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Abstract

Mass campaigns with antimalarial drugs are potentially a powerful tool for local elimination
of malaria, yet current diagnostic technologies are insufficiently sensitive to identify all indi-
viduals who harbor infections. At the same time, overtreatment of uninfected individuals
increases the risk of accelerating emergence of drug resistance and losing community
acceptance. Local heterogeneity in transmission intensity may allow campaign strategies
that respond to index cases to successfully target subpatent infections while simultaneously
limiting overtreatment. While selective targeting of hotspots of transmission has been pro-
posed as a strategy for malaria control, such targeting has not been tested in the context of
malaria elimination. Using household locations, demographics, and prevalence data from a
survey of four health facility catchment areas in southern Zambia and an agent-based
model of malaria transmission and immunity acquisition, a transmission intensity was fit to
each household based on neighborhood age-dependent malaria prevalence. A set of indi-
vidual infection trajectories was constructed for every household in each catchment area,
accounting for heterogeneous exposure and immunity. Various campaign strategies—
mass drug administration, mass screen and treat, focal mass drug administration, snowball
reactive case detection, pooled sampling, and a hypothetical serological diagnostic—were
simulated and evaluated for performance at finding infections, minimizing overtreatment,
reducing clinical case counts, and interrupting transmission. For malaria control, presump-
tive treatment leads to substantial overtreatment without additional morbidity reduction
under all but the highest transmission conditions. Compared with untargeted approaches,
selective targeting of hotspots with drug campaigns is an ineffective tool for elimination due
to limited sensitivity of available field diagnostics. Serological diagnosis is potentially an
effective tool for malaria elimination but requires higher coverage to achieve similar results
to mass distribution of presumptive treatment.
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Author Summary

Millions of people worldwide live at risk for malaria, a parasitic infectious disease trans-
mitted by mosquitoes. Great progress has been made in reducing malaria burden in recent
years, and many regions are now devising strategies for elimination. One way to eliminate
malaria is to deplete the reservoir of parasites in human hosts by treating large groups of
people with antimalarial drugs. However, current field diagnostics are not sensitive
enough to correctly identify all infected individuals. Presumptively administering antima-
larial drugs to whole populations will effectively clear infections but can also lead to sub-
stantial overtreatment and encourage the evolution of drug resistance in parasites. We
might be able to predict which individuals who test negative are actually infected based on
whether their household members and neighbors are testing positive. Using a mathemati-
cal model of malaria immunity acquisition and a spatial dataset of malaria prevalence in
southern Zambia, we simulate strategies of identifying infected individuals and compare
each strategy’s ability to deplete the infectious reservoir and avoid overtreatment. We
make different recommendations for optimal strategies depending on a region’s malaria
prevalence.

Introduction

Malaria is a widespread infectious disease caused by Plasmodium parasites and leads to over
half a million deaths each year, mostly in children under five years of age [1]. As global burden
has decreased dramatically over the past decade, local elimination of malaria is within sight for
more and more endemic areas. Regional elimination of malaria requires interrupting transmis-
sion between humans and mosquito vectors, and understanding the requirements for elimina-
tion is crucial for avoiding costly operations that are unlikely to succeed [2,3].

Because the reservoir of malaria parasites lies in the human population, campaigns with
antimalarial drugs can interrupt transmission under certain conditions [4]. Testing such cam-
paigns in the field is resource-intensive, and computational models have been used to describe
how factors such as campaign coverage, local malaria transmission intensity, and individual
compliance with drug regimens affect campaign outcomes [5-9]. Mathematical modeling has
shown that repeated annual campaigns of antimalarial drugs with high coverage can achieve
local elimination in low- to moderate-transmission settings. Modeling has also confirmed that
mass drug administration (MDA), where all individuals in a population are presumptively
treated, can be substantially more effective than requiring positive diagnosis prior to treatment,
as subpatent infections can constitute a substantial portion of the infectious reservoir [10,11].

Although drug campaigns can be effective, large-scale interventions with antimalarials pose
several potential drawbacks. Dosing a large population will accelerate the emergence of drug-
resistant parasites [12,13]. Parasite resistance to both artemisinin and partner drug in artemisi-
nin-based combination therapies has been observed in Southeast Asia, and spread of resistance
to Africa would be catastrophic [14]. Repeated rounds of campaigns can lead to community
fatigue and widespread unnecessary suffering of drug side effects, and high community cover-
age has been shown to be vital to campaign success [4,5]. Lastly, treating people who are unin-
fected and not at risk for infection is a waste of valuable resources.

Malaria transmission can be highly heterogeneous between neighboring villages and within
the same village [15]. Selective targeting of hotspots of transmission has been predicted to
improve results of vector control interventions [16]. However, it remains unknown whether
current field diagnostics are adequate tools for defining hotspots, whether targeting hotspots
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with drug campaigns can achieve elimination, and how outcomes of targeted approaches com-
pare with non-targeted approaches such as MDA.

