Endoscopy (ASGE) program) suggested that a
novel technology should achieve a threshold of negative predictive value (NPV) >90% for
the optical diagnosis of diminutive colorectal polyps [92]. A summary of recent studies on
AI systems for colorectal polyp characterization is presented in Table 2 [49,83,93–107].

Indeed, AI applications could direct the endoscopists in adopting a “diagnose-and-
leave” strategy for hyperplastic polyps and a “resect-and-discard” strategy for diminu-
tive colorectal adenomas, and hence reducing the healthcare costs associated with a
colonoscopy [108]. To date, various methods have been developed and showed promising
results for polyp characterization. In a recent study, Min et al. [101] designed a novel CADx
system to predict the histology of colorectal polyps (adenomatous vs. non-adenomatous)
by analyzing linked color imaging (LCI) images. The current algorithm demonstrated
an accuracy of 78.4% (comparable to that of expert endoscopists) with 83.3% sensitivity,
70.1% specificity, 82.6% positive predictive value (PPV) and 71.2% NPV in distinguishing
adenomatous from non-adenomatous polyps. At present, computer-aided models are also
used to include information collected from dynamic fluorescence imaging during ongoing
surgery to characterize the suspected lesions by their biology [109]. This intraprocedural
approach could provide an analysis in a continuous fashion, which is more akin to real-life
than an image-by-image analysis.
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Table 2. Summary of recent studies on AI systems for colorectal polyp characterization.

Author, Year Country Study Type Patients/Polyps Imaging Modality AI Algorithm Real-Time Outcomes Notes

Kominami et al.,
2016 [93] Japan Prospective 41/118 Magnifying NBI SVM Yes

Sensitivity: 93%
Specificity: 93.3%
Accuracy: 93.2%

PPV: 93%
NPV: 93.3%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Misawa et al.,
2016 [94] Japan Retrospective NA/100 Endocytoscopy

with NBI EndoBRAIN No

Sensitivity: 84.5%
Specificity: 97.6%

Accuracy: 90%
PPV: 98%, NPV: 82%

Histologic findings were used as the
reference standard

Mori et al.,
2016 [95] Japan Retrospective 123/205 Endocytoscopy SVM No

Sensitivity: 89%
Specificity: 88%
Accuracy: 89%

PPV: 95%
NPV: 76%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Takeda et al.,
2017 [96] Japan Retrospective 76/76 Endocytoscopy SVM No

Sensitivity: 89.4%
Specificity: 98.9%
Accuracy: 94.1%

PPV: 98.8%
NPV: 90.1%

CADx system for differentiation
between invasive CRC and

adenomatous polyps. Histologic
findings were used as the

reference standard

Komeda et al.,
2017 [97] Japan Retrospective NA/NA

A combination of
WLE, NBI and

Chromoendoscopy
CNN Yes Accuracy: 75.1% Histologic findings were used as the

reference standard

Chen et al.,
2018 [98] Taiwan Prospective 193/284 Magnifying NBI CNN

No
(real-time
capability)

Sensitivity: 96.3%
Specificity: 78.1%
Accuracy: 90.1%

PPV: 89.6%
NPV: 91.5%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Mori et al.,
2018 [49] Japan Prospective 325/466

Endocytoscopy with
NBI and MB

staining modes
SVM Yes

Sensitivity: >90%
Specificity: ~70% for
identifying proximal

diminutive adenomas.
Accuracy: 98.1%

NPV: 96.4%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard
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Table 2. Cont.

Author, Year Country Study Type Patients/Polyps Imaging Modality AI Algorithm Real-Time Outcomes Notes

Renner et al.,
2018 [99] Germany Retrospective NA/100 WLE, NBI Deep neural

network No

Sensitivity: 92.3%
Specificity: 62.5%

Accuracy: 78%
PPV: 72.7%
NPV: 88.2%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Byrne et al.,
2019 [100] Canada Retrospective NA/106 NBI CNN Real-time

capability

Sensitivity: 98%
Specificity: 83%
Accuracy: 94%

PPV: 90%
NPV: 97%

Diminutive polyps were involved.
Histologic findings were used as the

reference standard

Min et al.,
2019 [101] China Prospective 91/181 LCI Gaussian

mixture model No

Sensitivity: 83.3%
Specificity: 70.1%
Accuracy: 78.4%

PPV: 82.6%
NPV: 71.2%

Endoscopists were used as controls.
Histologic findings were used as

the reference standard

Sánchez-Montes
et al., 2019 [102] Spain Retrospective NA/225 WLE SVMs No

Sensitivity: 92.3%
Specificity: 89.2%
Accuracy: 91.1%

PPV: 93.6%
NPV: 87.1%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Lui et al.,
2019 [103] China Retrospective NA/76 WLE, NBI CNN No

