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sentinel lymph node metastasis 
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Lymph node metastasis occurs via the migration of cancer cells through the lymphatic system. Sentinel 
lymph node (SLN) biopsy is a common diagnostic strategy. SLNs have been studied using healthy 
rodents and large animals without metastasis. Here we used immunodeficient swine to establish 
a model of lymph node metastasis. We used RAG2-knockout immunodeficient swine. A431 human 
epithelial carcinoma cells expressing green fluorescent protein were injected subcutaneously into 
the posterior sides of the auricle, forelimb and hindlimb of knockout swine. Indigo carmine dye was 
injected subcutaneously 8 weeks after tumour cell transplantation. SLNs were extracted, observed 
using a stereoscopic fluorescence microscope and analysed histologically using haematoxylin and 
eosin staining, and immunohistochemistry. Lymphoid follicles were found in wild-type swine, and 
a few aggregated lymphocytes and immature lymphoid follicles were observed in knockout swine. 
Fluorescence in the lymph nodes indicated metastasis of tumour cells to the lymph nodes. Tumour cells 
replaced lymph node architectures, showed high-grade nuclear atypia and formed irregular tumour 
nests. Our model may be useful for the preclinical validation of diagnostic methods and minimally 
invasive treatment of metastatic cancer.

Hundreds of lymph nodes are distributed throughout the body, forming small sac-like structures located along 
lymphatic vessels. Lymph nodes function as a barrier to infection and activate the immune response mediated by 
T and B lymphocytes1.

Cancer metastasis frequently occurs via migration of cancer cells through the lymphatic system1. Therefore, 
reliable dissection of regional lymph nodes is required for cancer surgery. The presence or absence of clinical 
or pathological lymph node metastasis greatly influences the selection of treatment such as expansion surgery, 
anti-cancer drug treatment and can predict a patient’s prognosis.

Sentinel lymph node biopsy (SLNB) is a common diagnostic method. Particularly in breast cancer, the results 
of SLNB reflect axillary lymph node metastasis2–4. Further, SLNB is significantly less likely to cause lymphedema 
or motor dysfunction of the upper limbs compared with axillary lymph node dissection5.
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SLNB is the standard treatment for malignant melanoma. The 10-year disease-free and overall survival rates 
are significantly superior in the SLNB group compared with those of the lymph node nonresected group6,7. 
Research on SLNB applied to gastrointestinal cancer is progressing, and the results show promise for reducing 
the requirement for surgery and for improving the quality of life of patients8. However, SLNB was performed 
on patients with early-stage gastric cancer with an identification and correct diagnosis rates of 97.5% and 99%, 
respectively8.

SLNs are identified using radioisotopes (RIs), blue dyes, or a combination of both, although there are problems 
such as technical difficulties and limitations to the clinical use of RIs9,10. To overcome these problems, methods to 
identify SLNs using other substances such as indocyanine green and superparamagnetic nanoparticles have been 
used in clinical trials and in routine practice instead of conventional RIs and blue dye methods11–13.

Despite numerous studies published regarding SLNB3–14, many aspects must be addressed, such as accurate 
measurements of lymph flow, evaluation of particle sizes suitable for lymphatic vessel diameters and clinical 
medical policy based on the presence or absence of metastasis to SLNs. Further, methods are not available for 
accurate diagnosis of the presence or absence of metastasis without extracting SLNs nor are methods for treating 
lymph node metastasis without excision. Methods to identify SLNs in carcinomas other than breast cancer are 
under development.

Superparamagnetic iron oxide (SPIO) particles have been introduced as a contrast agent for magnetic res-
onance imaging (MRI) of head and neck cancer15, and SPIO-enhanced MRI detects sentinel lymph nodes and 
metastases16,17. However, sentinel lymph node metastases <2 mm of breast cancers are undetectable18. Therefore, 
techniques using these agents have not been fully translated to the clinic.

Studies of SLNs have been performed using healthy rodents or large animals with non-metastatic tumours19–22. 
We developed a rodent model of lymph node metastasis that enabled us to show that magnetic particles are use-
ful for identifying SLNs23 and that photodynamic therapy is effective for treating lymph node metastasis24,25. 
However, the small size of rodents is insufficient for measuring lymph flow, applying novel imaging methods, 
determining the optimum dose of a therapeutic agent and the optimum treatment protocol. Therefore, a large 
animal model of lymph node metastasis is required. Tumour-bearing swine models are available26, although we 
are unaware of published studies that report establishing lymph node metastasis model.

Immunodeficient swine were developed using genetic engineering techniques to inactivate the recombination 
activating 2 gene (RAG2)27. This swine strain is immunodeficient and possesses macroscopically immature lymph 
nodes and thymus. Microscopic observations revealed that this swine stain lacks the thymic medulla, lymphoid 
aggregation in the spleen and lymphoid follicles in lymph nodes. Despite these limitations, these swine provided 
an adequate system for our present studies of SLNs.