Individuals living in malarja-endemic areas develop partial immunity to malaria, leading to
asymptomatic, low-density infections that are difficult to detect but continue to infect mosqui-
toes [17]. Mass screen-and-treat (MSAT) campaigns, where only individuals who test positive
are treated with antimalarial drugs, have historically failed to achieve elimination due to the
limited sensitivity of rapid diagnostic tests (RDTs) currently used in the field [18-21]. In an
ideal scenario, a cheap, fast, and sensitive field diagnostic would increase effectiveness of
MSAT campaigns to near parity with MDA campaigns while avoiding overtreatment of unin-
fected individuals [22-24]. In the absence of such a diagnostic, smart campaigns should be
designed to treat as many subpatent infections as possible while simultaneously treating few
uninfected individuals [25].

Observed patterns in spatial heterogeneity in infection status may allow campaigns to effec-
tively target subpatent infections based on proximity to an index case. Since members of the
same household and close neighbors likely experience similar exposure [21,26-28], conducting
a focal MDA (fMDA) around a confirmed-positive case may be a sound strategy for detecting
subpatent infections in the face of limited sensitivity of RDTs [29,30]. It remains unknown
whether fMDA s can approach MDA campaigns’ effectiveness at interrupting transmission and
how the size of the fMDA treatment area should be selected. The amount of overtreatment that
can be averted by conducting fMDA campaigns rather than MDA campaigns is also unknown.
Predicting both of these effects requires coupling spatial knowledge of regional heterogeneity
in malaria exposure with a validated model of immunity acquisition in humans and transmis-
sion between humans and vectors.

Here we present for the first time modeling of malaria transmission on an operationally rel-
evant scale accounting for household-scale levels of heterogeneity in transmission intensity
and immunity. We use a previously described model of malaria transmission, including a
within-host model of immunity calibrated to age-stratified prevalence, incidence, and parasite
density data from endemic settings, to estimate household exposure based on a spatial dataset
of individual infection status from Southern Province, Zambia, where operations teams are
currently carrying out mass drug campaigns [19]. Campaigns with antimalarial drugs are simu-
lated employing a variety of infection detection strategies, including MDA, MSAT, MDA,
reactive case detection (RCD) where fMDA is carried out around index cases of clinical
malaria, pooled polymerase chain reaction (PCR), and a hypothetical serological diagnostic.
We compare the strategies’ ability to avert clinical cases and interrupt transmission with mini-
mal overtreatment of uninfected individuals.

Results
Spatial clustering of RDT positivity

A detailed survey of RDT prevalence by age and household was conducted in Southern Prov-
ince, Zambia, in June-July 2012 at the end of the transmission season (Fig 1A) [19]. Four repre-
sentative health facility catchment areas (HFCAs) experiencing a wide range of malaria
transmission intensity were selected for this analysis. Overall RDT prevalence in the four
HEFCAs spanned 1.4 to 49%, but varied widely between households in the same HFCA, particu-
larly in the Bbondo and Munyumbwe HFCAs where prevalence was intermediate (Fig 1B).

In all four HFCAs, we observed clustering of RDT positive cases within households—indi-
viduals were more likely to be RDT positive if someone else in their household was RDT posi-
tive (Fig 1C). Individuals were also more likely to be RDT positive if someone within 50m, but
not in their household, was RDT positive. The clustering of RDT positivity within 50m held
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Fig 1. RDT-positive infections are clustered within four HFCAs in Southern Province, Zambia. (A) Study area with June-July 2012 RDT prevalence. (B)
Household RDT positive rate varied spatially within a HFCA. (C) RDT positive individuals within a HFCA were clustered within households and within 50m.
Conditional probabilities of being RDT+ were calculated as the fraction of an RDT+ individual’s family members who were also RDT+, the fraction of people
who were RDT+ within a 50m radius but not within the household of an RDT+ individual, and the fraction of people who were RDT+ between 50m and 200m
of an RDT+ individual. Bars indicate 95% confidence intervals. (D) RDT positive rate varied with age within each HFCA. Shaded areas indicate 95%
confidence intervals.

doi:10.1371/journal

pcbi.1004707.g001

even in the Gwembe HFCA, suggesting that a small amount of endemic transmission persists
in Gwembe and not all infections are imported.

To predict the outcome of various infection detection strategies on reducing transmission,
we constructed a set of synthetic households for each HFCA made up of simulated individuals
that reflected the geography and demographics of RDT positivity observed in the reference
data for the HFCA (Fig 1, Table 1, S1 Fig). We assumed that members of each household
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Table 1. HFCA demographics used in simulation.

