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Humans have a remarkably high capacity and long duration memory for

complex scenes. Previous research documents the neural substrates that

allow for efficient categorization of scenes from other complex stimuli like

objects and faces, but the spatiotemporal neural dynamics underlying scene

memory at timescales relevant to working and longer-term memory are less

well understood. In the present study, we used high density EEG during a

visual continuous recognition task in which new, old, and scrambled scenes

consisting of color outdoor photographs were presented at an average rate

0.26 Hz. Old scenes were single repeated presentations occurring within

either a short-term (< 20 s) or longer-term intervals of between 30 s and

3 min or 4 and 10 min. Overall recognition was far above chance, with better

performance at shorter- than longer-term intervals. Sensor-level ANOVA and

post hoc pairwise comparisons of event related potentials (ERPs) revealed

three main findings: (1) occipital and parietal amplitudes distinguishing new

and old from scrambled scenes; (2) frontal amplitudes distinguishing old from

new scenes with a central positivity highest for hits compared to misses,

false alarms and correct rejections; and (3) frontal and parietal changes from

∼300 to ∼600 ms distinguishing among old scenes previously encountered

at short- and longer-term retention intervals. These findings reveal how

distributed spatiotemporal neural changes evolve to support short- and

longer-term recognition of complex scenes.
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Introduction

Humans have a remarkable capacity for remembering
complex visual information. Early behavioral studies
demonstrated that adults and children can recognize large
sets of visual stimuli after a single exposure (Shepard, 1967;
Standing et al., 1970; Brown and Scott, 1971). While speed
of recognition for pictures tends to be slower than for verbal
material, reaction times for a range of learning set sizes indicate
fast memory search (Standing, 1973). Picture recognition
is also highly flexible, with subjects able to discriminate in
forced choice paradigms between targets and distractors using
perceptual and ecphoric similarity (Tulving, 1981). Early
studies of visual memory capacity often mixed objects with
travel slides containing complex naturalistic visual scenes.
Subsequent research compared encoding of complex scenes
with edited versions of scenes that contained a common
feature (e.g., a door) and found memory performance for
non-edited original photographs was close to 85%. When
scene details were removed, performance dropped by as much
as 20%, suggesting that visual details in scenes contribute
positively to long-term memory (Vogt and Magnussen,
2007).

Other findings support that subjects successfully maintain
detailed representation of thousands of images (Brady et al.,
2008). When the number of exemplars from different categories
is controlled for during the study of large picture sets,
the capacity to remember visual information in long-
term memory varies more with conceptual structure than
perceptual distinctiveness. Images from object categories with
conceptually distinctive exemplars show less interference
as the number of exemplars is increased (Konkle et al.,
2010). High capacity picture memory would appear to be
at odds with the traditional view that working memory
capacity is limited to three or four items. The ability to
recognize complex images after short retention intervals
would seem to require a larger capacity temporary store,
especially if complex details are used. When maintenance
using a rehearsal strategy is prevented by using rapid serial
visual presentation, memory capacities of up to 30 retained
pictures for 100 item lists are obtained, which suggests
humans have a larger capacity temporary memory store when
proactive interference is minimized (Endress and Potter,
2014).

Scalp EEG has been used to demonstrate fast, parallel
processing of complex scenes. In a go/no-go task in which
subjects must determine whether a briefly presented
scene contains an animal or not, a frontal event related
negativity develops on no-go trials approximately 150 ms
after stimulus onset (Thorpe et al., 1996). Event related
potentials (ERPs) reflect the visual category of a scene as
early as 75–80 ms post-stimulus, but are not correlated with
behavior until around 150 ms (Vanrullen and Thorpe, 2001).

Subjects are as fast at responding to two simultaneously
presented scenes as to a single one (Rousselet et al., 2002)
demonstrating parallel processing, but behavior and ERPs
suffer a processing cost when up to four scenes are presented
simultaneously (Rousselet et al., 2004). For biologically
relevant scenes, fronto-central ERPs begin to diverge from
other stimulus categories around 185 ms after stimulus
onset, with a later divergence in parietal regions (Anokhin
et al., 2006). Scene recognition is state-dependent and can
be modulated by alcohol intoxication (De Cesarei et al.,
2006), which reduces early differential ERP activity occurring
150–220 ms when discriminating targets from non-target
distractors. An early marker of scene-specific processing
was found in a recent study which reported that the first
ERP component to evoke a stronger response to real-world
scenes compared to other categories is the P2, peaking
approximately 220 ms after stimulus onset (Harel et al.,
2016).

Intracranial EEG and fMRI studies identify spatiotemporal
aspects of scene processing. An intra-cerebral study found
early posterior parahippocampal gyrus gamma (50–150 Hz)
activity between 200 and 500 ms when subjects passively
viewed scenes (Bastin et al., 2013). Functional MRI activity in
both lateral occipital area (LOC) and parahippocampal place
area (PPA) can be harnessed to classify scenes accurately.
PPA activity confuses scenes that have similar spatial
boundaries, while LOC activity confuses scenes that have
similar content (Park et al., 2011). Recent work extends
the role for occipital place area by demonstrating it can
predict pathways for movement in novel scenes (Bonner
and Epstein, 2017). It has also been demonstrated recently
that humans do not segment a scene into objects but
instead use global, ecological properties like navigability
and mean depth (Greene and Oliva, 2009). Neural evidence
also shows that contrast energy and spatial coherence modulate
single-trial ERP amplitudes early (100–150 ms), with spatial
coherence influencing later activity up to 250 ms (Groen et al.,
2013).

While previous behavioral studies demonstrate that scene
memory is high capacity and long-lasting and previous neural
studies have characterized scene-specific neural changes, a
gap in knowledge remains: what are the spatiotemporal
neural dynamics that distinguish short-term (∼20 s) from
longer-term scene memory? In the present study, we asked
three main questions: When do neural evoked response
potential (ERP) scalp topography amplitude changes distinguish
scenes from scrambled perceptual input? How do neural
changes differentiate new from previously presented old scenes?
How do neural changes differ for old scenes previously
presented at a short-term retention interval resembling working
memory, and what are the changes for longer-term intervals
extending to minutes, beyond the temporal limits of working
memory?
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Materials and methods

Subjects

Subjects were healthy adults between the ages of 18 and
29 with normal or corrected-to-normal vision and the ability
to make button presses. Participants were excluded if they
did not speak English. Each participant provided written
informed consent and completed study procedures according
to a protocol approved by the Institutional Review Board of
the Human Research Protection Program. Participants were
compensated $15 per hour for participation. All participants
completed the scene memory task during high density scalp
electroencephalography (HD-EEG). This study included a total
of 27 subjects (mean age 21.33, std. age 2.92, range 18–29, 9
males, 1 left-handed).