Sensitivity: 88.2%
Specificity: 77.9%
Accuracy: 85.5%

CADx system for
invasive CRC

diagnosis. Endoscopists were used as
controls. Histologic findings were

used as the reference standard

Horiuchi et al.,
2019 [104] Japan Prospective 95/429 AFI

Color intensity
analysis
software

Yes

Sensitivity: 80%
Specificity: 95.3%
Accuracy: 91.5%

PPV: 85.2%
NPV: 93.4%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard
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Table 2. Cont.

Author, Year Country Study Type Patients/Polyps Imaging Modality AI Algorithm Real-Time Outcomes Notes

Ozawa et al.,
2020 [83] Japan Retrospective 174/309 NBI CNN

No
(real-time
capability)

Sensitivity: 97%
PPV: 84%
NPV: 88%

AI system for characterization and
detection of colorectal polyps.

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Rodriguez-Diaz
et al., 2020 [105]

United
States Prospective 119/280 Magnifying NBI

DL, a semantic
segmentation

model based on
DeepLab V3+

framework with
ResNet18-based
feature extractor

Yes

Sensitivity: 96%
Specificity: 84%

NPV: 91%, HCR: 88%
For diminutive colorectal
polyps: Sensitivity: 95%

Specificity: 88%
NPV: 93%, HCR: 86%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Jin et al.,
2020 [106]

South
Korea Prospective NA/300 NBI CNN No

Sensitivity: 83.3%
Specificity: 91.7%
Accuracy: 86.7%

PPV: 93.8%
NPV: 78.6%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

Kudo et al.,
2020 [107] Japan Retrospective NA/2000

Endocytoscopy with
NBI and MB

staining modes
EndoBRAIN No

NBI
Sensitivity: 96.9%
Specificity: 94.3%

Accuracy: 96%
PPV: 96.9%
NPV: 94.3%

Stained images
Sensitivity: 96.9%
Specificity: 100%
Accuracy: 98%

PPV: 100%
NPV: 94.6%

Diminutive polyps were involved.
Endoscopists were used as controls.
Histologic findings were used as the

reference standard

AI: artificial intelligence; NBI: narrow-band imaging; SVM: support vector machine; PPV: positive predictive value; NPV: negative predictive value; NA: not available; CADx: computer-aided diagnosis; CRC:
colorectal cancer; WLE: white light endoscopy; CNN: convolutional neural network; MB: methylene blue; LCI: linked color imaging; AFI: autofluorescence imaging; DL: deep learning; HCR: high-confidence rate.
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5.1. Magnification Endoscopy with Narrow-Band Imaging (NBI)

NBI, as an advanced endoscopic imaging modality, allows better visualization and
assessment of the mucosal surface and microvascular patterns [110]. This technique is
particularly essential in differentiating benign from premalignant lesions and evaluating the
depth of submucosal infiltration [111–113]. Magnifying colonoscopy combined with NBI
enables the endoscopists to improve the diagnostic accuracy of real-time optical diagnosis.

At first, Tischendorf et al. [114] designed and evaluated a computer-aided classification
system on 128 patients with 209 colorectal polyps who underwent magnification endoscopy
with NBI. However, the diagnostic accuracy of this algorithm (85.3%) was relatively lower
than that of expert endoscopists. In 2011, Gross et al. [115] developed a computer-assisted
model for polyp classification, which yielded a sensitivity, specificity and accuracy of 95%,
90.3%, and 93.1%, respectively. This algorithm was based on the analysis of nine selected
vessel features, such as perimeter and brightness, from a total number of 214 patients
with 434 colorectal polyps who underwent magnifying endoscopy with NBI. The results
of this classification system were comparable to those of expert endoscopists (sensitivity,
specificity and accuracy of 93.4%, 91.8%, and 92.7%, respectively) and significantly superior
to those of novice endoscopists (sensitivity, specificity and accuracy of 86%, 87.8%, and
86.8% respectively). Concerning polyp characterization, research teams at Hiroshima
University in Japan created novel CADx systems to predict neoplastic vs. non-neoplastic
colorectal polyps with accurate and consistent diagnostic performance, suggesting that
even real-time histological diagnosis is achievable as well [93,111,116–120].