HFCA

Gwembe
Bbondo
Munyumbwe
Sinamalima

doi:10.1371/journal.pcbi.1004707.t001

Households

613
296
1507
1599

Population RDT prevalence Fraction under 15 years
2084 1.4% 48%
1462 9.2% 54%
7209 27% 56%
9900 49% 55%

experienced the same transmission intensity, but households within an HFCA could experi-
ence a different transmission intensity. Transmission intensity of each household was deter-
mined by comparing the RDT prevalence by age of the household’s neighborhood to reference
curves from simulations of known transmission intensity (see Methods, S2 Fig).

In Gwembe and Sinamalima HFCAs, nearly all households experienced very low or very high
transmission respectively (Fig 2A). Households in Bbondo and especially Munyumbwe HFCAs
were more heterogeneous, and spatial patterns of high and low transmission intensity mirrored
the household RDT positive rates (Fig 2B). The spatial clustering of RDT positivity within and
near households suggested that fMDAs may be a good strategy for infection detection.

The infectious reservoir of simulated households constructed based on
RDT prevalence data

Since the asexual parasite density and infectiousness of each simulated individual was known,
the true parasite prevalence and infectious potential of each HFCA could be estimated from
the simulated households (Fig 2C). Infectious potential, a proxy for the infectious reservoir of
malaria parasites in a human population, was defined as the number of mosquitoes that would
be infected if 1000 mosquitoes were to feed on a village of 1000 people and accounts for hetero-
geneity in individual infectiousness due to parasite density and preference for mosquitoes to
bite larger people.

We found that all four HFCAs had substantial rates of subpatent infection. Low-density
infections were four times as common as RDT-detectable infections in the Gwembe HFCA,
where prevalence was the lowest, consistent with previous observations of low-density infec-
tions in low-prevalence seasonal settings [31,32]. Under low-transmission conditions in our
model, infections observed during June-July were three to six months old and past peak para-
site levels. In contrast, June-July infections under high transmission were more likely to be
newer and composed of multiple infections, leading to higher parasite density. Higher density
infections acquired in low-transmission settings during the rainy season were also more likely
to have triggered symptoms and hence treatment due to weaker host immunity.

Although low-density infections are less infectious than high-density infections, these sub-
patent infections comprised a substantial portion of the infectious potential in all four HFCAs.
Targeting infections with an RDT-based MSAT would thus be highly unlikely to lead to elimi-
nation at any level of transmission intensity. Even improvement of RDT sensitivity by an order
of magnitude from 100 parasites per uL to 10 parasites per pL would still leave a nontrivial
amount of remaining infectious potential after an MSAT campaign.

Success of infection detection strategies at reducing onward
transmission

Depleting the infectious reservoir was highly dependent on coverage and somewhat dependent
on infection-detection strategy (Fig 3A, Table 2). For all HFCAs, MDA was the most successful
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at depleting the infectious reservoir, MSAT the least successful, and other infection detection
strategies fell in between MDA and MSAT. Since dry season infections were more likely to be
low-density in low-transmission settings than in high-transmission settings, MSAT was com-
paratively least effective at depleting the infectious reservoir at low prevalence, achieving only
40% of MDA’s effect in Gwembe HFCA, and most effective at high prevalence, achieving 70%
of MDA’s effect in Sinamalima HFCA.

To evaluate the reduction in transmission after deploying drug campaigns, we estimated the
expected number of new infections that would be seeded in humans due to vectors becoming
infected in the first 30 days post-campaign (Fig 3B). We assumed that vectors tended to bite in
the same neighborhood and that individuals who had received treatment during the campaign
were protected from reinfection (see Methods). Compared with outcomes from a non-prophy-
lactic drug (S4 Fig), campaigns with a long-lasting prophylactic averted more new infections at
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Fig 2. Fitting of transmission intensities to individual households in four HFCAs shows a prominent role for transmission by subpatent
individuals. (A) Distribution of fitted household transmission intensities by HFCA. EIR: entomological inoculation rate, the number of infectious bites per
person per year. Shaded areas indicate 95% confidence intervals from 100 stochastic realizations. (B) Household transmission intensity varied spatially
within an HFCA. Geometric mean transmission intensity observed over 100 stochastic realizations. (C) Asexual parasite prevalence and infectious potential
of constructed populations by HFCA, age, and detectability of asexual parasites by current RDTs, improved RDTs, and PCR, normalized to population 1000,
on June 15. Here the infectious potential was defined as the number of mosquitoes that would be infected if 1000 mosquitoes were to feed on a village of
1000 people. Results shown are means of 100 stochastic realizations.

doi:10.1371/journal.pchi.1004707.9002
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shown are means of 100 stochastic realizations per coverage level. (B) Success of infection detection strategies at averting new infections. Results shown
are means of 100 stochastic realizations per coverage level. HFCA populations were normalized to 1000.

doi:10.1371/journal.pcbi.1004707.g003

moderate coverage, especially for MDA and other scenarios where a large fraction of the popu-
lation was treated.

Table 2. Infection detection strategies simulated.