Experimental design

Subjects completed four 20-min runs of a visual continuous
recognition task (VCRT) during a single session with HD-
EEG recording. The VCRT stimuli consisted of color scenes
and phase-scrambled scenes (Supplementary Figure 1). Scenes
were 24-bit color images randomly sampled from the SUN
database (Xiao et al., 2010). Only a small fraction (618) of
all the SUN database pictures were used in the present study.
Care was taken to sample pictures of outdoor scenes with
no clearly visible faces. The task was programmed in Visual
C + + with graphic presentation optimized by pre-loading as
texture maps all stimuli into video RAM using OpenGL. Each
stimulus was presented for 1,400 ms with jittered interstimulus
intervals (ISI). A total of 1,228 stimuli were shown during the
80-min EEG testing session (∼15.35 stimuli per minute). Stimuli
consisted of 305 scrambled scenes, 618 new scenes, with 309
of the new scenes sub-divided among three old conditions and
subsequently repeated one more time (1) within 20 s (Old1), (2)
within 30 s and 3 min (Old2), and (3) between 4 and 10 min
(Old3). The stimulus design matrix for each VCRT run is shown
in Supplementary Figure 2.

Each scene was displayed on a 27-inch LED monitor with a
refresh rate of 60 hertz (Hz) and a screen resolution of 1920-by-
1080. Participants sat 83.5 cm from the monitor and maintained
stable viewing using a combined forehead/chin rest. Each scene
measured 800-by-600 pixels on the screen, and from the subject’s
point of view occupied a horizontal viewing angle of 17.2 degrees
and a vertical viewing angle of 12.7 degrees. The EEG recordings
took place within a sound-attenuated booth (IAC acoustics) to
minimize auditory and visual distractions. Subjects made one of
two button (green = old; red = new) responses with their thumb
using a fiber optic response device (fORP 904, Current Designs,
Inc.) held in their right hand.

Behavioral analysis

Analyses of VCRT behavioral data included computing
subject accuracy in the form of percent correct in distinguishing
old and new scenes. Signal detection analyses were also
performed to assess each subject’s recognition sensitivity as
follows. A hit was counted when an old scene was correctly
classified as an old scene. A false alarm was counted when a
new scene was incorrectly classified as an old scene. For each
subject, total hits and false alarms were expressed as proportions
and used to compute a measure of sensitivity as the difference in
standardized normal deviates of hits minus false alarms: d-prime
(d’) = Z(hit rate) – Z(false alarm rate). The d-prime sensitivity
measure represents the separation between the means of the
signal and noise distributions, compared against the standard
deviation of the signal or noise distributions (Stanislaw and
Todorov, 1999).

Overall percent correct and d-prime were based on the
ability to recognize scenes as old or new across the four 20-
min blocks. Separate accuracy and d-prime measures were
computed for each condition of old: Old1 (repeated presentation
within < 20 s), Old2 (repeated presentation between 30 s and
3 min), and Old3 (repeated presentation between 4 and 10 min).
Average subject response times were also computed for new,
old, hits, misses, false alarms, and correct rejections. Repeated
measures ANOVAs of accuracy, d-prime, and response times
were performed using JASP 0.8.3.1 with post hoc tests and
Bonferroni multiple comparisons corrections1.

EEG acquisition

EEG data were sampled at 1 kHz using Pycorder software
from 62 scalp locations using an active electrode system with
an actiCHamp amplifier (Brain Products). Electrodes were
placed at standard locations specified by an extended 10–20
system. The recording ground (Fpz) was located at the frontal
midline and the recording reference was located at the left
mastoid (TP9) leaving 61 scalp recordings. Two additional
channels were designated for left (LOC) and right (ROC)
vertical electrooculography (VEOG) recordings for subsequent
isolation of eye blink artifacts.

Recordings to disk began after electrode impedances fell
below 25 K Ohms. Although the standard convention is to
reduce impedance to 5 K Ohms or below (Teplan, 2002),
the actiCHamp system uses active electrodes with noise
reducing techniques built into the amplifier to ensure that
impedances under 25 K ohms are sufficient for interpretable
signals. Channels with impedance values above 25 K ohms
were interpolated using data from neighboring electrodes with

1 https://jasp-stats.org/
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impedances below 25 K ohms. An auxiliary channel was used
to record from a photosensor placed directly on a corner of
the LED monitor. A 10-by-10 pixel square located under the
photosensor was programmed to change from white to black
during the onset of each visual stimulus; it changed from black
to white during stimulus offset. Recording changes in screen
luminance from the photosensor at 1 kHz allowed for precise
timing of stimulus onset and offset with respect to the recorded
EEG data.

EEG analysis

EEG signals for each participant were sampled in four
separate “runs.” Each run lasted approximately 20 min and
contained separate randomization schedules for the different
task conditions. Short breaks (approximately 5 min) were taken
between runs to mitigate any participant fatigue. The four runs
for each participant were pre-processed separately using BESA
Research v6.1. The steps in the processing of each run included:

1. Each channel’s signal was visually inspected to find, mark,
and exclude the duration of all muscle artifacts.

2. A characteristic eye-blink was marked by finding an
alternating deflection greater than 100 microvolts (µV)
between the LOC and ROC signals.

3. A template matching algorithm was then used to find
all eye blink artifacts on all channels and remove the
component of variance accounted for by the eye blinks
(Picton et al., 2000; Ille et al., 2002).

4. An automated artifact scan was conducted to isolate and
exclude additional artifacts using amplitude (120 µV),
gradient (75 µV), and low-signal (max. minus min) criteria
(0.01). Participant’s data were used in further processing
only if a minimum of 60% of trials in each run survived the
final artifact scan.

5. The signal on each channel was high pass filtered (low cut
0.1 Hz, type forward, slope 6 dB/oct).

6. The EEG signals were re-referenced to a common
average reference.

7. All four processed EEG runs for each participant were
combined to produce one average evoked response
potential (ERP) for each condition. During this final step,
each signal was low pass filtered (high cut 40 Hz, type
zero phase, slope 12 dB/oct) before export as an ASCII
vectorized file. Each.avr file contained the average ERP for
each condition, which was then used as input to a group
ERP analysis in BESA Statistics 2.1.

Care was taken in the level and order of application of
the low and high cutoff filters. Artifacts due to high-pass
filtering can lead to systematic biases between conditions when
a cut-off above the recommended maximum of 0.1 is used

(Acunzo et al., 2012; Tanner et al., 2015). We applied low pass
filtering as the last step so as not to distort average ERPs (Luck,
2014).

Following filtering and cleaning of EEG data, average evoked
response potentials (ERPs) were computed for each condition
(e.g., new, old (all), old1, old2, old3, and scrambled). The average
ERPs for each condition were then used as input to group
ERP statistical analyses performed with BESA Statistics v2.1
with appropriate multiple corrections across space and time
(Maris and Oostenveld, 2007; Maris, 2012). Using this approach,
statistical significance is assessed using non-parametric cluster
permutation tests (N = 1,000). Group ANOVAs were followed
by post hoc pairwise comparison tests of different conditions
in which contiguous clusters in space and time of coherent F
exceeding an a priori corrected p-value of less than or equal to
0.05 were deemed significant. Summed F values of the clusters
are compared to a null distribution of F sums of random clusters
obtained by permuting the data order across subjects. This
controls for type I errors due to multiple comparisons. The null
hypothesis of the permutation test assumes that the assignment
of the conditions per subject is random and exchangeable.
The idea behind data clustering used in combination with
permutation testing is that if a statistical effect is found over
an extended time period in neighboring channels, it is unlikely
that the effect occurred by chance. For paired comparisons, a
statistical effect can have a positive or negative direction and
therefore positive and negative cluster values may be obtained.
The positive or negative cluster value is the test statistic reported
for each cluster, and the p-value reported is the one associated
with that cluster based on permutation testing. For each of
the 1,000 permutations, new clusters are determined and the
corresponding cluster values are derived for each cluster. Based
on the new distribution, the alpha error of the initial cluster
value can be directly determined. For example, if only 2% of
all cluster values are larger than the initial cluster value, the
initial cluster has a 2% chance that the null hypothesis was falsely
rejected. This cluster would then be associated with a p-value
of 0.02. The time with respect to stimulus onset and the sensor
locations of each cluster are reported in addition to the cluster
value and p-value.