Interestingly, Chen et al. [98] designed a deep learning model to classify diminutive
colorectal polyps, which yielded a sensitivity of 96.3%, a specificity of 78.1% with an accu-
racy of 90.1%, PPV of 89.6%, and NPV of 91.5%. A sample of magnifying NBI images with
284 diminutive colorectal polyps extracted from a total number of 193 patients was tested
to evaluate the diagnostic accuracy of the current computer-aided system. This algorithm
was able to distinguish neoplastic from hyperplastic lesions in a shorter time compared
to the time required by expert and trainee endoscopists (0.45 ± 0.07 s vs. 1.54 ± 1.30 s
vs. 1.77 ± 1.37 s). In 2019, Byrne et al. [100] tested their deep CNN model on histology
prediction by using 125 unaltered videos of colorectal polyps during a routine colonoscopy.
Even though the algorithm did not generate sufficient confidence to predict the histo-
logical diagnosis of 19 diminutive colorectal polyps in the test set, the system showed
98% sensitivity, 83% specificity, 94% accuracy, 90% PPV and 97% NPV for the remaining
106 diminutive polyps.

5.2. Magnifying Chromoendoscopy

Magnifying chromoendoscopy represents a time-efficient technique, which allows the
optical diagnosis of colorectal lesions, commonly resulting in high diagnostic performance
(97.8% sensitivity, 91.4% specificity, and 97.1% accuracy when performed by experts) [121].
In this procedure, dye spray (indigo carmine or crystal violet) is used along with a high-
resolution magnifying colonoscope to improve the inspection and analysis of pit patterns of
the polyp surface. With the intent of improving the diagnostic accuracy in histology predic-
tion of colorectal lesions, Häfner et al. [122] proposed an algorithm based on texture feature
extraction approaches in the wavelet-domain. In another study, Takemura et al. [123] cre-
ated a software model based on quantitative analysis of pit patterns for the differential
diagnosis of colorectal lesions. Overall, texture and quantitative analysis (such as area,
perimeter and circularity) of pit patterns represent two major techniques commonly used
in automated computer-aided systems.

5.3. Endocytoscopy

Endocytoscopy constitutes an emerging endoscopic imaging modality, which allows
in vivo microscopic imaging and real-time diagnosis of cellular structures at particularly high
magnification (up to 400-fold or even up to 1400-fold magnification power in endoscope-based
or probe-based endocytoscopy, respectively) during ongoing colonoscopy [124]. Based on
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the principle of contact light microscopy, this procedure enables the inspection of the
superficial mucosal layer after the preparation and prestaining of the colonic mucosa
with absorptive contrast agents, such as toluidine blue [124,125]. The application of such
endoscopic techniques in clinical practice may lead to easier robust endocytoscopic image
analysis using computer-aided software.

A Japanese research group conducted studies on newly designed computer-aided
algorithms for in vivo histological differentiation of colorectal lesions using an endocy-
toscopy [126]. At first, they adjusted their model based on six nuclear features (area,
standard deviation of area, circularity, circularity of the 20 largest nuclei, shortest and
longest diameter) after nuclear segmentation from the endocytoscopic images. The present
system demonstrated 92% sensitivity and 89.2% accuracy in establishing a precise diagno-
sis of polyp pathology. In the next few years, this research team enhanced their software
algorithm by extracting features from texture analysis and utilizing SVM as a classifier
for benign, adenomatous lesions or invasive carcinoma [95,127]. These researchers also
developed another computer-assisted model based on a combination of endocytoscopy and
NBI without using any dye solutions [94]. In fact, they assessed the microvessel findings
from the polyp surface, showing an overall accuracy of 90%. Similarly, Takeda et al. [96]
investigated the role of a computer-aided endocytoscopy system on the optical diagno-
sis of invasive colorectal carcinoma, and their algorithm yielded 89.4% sensitivity, 98.9%
specificity, 94.1% accuracy, 98.8% PPV, and 90.1% NPV.