Test-independent strategies

MDA Treat all individuals in HFCA All HFCAs
RDT-dependent strategies

MSAT Treat all RDT-positive in HFCA All HFCAs
fMDA within household Treat all individuals in same household of an RDT-positive All HFCAs
fMDA within 50m Treat all individuals within 50m of an RDT-positive All HFCAs
fMDA within 200m Treat all individuals within 200m of an RDT-positive All HFCAs
Fever- and RDT-dependent strategies

Snowball RCD Define a clinical case as temperature > 38.5°C. Treat all individuals within 200m of a clinical case.  All HFCAs

Also test with RDT all individuals within 200m of a clinical case, and treat all individuals within
200m of RDT-positives

PCR-dependent strategies

Pooled PCR Pool 20pL blood samples from 60—220 neighbors, test pooled samples with gPCR (0.75 parasites/  Gwembe,
uL sensitivity), treat all individuals in pools that test positive (S3 Fig) Bbondo
Serology-dependent strategies
MSAT with serological diagnostic Treat all individuals who have experienced infection in the previous 12 months Gwembe,
Bbondo
fMDA within household with Treat all individuals in the same household as someone who has experienced infection in the Gwembe,
serological diagnostic previous 12 months Bbondo

doi:10.1371/journal.pcbi.1004707.t002
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RDT-positive infections were more infectious than subpatent infections and, during the dry
season, more likely to occur in households with a history of higher exposure. MSAT campaigns
and other RDT-dependent infection detection strategies were therefore more effective at avert-
ing new infections than might be predicted from their effectiveness at depleting the infectious
reservoir relative to MDA campaigns. At higher prevalence and higher coverage, MDA strate-
gies were just as effective as MDA at reducing onward transmission. An order of magnitude
improvement of RDT sensitivity from 100 parasites per pL to 10 parasites per uL was insuffi-
cient for increasing the efficacy of RDT-dependent infection detection strategies up to levels
seen with MDA in low-prevalence areas (S5 Fig).

Most effective infection detection strategies for malaria control

In a control scenario where drug campaigns aim to reduce clinical incidence, we imagined that
overtreatment was especially to be avoided, particularly in low-transmission settings, as it con-
fers little benefit and may accelerate the rate of parasite resistance to antimalarial drugs. Fig 4A
shows receiver operating characteristic (ROC) curves of fraction of infected individuals treated
(true positive rate) vs fraction of uninfected individuals treated (false positive rate) for each of
the infection detection strategies.

MDA was agnostic to individual infection status, treating infected and uninfected individu-
als at the same rate as coverage increased. MSAT could not treat uninfected individuals, and
limited sensitivity of the RDT diagnostic resulted in at most 50% of infected individuals receiv-
ing treatment with an MSAT campaign; MSAT found the highest fraction of infected individu-
als in Sinamalima HFCA where prevalence was high. The remaining infection detection
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strategies, the fMDAs and snowball RCD, fell between MSAT and MDA and in some cases
exhibited favorable ROC curves, indicating a high rate of treating positives while minimizing
treating negatives. For fMDAs, ROC curves decreased in favorability with increasing HFCA
prevalence.

Focal MDA s were successful at avoiding overtreatment in all but the highest-prevalence
HFCAs. Within-household fMDA and within-50m fMDA showed similar behavior, as house-
holds were sparse at 50m (S1 Fig), while expanding the treatment radius to 200m resulted in
much more overtreatment without capturing nearly as many additional infections. Snowball
reactive case detection resulted in more overtreatment per infection detected than within-
200m fMDA in all four HFCAs.

To compare rates of clinical case prevention and overtreatment across HFCAs, we normal-
ized populations to 1000 people and fixed coverage at 80%, a high but achievable rate (Fig 4B).
Because transmission was so low in Gwembe HFCA, any mass campaign would avert only a
handful of clinical cases: MSAT averted on average two clinical cases and MDA averted five,
with the remaining infection detection strategies falling in between. Yet an MDA campaign
would result in treating over 700 people who were uninfected, and those individuals derived lit-
tle benefit from prophylactic effects given the low rate of transmission. Within-household
tMDA, the infection-detection strategy that resulted in the least overtreatment next to MSAT,
required overtreatment of nearly 50 individuals to avert less than one clinical case. These high
rates of overtreatment suggested that MSAT might be the only reasonable option for mass
treatment for malaria control in low-prevalence areas despite MSAT’s relative inability to
deplete the infectious reservoir.

In the Bbondo HFCA, within-household fMDA averted seven more clinical cases and over-
treated 125 more people than MSAT. Averting another five more clinical cases would require
an MDA campaign that overtreated 475 more people.

In the Munyumbwe and Sinamalima HFCAs, within-household fMDA performed nearly as
well as MDA at averting clinical cases, and for Munyumbwe, fMDA resulted in much lower
numbers of overtreated people than MDA did. In Sinamalima, rates of overtreatment with
fMDA were nearly comparable to those of MDA, and within-household fMDA resulted in 20
more cases averted than MSAT. In a high-prevalence site like Sinamalima, other factors such
as costs or logistics would help decide whether fMDA or MDA is the best course of action.