Results

Behavioral

Subjects performed well above chance (50%) discriminating
old from new stimuli (85.7% correct, S.D. 8.5, Figure 1A). When
old scene recognition was analyzed as a function of the three
retention intervals, accuracy was best for the Old1 short-term
interval and declined at each of the Old2 and Old3 longer-
term intervals (repeated measures ANOVA, F(2,56) = 186.3,
p < 0.001, Figure 1A). A similar pattern was obtained when the
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FIGURE 1

Behavioral accuracy and response times during scene recognition. Overall percent correct for new/old recognition was above chance (50%),
was highest for the short-term interval and declined at the two longer term intervals (A). A similar pattern was found for sensitivity (B). Response
times were longer for new compared to old scenes, fastest for hits and correct rejections, slower for misses, and slowest for false alarms (C).
Old1 is short-term interval up presented up to 20 s ago. Old2 is the longer-term interval between 30 s and 3 min. Old3 is the longer-term
interval between 4 and 10 min.

dependent measure was sensitivity (d-prime) instead of percent
correct (repeated measures ANOVA, F(2,54) = 165.3, p < 0.001,
Figure 1B). Subjects responded faster to old scenes compared
to new scenes (old = 967.6 ms, s.d. 58.95 vs. new = 1012.1 ms,
s.d. 79.45, paired t(28) = 4.067, p < 0.001, Figure 1C). A signal
detection breakdown of response times confirmed differences
among hits (957.5 ms, s.d. 57.62), correct rejections (986.9 ms,
s.d. 81.80), misses (1040.5 ms, 92.59 s.d.) and false alarms
(1352.1 ms, 173.73 s.d.). A repeated measures ANOVA to
compare the effect of type of response on the dependent variable
response time was significant [F(3,84) = 86.63, p < 0.001,
Figure 1C]. Post hoc tests revealed that hits were significantly
faster compared to both false alarms (post hoc t = −10.946,
pbonf < 0.001) and misses (post hoc t = −5.845, pbonf < 0.001)
but not correct rejections (post hoc t = −2.419, pbonf=0.134).
Table 1 summarizes the behavioral results as a function of
retention intervals and response times.

Evoked response potentials ANOVAs

Event related potentials positivities distinguish
new and old scenes from scrambled scenes

The ANOVA F-map for the New vs. Old. vs. Scrambled
comparison revealed a single spatially extended cluster of
significant differences (Table 2, New vs. Old. vs. Scrambled,
Cluster 1) beginning as early as 138 ms after stimulus onset
at left parietal sensor P7 and reaching a maximum F of 90.92,
p < 0.00001 at 684 ms at sensor P3 (Figure 2, red stars).

Post hoc pairwise comparisons revealed a single cluster
(Table 3, New vs. Scrambled) of significantly greater ERP
positive amplitudes for New compared to Scrambled at sensor
O1 (Figure 3A) at 392 ms after stimulus onset (Figure 3B). Post
hoc pairwise comparisons revealed a single cluster (Table 3, Old
vs. Scrambled) of significantly greater ERP positive amplitudes
for Old compared to Scrambled at sensor P3 (Figure 3C) at
684 ms after stimulus onset (Figure 3D). Post hoc pairwise
comparisons revealed two clusters of significant ERP amplitude
differences between New and Old. The most significant cluster
with the earliest difference (Table 3, New vs. Old, Cluster 1,
p = 0.001) exhibited a less negative amplitude for Old compared
to New at sensor Fz (Figure 3E) at 352 ms after stimulus onset
(Figure 3F).

Signal detection event related potentials
analysis reveals a central positivity for hits

The ANOVA F-map for the signal detection comparison
revealed two spatially extended clusters of significant ERP
differences (Table 2, Hits vs. Misses vs. False Alarms vs. Correct
Rejections). The most significant cluster (p = 0.001, blue stars,
Figure 4) exhibited differences starting at 309 ms after stimulus
onset and reached a maximum F of 27.78 at 599 ms at sensor
C2. The other cluster (p = 0.045, green stars, Figure 4) exhibited
differences earlier, starting at 99 ms after stimulus onset and
reached a maximum F of 7.29 at 157 ms at sensor P2.

Post hoc pairwise comparisons revealed multiple clusters of
significant differences between Hits vs. Misses, Hits vs. False
Alarms and Hits vs. Correct Rejections (Table 3). The most
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FIGURE 2

ANOVA F-map for the New vs. Old vs. Scrambled comparison. The F-map for the new vs. old. vs. scrambled comparison revealed a single
spatially extended cluster of significant differences. Sensors with significant F are depicted as boxes with three red stars. Significant F values
occurred as early as 138 ms after stimulus onset at left parietal sensor P7 and reached a maximum F at 684 ms at sensor P3.

significant cluster in each of these three comparisons was
centered on sensor C2. For Hits vs. Misses (Table 3, Hits.
vs. Misses, Cluster 2, p = 0.001) significant differences were
centered at sensor C2 (Figure 5A) beginning at 353 ms and
reaching a maximum F value of 81.33 at 600 ms with mean
ERP amplitudes being greater for hits than misses (Figure 5B).
For Hits vs. Alarms (Table 3, Hits. vs. False Alarms, Cluster
2, p = 0.001) differences were centered also at sensor C2
(Figure 5C) beginning at 324 ms and reaching a maximum
F value of 66.18 at 549 ms with mean amplitudes being
greater for hits than false alarms (Figure 5D). For Hits vs.
Correct Rejections (Table 3, Hits. vs. Correct Rejections, Cluster
2, p = 0.001) differences were centered also at sensor C2
(Figure 5E) beginning at 324 ms and reaching a maximum F
value of 66.18 at 549 ms with mean amplitudes being greater
for hits than correct rejections (Figure 5F). Post hoc pairwise
comparisons revealed no significant differences between Misses
and False Alarms.

TABLE 1 Statistical summary of behavioral ERP analyses.

Behavioral analyses

ANOVA F (ndf, ddf) P-value

Old1 vs. Old2 . vs. Old3 (accuracy) 186.3 (2,56) p < 0.001

Old1 vs. Old2 . vs. Old3 (d-prime) 165.3 (2,54) p < 0.001

Old1 vs. Old2 . vs. Old3 (response time) 86.63 (3,84) p < 0.001

Post hoc t t pbonf

Hits vs. false alarms (RT, ms) −10.946 p < 0.001

Hits vs. misses (RT, ms) −5.845 p < 0.001

Hits vs. correct rejections (RT, ms) −2.419 p = 0.134

The statistics and associated p-values are reported for each of the behavioral analyses.
Old1 is short-term interval up presented up to 20 s ago. Old2 is the longer-term interval
between 30 s and 3 min. Old3 is the longer-term interval between 4 and 10 min.