5.4. Confocal Laser Endomicroscopy

Confocal laser endomicroscopy, which represents a microscopic imaging modality,
enables in vivo observation of cellular and subcellular structures (up to 250 µm in depth)
at 1000-fold magnification power [128]. Based on the k-nearest neighbor classification,
Andre et al. [129] suggested using an automated polyp characterization system, which
showed an accuracy of 89.6% in distinguishing malignant from benign lesions. In another
research work based on neural network analysis, Ştefănescu et al. [130] developed a
diagnostic algorithm using confocal laser endomicroscopy images with an accuracy of
84.5% in the differentiation of advanced colorectal adenocarcinomas from the normal
intestinal mucosa. However, the evaluation of the diagnostic performance of this procedure
requires further assessment with randomized controlled trials.

5.5. Laser-Induced Fluorescence Spectroscopy (LIFS)

Laser-induced fluorescence spectroscopy (LIFS) is a technique carried out to provide a
real-time prediction of lesion pathology by analyzing in vivo fluorescence emission from
the targeted tissue, either healthy or neoplastic. At first, using LIFS, Kuiper et al. [131]
conducted a study to assess the diagnostic performance of WavSTAT (Spectrascience Inc.,
San Diego, CA, USA), an optical biopsy device that is incorporated into a standard biopsy
forceps. However, the diagnostic accuracy of the WavSTAT system alone and the algo-
rithm combining a high-resolution endoscopy with WavSTAT proved to be insufficient for
in vivo optical diagnosis of small lesions. In 2016, Rath et al. [132] evaluated LIFS using
the new WavSTAT4 system for real-time in vivo prediction of colorectal polyp histology.
Their system was tested on 137 diminutive polyps from 27 patients during screening or
surveillance colonoscopy and achieved an overall accuracy of 84.7% with 81.8% sensi-
tivity, 85.2% specificity, and 96.1% NPV. This novel technology allows accurate real-time
differentiation of colorectal lesions reducing the costs and risks associated with diminutive
polyps’ resection.

5.6. Autofluorescence Endoscopy (AFE)

The autofluorescence imaging (AFI) endoscope could be used for colorectal polyp
characterization, analyzing the color differences in fluorescence emission of the tissue
(emerging from endogenous fluorophores such as collagen and flavins) after the exposure
and excitation by a light source. Using color analysis models may significantly contribute
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to the differentiation of non-neoplastic from neoplastic lesions during a colonoscopy
examination based on AFI. In Japan, research groups conducted studies to assess the
performance of novel computer-aided software on numerical color analysis, calculating the
green/red ratios of the image during AFE, with several promising results [133,134].

5.7. White Light Endoscopy (WLE)

White light endoscopy (WLE) represents an endoscopic modality that could be used
in combination with computer-assisted models to discriminate between neoplastic and
non-neoplastic lesions. In a recent study, Komeda et al. [97] applied a CNN system for
polyp classification using WLE with only 75.1% accuracy. They support the assertion that
the diagnostic performance of WLE is inferior to NBI or chromoendoscopy with or without
magnification. Further investigation is required to assess the accuracy of WLE combined
with computer-aided software for colorectal lesion characterization.

6. Treatment
6.1. Robotic-Assisted Surgery

Colorectal cancer treatment enters a new era with the contribution of robotic colorectal
surgery, an advanced form of minimally invasive surgery. To date, the da Vinci System
(available models: da Vinci Si, X, Xi, SP) represents the most widely used robotic surgical
system globally. It enables surgeons to perform very delicate or even highly complex
procedures using wristed instruments with seven degrees of freedom. Robot-assisted
surgery offers not only significant benefits to the patients but also the surgeons. These
advantages include shorter length of recovery and hospital stay, minimal scarring, smaller
incisions, and a significant reduction in the risk of surgical site infections, postoperative
pain and blood loss compared to traditional open surgery [135,136]. Computer-controlled
devices allow the surgeons to operate with enhanced visual field, flexibility, dexterity,
precision, and minimal fatigue. The da Vinci dual-console also allows integrated teaching
and supervising and offers the potential to alter residents’ surgical training. The Senhance
surgical robotic system (TransEnterix Surgical Inc., Morrisville, NC, USA) is a laparoscopy-
based system that enables experienced laparoscopic surgeons to turn to more complex
procedures. Hirano et al. suggested the use of the present system as a safe, effective and
precise surgical treatment in patients with colon cancer [137].