Most effective infection detection strategies for malaria elimination

The Gwembe and Bbondo HFCAs were considered for elimination scenarios, where drug cam-
paigns aim to deplete the infectious reservoir such that transmission from humans to mosquitoes
is interrupted. In addition to the six infection detection strategies discussed above, we simulated
pooled PCR, serological MSAT, and serological within-household fMDA to test strategies more
appropriate for low-transmission regions. The serological tests were modeled as hypothetical
diagnostics that report whether an individual has experienced infection at any point in the previ-
ous twelve months. We measured the probability of less than 1 new infection per 1000 people
arising from vectors infected during the 30 days post-campaign as a proxy for elimination.

MDA was the most effective strategy for elimination, leading to high probability of less than
1 onward infection at lower coverage levels than the other infection detection strategies (Fig 5).
However, pooled PCR and serological diagnostics could also be highly effective as long as cov-
erage was high. MSAT with a serological diagnostic was especially promising as we predicted it
to be efficient at avoiding overtreatment.

For pooled PCR, we grouped each HFCA into neighborhood pools consisting of 60-220
individuals per pool (S3 Fig). Individuals contributed a dried blood spot to a pooled sample,
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doi:10.1371/journal.pcbi.1004707.9005

and MDA within the pool was triggered if the pooled sample tested positive. In the Gwembe
HFCA, pooled PCR led to lower overtreatment than MDA at the same level of coverage. How-
ever, even at 100% coverage, pooled PCR could not reliably find all infections due to the detec-
tion limit of pooled PCR. If a particular pool contained infected individuals but was not
triggered for MDA, neighbors within the pool were vulnerable to onward transmission as no
one in the pool received cure or prophylaxis. When we relaxed the assumption that vectors
tend to transmit in households close to their site of infection, and instead allowed infected vec-
tors to bite individuals anywhere within the HFCA, pooled PCR was able to achieve high prob-
ability of interrupting onward transmission, requiring higher population coverage than MDA
but less coverage than serological-based fMDA (S6 Fig).

In Bbondo HFCA, all PCR pools always contained enough parasites to trigger MDA within
the pool. Pooled PCR became de facto MDA, indicating that performing pooled PCR would be
a waste of resources as MDA is cheaper and easier to administer. Unless a region is extremely
heterogeneous, where a subregion experiences no transmission at all while another experiences
a moderate amount, and vectors cannot migrate between heterogeneous areas, we anticipate
that pooled PCR is an inferior strategy to MDA. Neither of the lower-transmission HFCAs in
this study showed such stark heterogeneity, but ongoing control efforts may push these regions
into a regime where pooled PCR would be highly effective.

Of the RDT-based strategies, only within-200m fMDA showed any promise for elimination,
and only with very small probability for the Bbondo HFCA at 100% coverage. As parasite den-
sities were slightly higher in Bbondo than in the Gwembe HFCA due to higher levels of trans-
mission, RDTs were more likely to identify infected individuals to seed the fMDA foci.
However, MDA at 200m did lead to substantial overtreatment compared to serology-depen-
dent infection detection strategies. For all infection detection strategies, a long-lasting prophy-
lactic improved the chances of no onward transmission (S4 Fig), and strategies such as pooled
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PCR that led to more overtreatment could outperform serological-based strategies at promot-
ing elimination due to herd protection effects.

Discussion

The selection of infection-detection strategy for a mass drug campaign depends on many fac-
tors, among them local transmission intensity, cost, operational feasibility, and population
receptiveness. In this study, we compare the effectiveness of MDA, MSAT, fMDA, RCD,
pooled PCR, and hypothetical serological diagnostics at averting clinical cases and reducing
onward transmission with minimal overtreatment of uninfected individuals (Table 3).

The spatial clustering of malaria infections means that MDA strategies outperform MDA
at selective targeting of infected individuals. Shared household exposure can arise from both
features of geography—local availability of larval habitat—and of human behavior—household
preference for insecticide-treated net (ITN) use and shared travel history. Due to the absence
of data on individual histories of ITN use and travel, we assumed all infections were due to
locally-acquired infections, and ITN usage was implicitly accounted for in each household’s
selected transmission intensity.

How crucial is avoiding overtreatment with antimalarial drugs? MDA is the most effective
infection-detection strategy for both control and elimination, yet MDA also leads to the most
overtreatment. When a drug campaign is a last push toward elimination and unlikely to be
repeated many times, overtreatment may be less of an issue, especially if the campaign is set up
for success with high coverage and a long-lasting prophylactic. Given an excellent prophylactic,
overtreatment is an irrelevant concern for elimination, particularly if vectors can migrate con-
siderable distances. If the drug campaign is for control purposes, for instance as a stopgap mea-
sure when health systems are temporarily broken as during the recent Ebola outbreak [33], or
as an ongoing program for gradual reduction in burden, minimizing overtreatment should be
more of a priority. Our recommendations for optimal infection detection strategies prioritize
avoiding overtreatment for control recommendations and use overtreatment as a secondary
consideration for elimination campaigns.