Frontal and parietal changes distinguish short-
from long-term scenes

The ANOVA F-map for the comparison of old scenes
presented within the three different retention intervals
revealed one spatially extended cluster of significant differences
(Table 2, Old1 vs. Old2 vs. Old3, Cluster 1, p < 0.00001)
and one cluster of marginally significant differences
(Table 2, Old1 vs. Old2 vs. Old3, Cluster 1, p = 0.045).
The significant cluster (p < 0.00001, red stars, Figure 6)
exhibited differences starting at 228 ms after stimulus onset
and reached a maximum F of 20.01 at 317 ms at sensor
FC1.

Post hoc pairwise comparisons revealed multiple clusters
of significant differences among the Old1, Old2, and Old3

scenes. The most significant cluster in each of the three pairwise
comparisons (Table 3, Old1 vs. Old2; Old1 vs. Old3; Old2

vs. Old3) revealed higher amplitude ERPs for the shorter-
vs. longer-term intervals (Figure 7). This includes at sensor
FC1 (Figure 7A) a less negative amplitude for Old1 compared
to Old2 beginning at 230 ms and reaching a maximum F
value of 31.92 at 311 ms (Figure 7B). It also includes at
sensor FC1 (Figure 7C) a less negative amplitude for Old1

compared to Old3 beginning at 229 ms and reaching a
maximum F value of 34.76 at 333 ms (Figure 7D). Finally,
it also includes at sensor P5 (Figure 7E) a more positive
amplitude for Old2 compared to Old3 beginning at 635 ms
and reaching a maximum F value of 22.49 at 667 ms
(Figure 7F).

There were pairwise comparisons that revealed the opposite
pattern: significant differences wherein the ERP amplitudes were
higher for longer- vs. shorter-term intervals. This includes at
sensor P7 (Figure 8A) with a more positive amplitude for
Old2 compared to Old1 beginning at 228 ms and reaching a
maximum F value of 18.9, p = 0.001 at 393 ms (Figure 8B).
It also includes at sensor P6 (Figure 8C) a more positive
amplitude for Old3 compared to Old1 beginning at 283 ms and
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TABLE 2 Statistical summary of group ERP ANOVA permutation test results.

Permutation test results: ANOVA

New vs. Old vs. Scrambled Cluster
value

P-value Start
(ms)

End (ms) Max
F-Value

Latency
at Max
(ms)

Channel
at Max

Mean
New

Mean
Old

Mean
Scrambled

Cluster 1 743,209 p = 0.00000 138 1399 90.82 684 P3 0.119 0.143 0.121

Signal Detection: Hits vs. Misses vs. False Alarms vs. Correct Rejections

Cluster
value

P-value Start
(ms)

End (ms) Max
F-Value

Latency
at Max
(ms)

Channel
at Max

Mean
Hits

Mean
Misses

Mean
False
Alarms

Mean
Cor.
Rej.

Cluster 1 57,670 p = 0.001 309 900 27.78 599 C2 0.125 0.032 0.095 0.057

Cluster 2 1,726 p = 0.045 99 230 7.29 157 P2 1.947 2.068 1.400 2.091

Short- vs. Longer Retention Intervals: Old1 vs. Old2 vs. Old3

Cluster
value

P-value Start
(ms)

End (ms) Max
F-Value

Latency
at Max
(ms)

Channel
at Max

Mean
Old1

Mean
Old2

Mean
Old3

Cluster 1 224,754 p = 0.00000 228 1,399 20.019 317 FC1 −1.819 −2.845 −2.800

Cluster 2 4,183 p = 0.059 469 747 11.255 645 TP10 −3.685 −2.693 −2.220

The statistics and associated p-values are reported for each of the group ERP analyses. Sensor locations are named according to the extended international 10/20 system. Means for ERP
conditions are in units of microvolts and are integrated across the entire temporal window indicated by start and end time. Old1 is short-term interval up presented up to 20 s ago. Old2

is the longer-term interval between 30 s and 3 min. Old3 is the longer-term interval between 4 and 10 min.

reaching a maximum F value of 16.93, p = 0.024 at 326 ms
(Figure 8D).

Discussion

The remarkable human capacity for detailed scene
recognition memory has been extensively documented in
previous behavioral studies, yet the neural bases supporting
this ability remain to be fully understood. Previous neural
studies have focused mostly on understanding the basis for
scene specificity and therefore have utilized designs in which
categorization is the required cognitive task for making
decisions about stimulus sets consisting of scenes and other
complex visual stimuli like faces, animals, or objects or scenes
with faces, animals or objects (Thorpe et al., 1996; Tsivilis
et al., 2001; Rousselet et al., 2002; Rousselet et al., 2004; Harel
et al., 2016). Understanding categorization ability, although
certainly an interesting and highly developed cognitive
function, was not the focus of the present study. Instead, the
questions addressed here involved scene memory over short
(i.e., seconds) and long (i.e., minutes) retention intervals.
The first objective was to understand when and how neural
patterns distinguish novel, familiar, and scrambled scenes.
We therefore included as a baseline condition a set of phase-
scrambled scenes in which color and spatial frequency were
similar to the real outdoor color scenes. Subjects could not,

however, infer from the phase-scrambled scenes anything
about place, spatial layout, or meaning from the content of the
images. The use of scenes and phase-scrambled counterparts,
rather than complex stimuli of different categories, makes
the proactive interference experienced during viewing of
the interspersed scrambled scenes perceptual rather than
categorical.

The first novel contribution of the present study is
the characterization of the spatiotemporal neural patterns
associated with distinguishing new and old scenes from the
phase-scrambled versions. A group ANOVA and post hoc paired
comparisons revealed occipital and parietal ERPs discriminated
new from scrambled and old from scrambled scenes. Inspection
of ERP amplitudes showed that this involved greater positivities
for new and old scenes compared to the scrambled scenes.
Parietal positivities were significantly greater for old relative
to scrambled scenes by as early as 270 ms (Table 2) and
occipital positivities were greater for new relative to scrambled
scenes by 139 ms (Table 2). The greater parietal positivity
at 270 ms is slightly longer than a recent finding showing
that a P2 amplitude peaking at 220 ms is sensitive to
distinguishing open and closed natural scenes (Harel et al.,
2016).

The second novel contribution of the present study is
the characterization of the spatiotemporal changes associated
with discriminating old from new scenes. Paired comparison
of New vs. Old ERPs found a larger negativity for New
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TABLE 3 Statistical summary of group ERP selected pairwise comparisons permutation test results.