Based on current research, when compared with open surgery for colorectal cancer,
robotic surgery appeared to result in a less pronounced inflammatory response and lower
complication and conversion rates [138,139]. Meanwhile, there is a plethora of literature
suggesting that both robotic and laparoscopic approaches are equivalent in terms of peri-
operative outcomes for CRC patients [140]. However, previous studies showed enhanced
postoperative recovery and better conversion rates regarding robot-assisted surgery for
rectal cancer [141–143]. Park et al. [144] mentioned that the conversion rate in the laparo-
scopic vs. the robotic group was 7.1% vs. 0 (p = 0.003), respectively, when performed by
an experienced operator. At this point, it is essential to understand that the safety and
success of a particular surgical procedure significantly depend on the adequacy of surgeons’
training. So far, the learning curve for robotic colorectal surgery seems to be shorter than
that required for conventional laparoscopic surgery [6].

The laparoscopic approach for rectal cancer resection is considered technically chal-
lenging in several cases, including male, obese patients or patients with difficult pelvic
anatomy [145,146]. The robotic platform offers particular advantages by providing access
to hard-to-reach areas, such as a narrow pelvis, and preserving the postoperative urinary
and sexual function integrity [147]. Indeed, in the ROLARR randomized clinical trial,
Jayne et al. reported that laparoscopic rectal surgery was associated with higher conversion
rates in males, obese patients and patients undergoing a low anterior resection compared
to robotic surgery [146]. Current studies also revealed that robotic-assisted surgery appears
to be more suitable for pelvic autonomic nerve protection [147,148].
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6.2. Chemotherapy

Based on computer-aided drug delivery techniques, Cruz et al. [149] developed a
model to detect the half-maximal inhibitory concentration of a drug against the human
colon carcinoma HCT116 cell line using molecular and nuclear magnetic resonance. The
current method achieved an overall prediction accuracy of over 63% for both training
and test sets. The improvement of docking-based virtual screening represents another
challenging issue in drug discovery. Berishvili et al. [150] created a deep neural network
algorithm to develop anticancer drugs that inhibit PI3K alpha (PI3Ka) and tankyrase,
promising targets for CRC treatment. Novel techniques of tumour targeting focus on the
use of nanoparticles as pharmaceutical carriers [151]. Alternatively, medical nanorobotic
agents could be effective in cancer treatment by achieving an optimal targeting approach.
Martel et al. [152] proposed using a computer-aided magnetotactic displacement technique
to navigate and deliver the drug-loaded magnetotactic bacteria MC-1 towards the hypoxic
areas of tumours.

With the intent of identifying the pathological complete responder (CR) and non-
responder (NR) patients after neoadjuvant chemoradiotherapy (CRT) in locally advanced
rectal cancer (LARC), Ferrari et al. [153] used the random forest algorithm to create two
AI models. Analyzing the textural features of T2-weighted magnetic resonance (MR)
images, the current models demonstrated an AUC of 0.86 and 0.83 for pathological CRs
and NRs, respectively. In another research concerning patients with LARC, Shi et al. [154]
constructed a CNN model to predict the neoadjuvant CRT response based on data collected
from pre-treatment and early-treatment follow-up magnetic resonance imaging (MRI,
3–4 weeks after starting CRT). Abraham et al. [155] used a machine learning approach
to identify a 67-gene signature (the “FOLFOXai” signature) predictive of the efficacy of
oxaliplatin-based chemotherapy combined with bevacizumab in patients with metastatic
colorectal carcinomas. Consequently, these AI applications may help physicians to provide
more effective treatment strategies even at the early stages of CRT. Interestingly, using
machine learning techniques, Oyaga-Iriarte et al. [156] conducted a study to predict whether
metastatic CRC patients would suffer from high degrees of toxicity of a drug referred to
as irinotecan (showing accuracy of 76%, 75% and 91% for leukopenia, neutropenia and
diarrhea, respectively).