Local prevalence, household density, and heterogeneity of RDT positivity all influence the
optimal infection-detection strategy. While prevalence and population density may be known
or estimated prior to a campaign, describing regional heterogeneity in exposure often requires
more investment of resources through ongoing longitudinal surveys, multi-antigen serology, or
sequencing of parasite genomes [15,34-36]. Local population density and entomology can
guide planners’ choice of MDA radius if fMDA is under consideration.

Table 3. Recommended infection detection strategies for malaria control and elimination.

Control Elimination
HFCA, Recommend Not recommend Recommend Not recommend
prevalence
Gwembe, 1.4%  MSAT MDA, snowball, all MDA, serology-based household fMDA if RDT-based MSAT and
fMDAs coverage > 80%, serology-based MSAT if fMDAs, snowball, pooled PCR
coverage > 90%
Bbondo, 9.2% MSAT, household MDA, snowball, all other MDA, serology-based household fMDA if Pooled PCR, RDT-based
fMDA fMDAs coverage > 90%, serology-based MSAT if MSAT and fMDAs, snowball
coverage > 95%
Munyumbwe, Household fMDA MDA, MSAT, snowball,  Elimination not realistic with single round of drug
27% all other fMDAs campaign
Sinamalima, Household fMDA MDA, MSAT, snowball,  Elimination not realistic with single round of drug
49% all other fMDAs campaign

doi:10.1371/journal.pcbi.1004707.t003
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In all but the lowest-prevalence settings, coverage is a stronger determinant of campaign
success than the choice of infection-detection strategy. However, when transmission is very
low, the limited sensitivity of current diagnostics means that index cases are unlikely to be dis-
covered by RDTs, and MDA, highly sensitive techniques like pooled PCR, or serological diag-
nostics that integrate history of infection are required to significantly reduce onward
transmission. Greater coverage cannot compensate for an insensitive diagnostic. Simulation of
serology-based diagnostics suggest that it is indeed possible to interrupt transmission in low-
prevalence regions without distributing prophylactics to all individuals in the elimination area,
although this finding may vary widely according to local entomology.

Under moderate to high prevalence, achieving high coverage is more important than select-
ing the optimal campaign type. Of the non-MSAT strategies, all are equally efficacious at high
prevalence, and within-household fMDA results in the least overtreatment. When transmission
is moderate, both MSAT and within-household fMDA are viable options, and other consider-
ations such as cost, feasibility, and local culture will play a larger role in identifying the optimal
infection detections strategy.

Compared with fMDAs, snowball RCD is a poor infection-detection strategy at moderate
prevalence. In snowball RCD, an initial clinical case serves as the primary trigger for a 200m-
fMDA, and each RDT positive in that 200m radius triggers a secondary round of 200m-fMDA.
In low-transmission settings (Gwembe HFCA), new infection is likely to lead to a clinical case,
and thus a primary trigger, and although secondary triggers are uncommon due to low preva-
lence and old infections, there are enough primary triggers to achieve good spatial coverage in
local areas of transmission. In high-transmission settings (Sinamalima HFCA), new infection
is unlikely to lead to a primary trigger, but secondary triggers are common and thus the snow-
ball effect leads to good spatial coverage and behaves like fMDA. Under moderate transmis-
sion, infections are unlikely to lead to primary triggers due to immunity to clinical symptoms,
and secondary triggers are less common than in high-transmission settings because infections
are older and less likely to be superinfections. In addition, symptomatic individuals are often
less likely to seek care if they live further from a clinic [37], leading to spatial dependence in
detecting primary triggers.

In this study we have approximated interruption of transmission as the probability of less
than one new infection per 1000 people arising from untreated infections in the 30 days post-
campaign. In a more realistic scenario, multiple campaign rounds per year are carried out, and
campaigns may last for several years. Thus we expect that all infection detection strategies are
potentially more effective for elimination than predicted in the single-round analysis, but their
relative efficacy will be as described above. Other modeling studies have suggested that multiple
rounds of drug campaigns in moderate-prevalence settings such as Munyumbwe HFCA may
successfully interrupt transmission [5]. In addition, programs are also likely to adapt campaign
strategies as more data is collected, local pockets of transmission are identified, and overall
prevalence declines. A full dynamical model of malaria transmission at the household scale,
with detailed simulation of vector feeding behavior and movement at the individual vector
level, is necessary to fully explore the elimination power of various infection detection
strategies.