Permutation test results: Selected pairwise comparisons

New vs. Old vs.
Scrambled

Cluster
value

P-value Start
(ms)

End (ms) Max
F-Value

Latency at
Max (ms)

Channel
at Max

Mean
New

Mean
Old

Mean
Scrambled

New vs. Old

Cluster 2 90,443 p = 0.001 177 876 32.08 352 Fz −1.717 −0.982 NA

Cluster 3 38,812 p = 0.001 194 856 23.03 651 TP10 2.873 2.069 NA

New vs. Scrambled

Cluster 1 1,082,230 p = 0.00000 139 1,399 78.13 392 O1 0.074 NA 0.062

Old vs. Scrambled

Cluster 1 779,757 p = 0.00000 270 1,399 160.28 684 P3 NA 0.141 0.104

Signal Detection: Hits vs. Misses vs. False Alarms vs. Correct Rejections

Cluster
value

P-value Start
(ms)

End (ms) Max
F-Value

Latency at
Max (ms)

Channel
at Max

Mean
Hits

Mean
Misses

Mean False
Alarms

Mean
Cor. Rej.

Hits vs. Misses

Cluster 2 55,996 p = 0.001 353 749 81.33 600 C2 0.346 −0.398 NA NA

Cluster 3 8,335 p = 0.004 568 748 33.98 642 TP10 −1.352 −0.385 NA NA

Cluster 4 4,654 p = 0.006 486 669 25.47 541 FT10 −1.784 −0.460 NA NA

Hits vs. False Alarms

Cluster 2 53,681 p = 0.001 324 760 66.18 549 C2 0.060 NA −0.689 NA

Cluster 3 15,226 p = 0.002 450 736 35.35 650 TP10 −0.143 NA 0.833 NA

Cluster 4 10,289 p = 0.004 314 426 38.10 363 P8 2.161 NA 3.030 NA

Hits vs. Cor. Rej.

Cluster 2 37,555 p = 0.001 323 679 44.67 549 C2 −0.090 NA NA −0.811

Cluster 3 9,725 p = 0.001 455 742 33.35 541 FT10 −1.418 NA NA −0.257

Cluster 4 2,666 p = 0.003 321 428 16.18 365 P8 2.682 NA NA 3.430

Cluster 5 2,608 p = 0.003 681 745 14.93 710 CPz 0.944 NA NA 0.435

Cluster 6 558 p = 0.005 376 409 12.91 393 PO7 2.462 NA NA 3.135

Cluster 7 367 p = 0.008 548 585 11.04 562 FT9 −1.354 NA NA −0.165

Short- vs. Longer Retention Intervals: Old1 vs. Old2 vs. Old3

Cluster
value

P-value Start
(ms)

End (ms) Max
F-Value

Latency at
Max (ms)

Channel
at Max

Mean
Old1

Mean
Old2

Mean Old3

Old1 vs. Old2

Cluster 2 25,822 p = 0.001 230 544 31.92 311 FC1 −1.713 −2.462 NA

Cluster 4 16,416 p = 0.001 228 517 18.91 393 P7 3.701 4.561 NA

Cluster 5 4,920 p = 0.007 532 688 11.18 607 P2 1.993 1.444 NA

Old1 vs. Old3

Cluster 2 75,466 p = 0.001 229 762 34.76 333 FC1 0.255 NA −0.466

Cluster 3 8,025 p = 0.007 464 674 18.27 601 T7 −0.954 NA 0.258

Cluster 5 3,907 p = 0.016 474 738 20.59 646 TP10 −1.933 NA −0.682

Cluster 6 3,590 p = 0.02 502 747 20.52 656 FT10 −5.520 NA −3.684

Cluster 7 3,343 p = 0.024 283 416 16.93 326 P6 2.464 NA 3.205

Old2 vs. Old3

Cluster 2 14,781 p = 0.001 635 975 22.49 667 P5 NA 1.399 0.797

Cluster 3 6,808 p = 0.003 432 633 12.79 571 P5 NA 2.707 2.129

The statistics and associated p-values are reported for each of the group ERP analyses. Sensor locations are named according to the extended international 10/20 system. Means for ERP
conditions are in units of microvolts and are integrated across the entire temporal window indicated by start and end time. Old1 is short-term interval up presented up to 20 s ago. Old2 is
the longer-term interval between 30 s and 3 min. Old3 is the longer-term interval between 4 and 10 min. This table lists selected significant post hoc pairwise comparisons occurring within
a time window of 0 to 700 ms after stimulus onset. The complete set of significant post hoc pairwise comparisons occurring within the entire time window of 0 to 1,400 ms is included in
the Supplementary Table.
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FIGURE 3

ANOVA post hoc pairwise comparisons for Old vs. Scrambled, New vs. Scrambled and New vs. Old. Post hoc pairwise comparisons revealed a
single cluster of greater ERP positive amplitude for New compared to Scrambled at sensor O1 (A) at 392 ms after stimulus onset (B). The
Old-Scrambled comparison found a single cluster of greater positive amplitude for Old compared to Scrambled at sensor P3 (C) at 684 ms after
stimulus onset (D). The New-Old comparisons revealed two clusters of differences in amplitudes. The most significant cluster exhibited a less
negative amplitude for Old compared to New at sensor Fz (E) at 352 ms after stimulus onset (F).

FIGURE 4

ANOVA F-map for the signal detection comparison. The F-map for the signal detection comparison revealed two spatially extended clusters of
significant differences. The most significant cluster (p = 0.001, boxes with two blue stars) exhibited differences starting at 309 ms after stimulus
onset and reached a maximum F of 27.78 at 599 ms at sensor C2. The other significant cluster (p = 0.045, boxes with one green star) showed
differences earlier, starting at 99 ms after stimulus onset and reached a maximum F of 7.29 at 157 ms at sensor P2.

compared to Old starting at 177 ms and reaching maximal
difference by 352 ms. In other words, Old ERPs were
less negative (i.e., more positive) than New responses at a
frontal site, seemingly consistent with the time course for
the well-documented FN400 old/new effect, which has been
hypothesized to be related to stimulus familiarity (Curran
and Cleary, 2003; Curran and Friedman, 2004). We then
examined finer distinctions among new and old stimuli
using a signal detection breakdown of responses and found
strong evidence for a frontocentral positivity whereby hits
(old scenes correctly identified as old) evoked stronger ERPs
than misses (old incorrectly identified as new), false alarms
(new incorrectly identified as old), and correct rejections
(new correctly identified as new). This finding is consistent

with a separate study of young adults who incidentally
encoded and recognized photos of outdoor scenes and found
a frontocentral subsequent memory effect with high-confidence
hits exhibiting greater positivity compared to misses (Gutchess
et al., 2007).

The third novel contribution of the present study concerns
the characterization of differences in evoked responses
to old scenes as a function of retention interval. The
study was designed so that some scene presentations were
repeated a second time within a 20 s window after the
first presentation. We labeled this second presentation as
occurring within a short-term interval since 20 s is often
assumed as the temporal limit for short-term memory based
on classic interference paradigms (Peterson and Peterson, 1959;
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FIGURE 5

ANOVA post hoc pairwise comparisons for Hits vs. Misses, Hits vs. False Alarms and Hits vs. Correct Rejections. Post hoc pairwise comparisons
revealed multiple clusters of significant differences between Hits vs. Misses, Hits vs. False Alarms and Hits vs. Correct Rejections. For Hits vs.
Misses, significant differences were centered at sensor C2 (A) beginning at 353 ms and reaching a maximum F value of 81.33 at 600 ms with
mean amplitudes being greater for hits than misses (B). For Hits vs. Alarms, differences were centered also at sensor C2 (C) beginning at 324 ms
and reaching a maximum F value of 66.18 at 549 ms with mean amplitudes being greater for hits than false alarms (D). For Hits vs. Correct
Rejections, differences were centered also at sensor C2 (E) beginning at 324 ms and reaching a maximum F value of 66.18 at 549 ms with mean
amplitudes being greater for hits than correct rejections (F).