7. Current Status of Precision Oncology in Colorectal Cancer

The inherent tumour heterogeneity lends itself to the rapidly emerging field of preci-
sion medicine (or personalized medicine) [7]. Precision oncology (or personalized cancer
medicine), a significant translational medicine paradigm, may assist physicians in guiding
management decisions of cancer patients by achieving a more personalized and targeted
therapy. This approach tailors treatment strategies to the individual patient considering
each person’s variability in genes, environment, and lifestyle [157].

Based on genetically altered cancer genes that affect drug responses, precision on-
cology aims to provide more effective targeted treatment and new hope for stratifying
therapeutic strategies. In 2019, a research team developed a machine learning-based al-
gorithm to detect specific patient subpopulations that react in a different manner to the
inhibitors of the same or different targets, simultaneously gaining a better understanding
of the mechanisms of resistance and pathway cross-talk [158]. The current model may
identify new cancer subpopulations, their genetic biomarkers, and drug combinations with
improved efficacy [158].

S100A9, a calcium-binding protein, may represent a potential therapeutic target for
CRC. Based on machine learning techniques, Lee et al. [159] developed an algorithm to
predict the protein–protein interactions of S100A9 with drugs and then evaluated the drug
specificity on 2D molecular descriptors. In another study, the authors designed an AI
model to identify candidate molecular biomarkers for CRC by integrating transcriptomics
and proteomics data at the system biology level [160]. Based on RNA-sequencing data,
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Pacheco et al. [161] constructed a metabolic model to identify those drugs that target cancer-
specific metabolism.

Currently, a research group used machine learning techniques and specific phenotypic
studies accompanied by mechanistic studies, chemical genetics, and omics assays to suc-
cessfully predict disease-drug pairs with the intent of repurposing existing drugs for CRC
treatment [162]. Furthermore, according to the data collected in the preoperative period,
Horta et al. [163] designed a prediction model to postoperatively support clinical decisions
for the co-management between internists and surgeons of the selected patients.

“Watson for Oncology” (WFO, IBM Corporation, United States) represents an AI-
based system that may assist in the field of precision oncology. During clinical trials,
nearly 90% of Watson’s treatment recommendations were in line with those of its human
teachers [164]. In Japan, a research group implemented IBM Watson for the whole genome
sequencing and analysis of cancer patients and produced results within only four days [165].
As all these revolutionary approaches to cancer patients’ care hold the key to effective
treatment in the near future, we should move away step by step from the one-size-fits-all
model. Hippocrates [166], who is regarded as the father of western medicine, almost
2500 years ago, advised: “give different [liquid medicines] to different patients, for the
sweet ones do not benefit everyone, nor do the astringent ones, nor are all the patients
able to drink the same things”. In summary, it is worth mentioning that the contribution
of artificial intelligence and highly personalized therapeutic methods to cancer treatment
may improve the clinical outcomes by providing “the right drug for the right patient at the
right time [167]”.

8. Solutions, Limitations and Future Directions

AI provides computer-aided solutions with significant benefits for CRC patients.
Advances in deep learning techniques paved the way to enhance our understanding of
colorectal tumorigenesis and cancer progression. Novel methods assist doctors in detecting
and diagnosing premalignant and malignant lesions based on images and biopsy samples.
AI algorithms are used to develop targeted treatment strategies for the patients promoting
the personalization of CRC management. In fact, these technological advancements im-
prove the speed and accuracy of diagnoses. Computer-aided systems are not subject to
distraction or fatigue, and intra-observer variation.

To date, AI tools can at least match or even exceed human performance for CRC
detection and diagnosis [168]. CADe models may act as a “second observer” during
colonoscopy procedures and become useful for junior endoscopists’ training [71]. AI
systems are also used for quality assessment of screening and diagnostic procedures.
Indeed, based on natural language processing (NLP), researchers designed and tested a
model across multiple institutions to measure colonoscopy quality [169]. Most AI-powered
virtual assistants provide personalized healthcare services and improve the communication
between patients and care providers. In addition, AI-based applications in mobile devices,
such as the Colorectal Cancer Awareness Application (ColorApp), may be used to improve
community education and participation in CRC screening programs [170].