Selective targeting of hotspots of malaria transmission has been proposed as a control mea-
sure, yet correctly identifying hotspots remains a challenge with current tools, particularly in
seasonal settings where drug campaigns are likely to be deployed during the low-transmission
season. We predict that selective targeting via MSAT or fMDA strategies, where hotspots are
identified by RDTs during the campaign, will not succeed in elimination until a new generation
of diagnostics is ready for field use. While our study does not rule out the possibility that
repeated targeting of hotspots over many years may eventually lead to elimination, such
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extended campaigns pose significant feasibility challenges to communities, programs, and
donors. While single-timepoint measurements of infection status are insufficient for defining
foci of transmission, serological diagnostics that report on many months of infection history
appear to be very promising, and other sources such as longitudinal prevalence surveys and
multi-year geotagging of clinical cases are also likely to be very informative for identifying
areas for targeted MDA.

Size of the local population and patterns of human migration affect the likelihood of elimi-
nation, as elimination is easier in smaller population pools with less human mobility. Human
mobility and spatial heterogeneity also interact to inform local prevalence in complex ways
[38]. A study of RCD in a low-transmission region of Senegal found that most index cases
reported recent travel [27]. If every RDT positive case identified in the Gwembe HFCA were
due to household inhabitants migrating from higher transmission regions, all RDT-dependent
infection detection strategies would be less successful (S7 Fig). People arriving from higher-
transmission areas will have relatively stronger immune responses to infection, making those
infections more difficult to detect. Infections detected in Gwembe HFCA could also be due to
Gwembe inhabitants traveling elsewhere, acquiring infections, and returning to Gwembe; in
this scenario, these individuals would be more likely to harbor recent, high-density infections
amenable to detection by RDT. Understanding regional demographics of mobility and inter-
connectedness of elimination candidate areas can lead planners to decide whether non-MDA
infection detection strategies are viable alternatives, and whether MSAT or MDA at border
crossings would be effective policies [39].

This study ignores campaign cost and feasibility as considerations for selecting an infection-
detection strategy, yet these factors are important drivers in the real world. Operational limita-
tions make MDA and MSAT more attractive options than fMDAs, RCD, and strategies that
require sensitive but expensive diagnostics. In elimination scenarios, achievability may overrule
cost as a consideration for determining campaign strategy. Fortunately we find that MDA and
MSAT are already the best strategies for elimination and control respectively in low-prevalence
settings where drug campaigns are most likely to be deployed.

Methods
Estimation of household transmission intensities

Reference data for household location, age structure, and RDT positivity by age were derived
from a 2012 June-July survey performed in Gwembe and Sinazongwe districts in Southern
Province, Zambia [19]. Malaria transmission is heterogeneous and seasonal, with peak trans-
mission between March and May. Households in four HFCAs—Gwembe, Bbondo, and
Munyumbwe in Gwembe district as well as Sinamalima in Sinazongwe district—were selected
for inclusion in the reference dataset (Fig 1, Table 1, S1 Fig, S1 Dataset). Households without
geolocation data and individuals without an RDT result were excluded: from Gwembe, 6
households and 985 individuals were excluded; from Bbondo, 9 households and 70 individuals;
from Munyumbwe, 18 households and 652 individuals; and from Sinamalima, 14 households
and 92 individuals.

Each household’s exposure to infectious bites was determined as follows. An agent-based
mechanistic model of malaria transmission, including exposure-dependent host immunity,
was used to generate simulated populations experiencing endemic transmission (EMOD DTK
v2.0) [40-43]. Twelve simulations of 10,000 people were run, where each simulation experi-
enced the same southern Zambia seasonal temperature and rainfall patterns but supported dif-
ferent amounts of vectors (S2 Fig). These twelve simulations spanned a range of annual
entomological inoculation rates (EIRs) from 0.003 to 120 infectious bites per person per year
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and included 10 imported cases per year. All simulations incorporated case management as
30% treatment rate of clinical malaria and 50% treatment rate of severe malaria with arte-
mether-lumefantrine. Vector control was implicitly modeled in household exposure, and
within-household heterogeneity in use of ITNs was ignored. Simulations recorded daily asexual
parasite density, infectiousness, and fever temperature for all individuals. Infectiousness was
defined as the fraction of mosquitoes feeding on the individual that would become infected and
develop at least one oocyst. Asexual parasite density and infectiousness were previously cali-
brated to age-stratified data from Burkina Faso [22]. Each simulation was run for 90 years,
allowing births and deaths but holding total population fixed, and RDT prevalence by age was
measured on June 15 of year 90, with RDT sensitivity at 50 asexual parasites/uL. A higher RDT
sensitivity was used here compared to later simulations as community health workers who
gathered the reference dataset were highly trained in RDT use.

The relative probability P;; that a household i experiences exposure modeled by simulation j
was calculated as follows for each household in the reference dataset and each of the twelve ref-
erence simulations. All individuals k within 50m of the household were assumed to experience
similar transmission intensity and aggregated to better inform household exposure. The frac-
tion of people of k’s age a; in simulation j with k’s RDT positivity, R;*(ay), is multiplied over all
k within 50m of the household to find P;;:

P, = Hw1th1n S0 of househod i o (a,) (1)

individuals k

Household transmission intensity is then determined by random selection from the j simula-
tions according to weights P;;.