FIGURE 6

ANOVA F-map for the old scene retention interval comparison. F-map for the comparison of old scenes presented within the three different
retention intervals revealed one spatially extended cluster of significant differences (p < 0.00001, boxes with three red stars) starting at 228 ms
after stimulus onset and reaching a maximum F at 317 ms at sensor FC1.

Keppel and Underwood, 1962). Although it should be
noted that while this assumption is based on paradigms
that assess memory based on verbalizable items like
letter trigrams, it has been demonstrated using time-
frequency that the right parietal region is active during
the maintenance (6 s delay) of two scenes in short-term
memory (Ellmore et al., 2017). Two other intervals of
between 30 s and 3 min, and between 4 and 10 min were
classified as longer-term intervals. The behavioral results
support a distinction among these three intervals with
accuracy highest for short-term recognition and falling
significantly for the later intervals but remaining well-above
chance.

The ERPs obtained in the present study also support a
distinction between short- and longer-term scene memory.
Pairwise comparisons revealed higher amplitude ERPs for the
shorter- compared to longer-term intervals including, at sensor
FC1, a less negative amplitude for Old1 (seen within the
20 s interval) compared to Old2 (seen within the 30 s and
3 min interval) beginning at 230 ms and reaching maximum
at 311 ms. It also included at sensor FC1 a less negative
amplitude for Old1 compared to Old3 (seen within the 4-
and 10-min interval) beginning at 229 ms and reaching a
maximum at 333 ms. Finally, it included at parietal sensor
P5 a more positive amplitude for Old2 compared to Old3

beginning at 635 ms and reaching a maximum at 667 ms.
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FIGURE 7

ANOVA post hoc pairwise comparisons with higher ERP amplitudes for shorter- vs. longer-term old scene retention intervals. The most
significant cluster in each of the three pairwise comparisons, Old1 vs. Old2; Old1 vs. Old3; and Old2 vs. Old3, revealed higher amplitude ERPs for
the shorter- vs. longer-term intervals. This includes at sensor FC1 (A) a less negative amplitude for Old1 compared to Old2 beginning at 230 ms
and reaching a maximum F value of 31.92, p = 0.001 at 311 ms (B). It also includes at sensor FC1 (C) a less negative amplitude for Old1 compared
to Old3 beginning at 229 ms and reaching a maximum F value of 34.76, p = 0.001 at 333 ms (D). Finally, it also includes at sensor P5 (E) a more
positive amplitude for Old2 compared to Old3 beginning at 635 ms and reaching a maximum F value of 22.49, p = 0.001 at 667 ms (F).

FIGURE 8

ANOVA post hoc pairwise comparisons with higher ERP amplitudes for longer- vs. shorter-term old scene retention intervals. Significant
differences wherein the ERP amplitudes were higher for the longer- vs. shorter-term intervals included sensor P7 (A) with a more positive
amplitude for Old2 compared to Old1 beginning at 228 ms and reaching a maximum F value of 18.9, p = 0.001 at 393 ms (B). It also included
sensor P6 (C) with a more positive amplitude for Old3 compared to Old1 beginning at 283 ms and reaching a maximum F value of 16.93,
p = 0.024 at 326 ms (D).
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Thus, the old scene amplitudes that were higher for shorter
compared to longer-term retention intervals included two
frontal negativities and one parietal positivity. There were
significant differences in two parietal sensors in which ERP
amplitudes were higher for the longer- compared to shorter-
term retention intervals. This included sensor P7 with a more
positive amplitude for Old2 compared to Old1 beginning at
228 ms and reaching a maximum at 393 ms, and also parietal
sensor P6 a more positive amplitude for Old3 compared
to Old1 beginning at 283 ms and reaching a maximum at
326 ms. These parietal positivities ended at 517 and 416 ms,
respectively, placing them close to the window of the 500–
800 ms parietal old/new effect, hypothesized to be related to
recollection found with other recognition paradigms (Sanquist
et al., 1980; Warren, 1980; Wagner et al., 2005; Rugg and
Curran, 2007). These parietal ERP effects for the longer- vs.
shorter-term intervals are potentially consistent with recent
work showing a rapid and independent role for parietal cortex
in a wider network for developing longer-term memory (Brodt
et al., 2016).

Dual process models presume that the FN400 frontal
negativity and late posterior parietal positivity support
familiarity and recognition, respectively, although this
hypothesis remains subject to considerable debate. We
have found frontal negativities and a parietal positivity at the
short- vs. long-term interval comparisons, and two parietal
positivities in the longer vs. short-term interval comparisons.
A strict interpretation along these lines would be that, at least
in this paradigm, short-term scene recognition involves both
familiarity and recollection, while longer-term recognition is
supported more by recollective like processes. In the present
study, we employed a rapid jittered design with stimulus
presentation rate of about 6.6 stimuli every 20 s and, because
of the speeded presentation, did not attempt to have subjects
rate familiarity strength or confidence using a remember/know
procedure after each scene presentation. This means that we
cannot determine whether the parietal responses evoked by
old scenes were enhanced for scenes actually remembered
compared to scenes merely recognized as familiar (Warren,
1980). Nevertheless, the results presented here help to establish
the rapid intermixed presentation of naturalistic stimuli
as a promising paradigm to study the neural basis of the
impressive capability of humans for recognizing complex
scenes.

In conclusion, we present converging evidence from
multiple modalities and analysis approaches that the high-
capacity human scene recognition memory system is
supported by neural activity patterns occurring as early as
150 ms in widespread occipital, frontal, and parietal regions.
Changes occurring later, between 300 and 500 ms, allow

a distinction between scenes first presented 20 s ago – the
classical putative duration of working memory based on
interference studies (Brown, 1958; Peterson and Peterson,
1959) – compared to several minutes ago. These findings
provide a baseline by which to evaluate in future neural
studies the more nuanced aspects of the scene memory
system, including how scene information is consolidated
rapidly and available for accurate recognition after even
longer retention intervals, including days and beyond
(Chandler, 1991), and how neural patterns resist accumulating
proactive interference (Makovski and Jiang, 2008) as hundreds
or thousands more scenes are encoded for subsequent
recognition.

Data availability statement

The raw data supporting the conclusions of this
article will be made available by the authors, without
undue reservation.

Ethics statement

The studies involving human participants were
reviewed and approved by the CUNY HRPP. The
patients/participants provided their written informed consent
to participate in this study.

Author contributions

TE: conceptualization, funding acquisition, project
administration, resources, supervision, visualization, formal
analysis, and writing – original draft, review and editing. CR,
KN, and NM: data curation, investigation, formal analysis,
visualization, and writing – original draft, review and editing.
All authors contributed to the article and approved the
submitted version.