Despite the significant benefits of AI applications in CRC diagnosis and treatment, the
development of AI-based technology faces several limitations. Indeed, the ability to train a
machine to “think” like a human being is a complex task, and its success depends on many
factors. First, the difficulty of integrating this advanced technology into clinical workflows
and large-scale implementation is considered an essential obstacle in AI progress. As new
approvals of these novel methods become available by governmental and professional
organizations, it will become even easier to use AI tools for standard patient care in daily
practice. In addition to obstacles for the Food and Drug Administration (FDA) approval,
developing AI models is considered a notoriously expensive process [171].

Furthermore, without sufficient high-quality training data and robust computational
infrastructure, even the most state-of-the-art algorithms are doomed to failure [172]. In
general, deep learning algorithms require large volumes of data to train the AI systems
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at the best level to obtain the best results. Despite the efforts to standardize patient care,
the variability between patients concerning differences in clinical presentation and desired
outcomes should be thoroughly considered prior to AI model development [173]. Any
potential deviation from the training conditions may result in the unpredictable behavior
of an algorithm [172].

While we know the input and output data an algorithm produces, there is limited
information about its internal workings and processes. This issue is referred to as the
“black box” problem in machine learning [172]. The “black box” problem indicates that
significant confounding from any of the many factors could easily be missed, especially
in deep learning algorithms with many hidden layers (e.g., classifying skin lesions as
malignant or benign [174]). When there is limited visibility into understanding how the
algorithm has made a particular decision, evaluating its safety and suitability in patients
is questionable [172]. The use of AI models in common practice raises a whole set of
ethical and legal issues. Who has liability when an algorithm makes an error with severe
consequences? Is that just the hospital or the doctor who applied it in a certain way? Is it the
manufacturer or the regulator of the algorithm who approved it? Any expressed concern
about AI applications should be addressed before their implementation. Professional
organizations should also establish guidelines to promote the trustworthy development
and application of AI systems in healthcare.

Evaluating the AI algorithms’ performance requires further validation with randomized
controlled trials beyond the original clinical centers of development prior to widespread
clinical implementation [171]. This novel technology also faces other challenging issues
regarding privacy protection. Eventual relationships between healthcare companies and
academic research data may elevate the risk of malicious privacy violations [175].

However, the medical community remains highly optimistic about the future of AI
healthcare applications. Machine learning techniques will not replace doctors, but they
can significantly contribute to CRC screening, diagnosis, and treatment. AI can enhance
clinical practice and provide essential improvements in several areas of interest associated
with colorectal tumours.

The integration of AI-based platforms that can “read” data from a colonoscopy video
or the existing electronic medical records (EMR) enables the systems to use this information
either for training or real-time decision support [176]. Big data represent massive amounts
of information that is unmanageable using traditional software. They can be classified by
5 Vs; volume, velocity, variety, veracity, and value [177]. In recent years, deep learning
methods assist doctors and researchers in processing a large number of databases and
discovering the hidden opportunities in data [178]. AI techniques help doctors analyze
the patient’s medical history and provide the best treatment options. Consequently, this
advanced technology has a promising future in processing and handling big data. Shortly,
further research will be required to design the appropriate security and privacy measures
to protect and manage medical data safely.

As discussed in this review, the AI systems are expected to improve polyp detection
and characterization. Prospective studies with real-time use of computer-aided systems
are necessary to ensure the replicability or repeatability of the results and incorporate this
novel technology into clinical practice. In addition, it is vital to investigate AI applications’
role in detecting and diagnosing lesions with malignant potential (e.g., sessile serrated
lesions, colitis-associated cancer).

9. Conclusions

Overall, the integration of AI applications in screening, diagnosis, and treatment of
CRC may improve clinical outcomes and prognosis for the patients. In recent years, deep
learning techniques are further applied in clinical cancer research. A key challenge in
clinical practice is also the development of optimal therapies, which would provide novel
targeted approaches or alternative therapeutic options. Our research work reveals the
necessity to deeply understand the challenges and opportunities presented by AI-based
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models in the fields of CRC screening, diagnosis, and patient care. At the same time,
AI is considered a valuable tool in transforming the future of healthcare and precision
oncology. Computer-aided systems can provide physicians with assistance in detecting and
diagnosing precancerous lesions or early-stage CRC. Several novel algorithms have shown
promising results for the accurate detection and characterization of suspected lesions.
However, additional prospective, large-scale, multicenter clinical trials are required to
evaluate the diagnostic accuracy of AI systems.
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