After selecting household transmission intensity, individuals were drawn from the 10,000
individuals simulated at that transmission intensity to form the age and RDT-positive structure
of the household observed in the reference dataset. For example, if an RDT-positive 6-year-old
was observed in the dataset household, an RDT-positive 6-year-old was drawn from the simu-
lation pool, and so on until the household was complete. Household construction and infection
detection campaigns were carried out 100 times per coverage level per infection-detection
strategy for each HFCA to allow for stochastic variation in selecting transmission intensity,
selecting individuals from simulations, and individual coverage during the drug campaign.

Simulation of drug campaigns

The following infection detection strategies were tested in the four HFCAs: MDA, MSAT, within-
household fMDA—treating all individuals in the same household as someone testing positive,
within-50m fMDA—treating all individuals within 50m of someone testing positive, within
200m-fMDA—treating all individuals within 200m of someone testing positive, and snowball
RCD—treating all individuals within 200m of individuals with temperature > 38.5°C, testing all
individuals within 200m of individuals with fever > 38.5°C, and treating all individuals within
200m of someone testing positive. Pooled PCR, where blood spots from neighboring households
are pooled prior to a PCR-based diagnosis [44], and serological MSAT and fMDA were also tested
in the low-prevalence HFCAs of Gwembe and Bbondo. For pooled PCR, households were divided
into pools by eye according to spatial proximity such that each pool contained 60-220 individuals
(S3 Fig). See Table 2 for definitions of infection detection strategies tested.

All strategies other than snowball RCD were simulated as being carried out on a single day,
June 15, at the beginning of the dry season. Previous work has shown that drug campaigns
have a greater chance of success when conducted during the low-transmission season [7,45].
Snowball RCD was carried out daily for 30 days, June 15-July 15, with completely correlated
coverage: for example, under 70% coverage, the same 30% of individuals are unreachable every
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day of the campaign. All strategies were tested with coverage 0-100% at 5% intervals. Coverage
was determined by individual rather than by household and was age- and location-independent.

The drug used for campaigns was a hypothetical drug that targeted both asexual and sexual
stages and provided prophylactic protection for more than one month, similar to the combina-
tion therapy dihydroartemisinin-piperaquine. All covered individuals were assumed to accept
and fully comply with treatment, and treatment was assumed to clear all asexual and sexual
stage parasites in one day. RDT sensitivity was assumed to be 100 asexual parasites/uL during
the test campaigns [46].

Estimation of onward transmission

To calculate the effects of drug campaigns on onward infection, the expected number of new
infections in the human population that would arise from vectors infected in the 30 day period
June 15-July 15 was estimated as follows:

. . 1000
new infections per 1000 = population (Zpopmaﬁon ZSO . I« HBR x F) * P (2)

where I is the daily individual infectiousness, HBR is the daily individual human biting rate
and differs according to household transmission intensity and individual age, and P is the
product of the probability the mosquito survives feeding (0.9) [40], probability oocysts survive
into sporozoites (0.8) [22,47], probability a mosquito survives sporogony at 20°C (0.15)
[40,48], and probability an infectious mosquito bite successfully infects a human (0.9) [49].
Individual infectiousness is 0 upon treatment. Treated individuals were assumed to be pro-
tected by prophylaxis, and thus only bites on untreated individuals could lead to new infec-
tions. F is the probability that the recipient of an infectious bite is susceptible to infection:

—x2/0.22
Zuntreated 230 days HBRe

F =
—x2/0.22
Zpopulation ZSO daysHBRe /

(3)

F was defined as the fraction of bites that occur on untreated individuals, where each individu-
al’s probability of receiving a bite is weighted by their distance x from the individual who
infected the mosquito. The mosquito is assumed to diffuse an expected distance of 0.2 km
within the 30 days of biting. The new infection rate was normalized to a population of 1000 to
facilitate comparison across HFCAs.

To predict the number of clinical cases arising from the estimated number of new infections,
birth cohort simulations were run for a duration of twenty years across a wide range of trans-
mission intensities (annual EIR from 0.01 to 128) and with twelve different initialization dates,
each corresponding to the first day of each calendar month. New infections and new clinical
cases for all days in the range June 15-July 15 were tallied separately by age and by EIR. Multi-
pliers were then computed from the ratio of the distribution means to derive age- and EIR-spe-
cific transformations of new infections to clinical cases.

For estimating the probability a campaign leads to less than one new infection, coverage was
tested from 50-100% at 1% intervals. Each infection-detection strategy and coverage level was
simulated for 1000 stochastic realizations, and the number of simulations where Eq 2 evaluated
to < 1 was counted.
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