Funding

This publication was supported by the National Institute of
Mental Health of the National Institutes of Health under Award
Number R56MH116007. The content is solely the responsibility
of the authors and does not necessarily represent the official
views of the National Institutes of Health.

Frontiers in Behavioral Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.958609
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-958609 September 12, 2022 Time: 12:46 # 13

Ellmore et al. 10.3389/fnbeh.2022.958609

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2022.958609/full#supplementary-material

References

Acunzo, D. J., Mackenzie, G., and Van Rossum, M. C. (2012). Systematic biases
in early ERP and ERF components as a result of high-pass filtering. J. Neurosci.
Methods 209, 212–218. doi: 10.1016/j.jneumeth.2012.06.011

Anokhin, A. P., Golosheykin, S., Sirevaag, E., Kristjansson, S., Rohrbaugh, J. W.,
and Heath, A. C. (2006). Rapid discrimination of visual scene content in the
human brain. Brain Res. 1093, 167–177. doi: 10.1016/j.brainres.2006.03.108

Bastin, J., Committeri, G., Kahane, P., Galati, G., Minotti, L., Lachaux, J. P., et al.
(2013). Timing of posterior parahippocampal gyrus activity reveals multiple scene
processing stages. Hum. Brain Mapp. 34, 1357–1370. doi: 10.1002/hbm.21515

Bonner, M. F., and Epstein, R. A. (2017). Coding of navigational affordances
in the human visual system. Proc. Natl. Acad. Sci. U. S. A. 114, 4793–4798. doi:
10.1073/pnas.1618228114

Brady, T. F., Konkle, T., Alvarez, G. A., and Oliva, A. (2008). Visual long-term
memory has a massive storage capacity for object details. Proc. Natl. Acad. Sci.
U. S. A. 105, 14325–14329. doi: 10.1073/pnas.0803390105

Brodt, S., Pohlchen, D., Flanagin, V. L., Glasauer, S., Gais, S., and Schonauer,
M. (2016). Rapid and independent memory formation in the parietal cortex.
Proc. Natl. Acad. Sci. U.S.A. 113, 13251–13256. doi: 10.1073/pnas.160571
9113

Brown, A. L., and Scott, M. S. (1971). Recognition memory for pictures in
preschool children. J. Exp. Soc. Psychol. 11, 401–412. doi: 10.1016/0022-0965(71)
90045-2

Brown, J. (1958). Some tests of the decay theory of immediate memory. Q. J.
Exp. Psychol. 10, 12–21. doi: 10.1080/17470215808416249

Chandler, C. C. (1991). How memory for an event is influenced by related
events: Interference in modified recognition tests. J. Exp. Psychol. Learn. Mem.
Cogn. 17, 115–125. doi: 10.3109/00207450903290516

Curran, T., and Cleary, A. M. (2003). Using ERPs to dissociate recollection
from familiarity in picture recognition. Cogn. Brain Res. 15, 191–205. doi: 10.1016/
S0926-6410(02)00192-1

Curran, T., and Friedman, W. J. (2004). ERP old/new effects at different
retention intervals in recency discrimination tasks. Cogn. Brain Res. 18, 107–120.
doi: 10.1016/j.cogbrainres.2003.09.006

De Cesarei, A., Codispoti, M., Schupp, H. T., and Stegagno, L. (2006). Selectively
attending to natural scenes after alcohol consumption: An ERP analysis. Biol.
Psychol. 72, 35–45. doi: 10.1016/j.biopsycho.2005.06.009

Ellmore, T. M., Ng, K., and Reichert, C. P. (2017). Early and late
components of EEG delay activity correlate differently with scene working
memory performance. PLoS One 12, e0186072. doi: 10.1371/journal.pone.018
6072

Endress, A. D., and Potter, M. C. (2014). Large capacity temporary visual
memory. J. Exp. Psychol. 143:548. doi: 10.1037/a0033934

Greene, M. R., and Oliva, A. (2009). Recognition of natural scenes from global
properties: Seeing the forest without representing the trees. Cogn. Psychol. 58,
137–176. doi: 10.1016/j.cogpsych.2008.06.001

Groen, I. I., Ghebreab, S., Prins, H., Lamme, V. A., and Scholte, H. S. (2013).
From image statistics to scene gist: Evoked neural activity reveals transition from
low-level natural image structure to scene category. J. Neurosci. 33, 18814–18824.
doi: 10.1523/JNEUROSCI.3128-13.2013

Gutchess, A. H., Ieuji, Y., and Federmeier, K. D. (2007). Event-related potentials
reveal age differences in the encoding and recognition of scenes. J. Cogn. Neurosci.
19, 1089–1103. doi: 10.1162/jocn.2007.19.7.1089

Harel, A., Groen, Ii Kravitz, D. J., Deouell, L. Y., and Baker, C. I. (2016).
The Temporal Dynamics of Scene Processing: A Multifaceted EEG Investigation.
eNeuro 3, ENEURO.139–ENEURO.116. doi: 10.1523/ENEURO.0139-16.2016

Ille, N., Berg, P., and Scherg, M. (2002). Artifact correction of the ongoing
EEG using spatial filters based on artifact and brain signal topographies. J. Clin.
Neurophysiol. 19, 113–124. doi: 10.1097/00004691-200203000-00002

Keppel, G., and Underwood, B. J. (1962). Proactive inhibition in short-term
retention of single items. J. Verbal Learn. Verbal Behav. 1, 153–161. doi: 10.1016/
S0022-5371(62)80023-1

Konkle, T., Brady, T. F., Alvarez, G. A., and Oliva, A. (2010). Conceptual
distinctiveness supports detailed visual long-term memory for real-world objects.
J. Exp. Psychol. 139:558. doi: 10.1037/a0019165

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique.
Cambridge: MIT press.

Makovski, T., and Jiang, Y. V. (2008). Proactive interference from items
previously stored in visual working memory. Mem. Cogn. 36, 43–52. doi: 10.3758/
mc.36.1.43

Maris, E. (2012). Statistical testing in electrophysiological studies.
Psychophysiology 49, 549–565. doi: 10.1111/j.1469-8986.2011.01320.x

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG-
and MEG-data. J. Neurosci. Methods 164, 177–190. doi: 10.1016/j.jneumeth.2007.
03.024

Park, S., Brady, T. F., Greene, M. R., and Oliva, A. (2011). Disentangling scene
content from spatial boundary: Complementary roles for the parahippocampal
place area and lateral occipital complex in representing real-world scenes.
J. Neurosci. 31, 1333–1340. doi: 10.1523/JNEUROSCI.3885-10.2011

Peterson, L., and Peterson, M. J. (1959). Short-term retention of individual
verbal items. J. Exp. Psychol. 58, 193–198.

Picton, T. W., Van Roon, P., Armilio, M. L., Berg, P., Ille, N., and Scherg,
M. (2000). The correction of ocular artifacts: A topographic perspective. Clin.
Neurophysiol. 111, 53–65. doi: 10.1016/s1388-2457(99)00227-8

Rousselet, G. A., Fabre-Thorpe, M., and Thorpe, S. J. (2002). Parallel processing
in high-level categorization of natural images. Nat. Neurosci. 5, 629–630. doi:
10.1038/nn866

Rousselet, G. A., Thorpe, S. J., and Fabre-Thorpe, M. (2004). Processing of one,
two or four natural scenes in humans: The limits of parallelism. Vision Res. 44,
877–894. doi: 10.1016/j.visres.2003.11.014

Rugg, M. D., and Curran, T. (2007). Event-related potentials and recognition
memory. Trends Cogn. Sci. 11, 251–257. doi: 10.1016/j.tics.2007.04.004

Sanquist, T. F., Rohrbaugh, J. W., Syndulko, K., and Lindsley, D. B. (1980).
Electrocortical signs of levels of processing: Perceptual analysis and recognition
memory. Psychophysiology 17, 568–576. doi: 10.1111/j.1469-8986.1980.tb02299.x

Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures.
J. Verbal Learn. Verbal Behav. 6, 156–163. doi: 10.1016/S0022-5371(67)80067-7

Standing, L. (1973). Learning 10000 pictures. Q. J. Exp. Psychol. 25, 207–222.
doi: 10.1080/14640747308400340

Frontiers in Behavioral Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.958609
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.958609/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.958609/full#supplementary-material
https://doi.org/10.1016/j.jneumeth.2012.06.011
https://doi.org/10.1016/j.brainres.2006.03.108
https://doi.org/10.1002/hbm.21515
https://doi.org/10.1073/pnas.1618228114
https://doi.org/10.1073/pnas.1618228114
https://doi.org/10.1073/pnas.0803390105
https://doi.org/10.1073/pnas.1605719113
https://doi.org/10.1073/pnas.1605719113
https://doi.org/10.1016/0022-0965(71)90045-2
https://doi.org/10.1016/0022-0965(71)90045-2
https://doi.org/10.1080/17470215808416249
https://doi.org/10.3109/00207450903290516
https://doi.org/10.1016/S0926-6410(02)00192-1
https://doi.org/10.1016/S0926-6410(02)00192-1
https://doi.org/10.1016/j.cogbrainres.2003.09.006
https://doi.org/10.1016/j.biopsycho.2005.06.009
https://doi.org/10.1371/journal.pone.0186072
https://doi.org/10.1371/journal.pone.0186072
https://doi.org/10.1037/a0033934
https://doi.org/10.1016/j.cogpsych.2008.06.001
https://doi.org/10.1523/JNEUROSCI.3128-13.2013
https://doi.org/10.1162/jocn.2007.19.7.1089
https://doi.org/10.1523/ENEURO.0139-16.2016
https://doi.org/10.1097/00004691-200203000-00002
https://doi.org/10.1016/S0022-5371(62)80023-1
https://doi.org/10.1016/S0022-5371(62)80023-1
https://doi.org/10.1037/a0019165
https://doi.org/10.3758/mc.36.1.43
https://doi.org/10.3758/mc.36.1.43
https://doi.org/10.1111/j.1469-8986.2011.01320.x
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1523/JNEUROSCI.3885-10.2011
https://doi.org/10.1016/s1388-2457(99)00227-8
https://doi.org/10.1038/nn866
https://doi.org/10.1038/nn866
https://doi.org/10.1016/j.visres.2003.11.014
https://doi.org/10.1016/j.tics.2007.04.004
https://doi.org/10.1111/j.1469-8986.1980.tb02299.x
https://doi.org/10.1016/S0022-5371(67)80067-7
https://doi.org/10.1080/14640747308400340
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-958609 September 12, 2022 Time: 12:46 # 14

Ellmore et al. 10.3389/fnbeh.2022.958609

Standing, L., Conezio, J., and Haber, R. N. (1970). Perception and memory
for pictures: Single-trial learning of 2500 visual stimuli. Psychon. Sci. 19, 73–74.
doi: 10.3758/BF03337426

Stanislaw, H., and Todorov, N. (1999). Calculation of signal detection theory
measures. Behav. Res. Methods Instrum. Comput. 31, 137–149. doi: 10.3758/
BF03207704

Tanner, D., Morgan-Short, K., and Luck, S. J. (2015). How inappropriate high-
pass filters can produce artifactual effects and incorrect conclusions in ERP studies
of language and cognition. Psychophysiology 52, 997–1009. doi: 10.1111/psyp.
12437

Teplan, M. (2002). Fundamentals of EEG measurement. Meas. Sci. Rev. 2, 1–11.

Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the human
visual system. Nature 381, 520–522. doi: 10.1038/381520a0

Tsivilis, D., Otten, L. J., and Rugg, M. D. (2001). Context effects on the neural
correlates of recognition memory: An electrophysiological study. Neuron 31,
497–505. doi: 10.1016/S0896-6273(01)00376-2

Tulving, E. (1981). Similarity relations in recognition. J. Verbal Learn. Verbal
Behav. 20, 479–496. doi: 10.1016/S0022-5371(81)90129-8

Vanrullen, R., and Thorpe, S. J. (2001). The time course of visual processing:
From early perception to decision-making. J. Cogn. Neurosci. 13, 454–461.

Vogt, S., and Magnussen, S. (2007). Long-term memory for 400 pictures on a
common theme. Exp. Psychol. 54, 298–303. doi: 10.1027/1618-3169.54.4.298

Wagner, A. D., Shannon, B. J., Kahn, I., and Buckner, R. L. (2005). Parietal
lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453.
doi: 10.1016/j.tics.2005.07.001

Warren, L. R. (1980). Evoked potential correlates of recognition memory. Biol.
Psychol. 11, 21–35. doi: 10.1016/0301-0511(80)90023-X

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010).
“Sun database: Large-scale scene recognition from abbey to zoo,” in
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on: IEEE), (New York, NY: IEEE), 3485–3492. doi: 10.1109/CVPR.2010.553
9970

Frontiers in Behavioral Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.958609
https://doi.org/10.3758/BF03337426
https://doi.org/10.3758/BF03207704
https://doi.org/10.3758/BF03207704
https://doi.org/10.1111/psyp.12437
https://doi.org/10.1111/psyp.12437
https://doi.org/10.1038/381520a0
https://doi.org/10.1016/S0896-6273(01)00376-2
https://doi.org/10.1016/S0022-5371(81)90129-8
https://doi.org/10.1027/1618-3169.54.4.298
https://doi.org/10.1016/j.tics.2005.07.001
https://doi.org/10.1016/0301-0511(80)90023-X
https://doi.org/10.1109/CVPR.2010.5539970
https://doi.org/10.1109/CVPR.2010.5539970
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/

	Visual continuous recognition reveals behavioral and neural differences for short- and long-term scene memory
	Introduction
	Materials and methods
	Subjects
	Experimental design
	Behavioral analysis
	EEG acquisition
	EEG analysis

	Results
	Behavioral
	Evoked response potentials ANOVAs
	Event related potentials positivities distinguish new and old scenes from scrambled scenes
	Signal detection event related potentials analysis reveals a central positivity for hits
	Frontal and parietal changes distinguish short- from long-term scenes


	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