Results
Lymph flow. The lymph centre is formed by the inflowing lymph node group to which lymph flow is directed 
from each tributary area28. A published procedure is available for clinical identification of sentinel lymph nodes 
strained with isosulfan blue9,10, and the modified method was used in our study. Here we subcutaneously injected 
tumour cells and indigo carmine dye or indocyanine green (ICG) into the posterior sides of the auricle, fore-
limb and hindlimb that flow into the parotid, superficial cervical, and iliofemoral lymph centres, respectively 
(Fig. 1A,B). The parotid lymph centre receives lymph flow from the half-side region of the cranial dorsal side and 
the orbital and masticatory muscles. The superficial cervical lymph centre receives lymph flow from the neck, 
chest and proximal regions of forelimbs. The iliofemoral lymph centre receives lymph flow from the flank, the 
dorsal side of abdominal wall, scrotum and mammary gland. The lymph node centre includes lymph nodes with 
lymph flow that always passes through from each peripheral site. After injection of ICG, the lymph flow from 
the right hindlimb to the superficial inguinal lymph nodes (Fig. 1C,D) and lymph nodes (Fig. 1E) was visualized 
when illuminated with near-infrared light. The same lymph nodes illuminated with visible light are shown Fig. 1F. 
Therefore, these centres served here as representative SLNs.

Identification of SLNs in wild-type swine. We used computed tomography (CT) to visualise SLNs of one 
swine. CT detected parotid lymph nodes, superficial cervical lymph nodes and superficial inguinal lymph nodes. 
However, the boundaries between parotid lymph nodes, superficial cervical lymph nodes and surrounding tissues 
such as the salivary gland were unclear. Therefore, it was difficult to identify these lymph nodes (Fig. 2A,B).

Superficial inguinal lymph nodes were close to the surface of the body (Fig. 2C). CT revealed flat inguinal 
lymph nodes that continued in a beaded shape with sizes of 17.9 × 8.0 mm and 17.2 × 8.0 mm on the right and 
left, respectively.

Lymphatic flow was detected by subcutaneously injecting indigo carmine (Fig. 2D–F). While general anaes-
thesia was maintained, an incision was made, and stained lymph nodes stained were observed (Fig. 2G–I). Each 
lymph node was stained with the dye (Fig. 2J–L).

Identification of SLNs in knockout swine. CT imaging of a knockout swine without tumours revealed 
that its lymph nodes were smaller than those of the wild-type. Identification of the parotid lymph node and 
ventral superficial cervical lymph node was more difficult (Fig. 3A,B). The superficial inguinal lymph node 
was 14.6 mm × 6.4 mm on the right and 12.6 mm × 6.2 mm on the left (Fig. 3C). This lymph node, which was 
extracted using the dye method was smaller than that of the wild-type (Fig. 3D–F).

Establishment of a model of metastasis and identification of SLNs. The body weight of swine 
(Fig. 4A) and size of the primary tumour (Fig. 4B) increased after subcutaneous injection of A431-GFP cells. 
The tumour size of right forelimb was reduced at sixth week with unknown reason. Eight weeks after trans-
plantation of A431 cells, CT did not distinguish the boundary of the parotid lymph nodes, and the ventral 
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superficial cervical lymph nodes were difficult to discern (Fig. 4C,D). The shape of the superficial inguinal 
lymph nodes was more spherical and swollen than in the RAG2 knockout or wild-type. Their dimensions were 
17.9 ± 6.0 mm × 11.0 ± 2.5 mm on the right and 16.7 ± 2.8 mm × 11.0 ± 0.2 mm on the left (Fig. 4E).

These lymph nodes were extracted using the same method employed for the control (Fig. 4F–H). The extracted 
lymph nodes emitted fluorescence, indicating metastasis of tumour cells to the lymph nodes (Fig. 4I–K). A431 
cells were transplanted into six swine at 32 sites. Tumour growth was observed at 20 sites, and fluorescence was 
confirmed at 11 sites.

Histological analysis of lymph nodes. Lymph nodes of wild-type and RAG2-knockout swine with or with-
out A431-induced tumours were collected and subjected to histological analysis. Lymphoid follicles were observed 
in wild-type swine (Fig. 5A), although a few aggregated lymphocytes and immature lymphoid follicles were observed 
in knockout swine (Fig. 5B), as described in our previous study27. In swine with metastases, tumour cells replaced 
the pre-existing lymph node architectures (Fig. 5C). Immunohistochemistry (IHC) using an anti-GFP antibody con-
firmed the existence of the tumour and the boundary between tumour and lymph nodes (Fig. 5D). High magnifica-
tion of tumour metastasis detected using hematoxylin and eosin (HE) staining and IHC analysis using an anti-GFP 
antibody are shown in Fig. 5E,F, respectively. The corresponding analyses of lymph nodes are shown in Fig. 5G,H. 
The tumour cells showed high-grade nuclear atypia and formed irregular tumour nests (Fig. 5E).

To characterise the microenvironment of this tumour metastasis model, we analysed RAG2-knockout swine with 
and without metastatic tumours. For this purpose, we performed IHC using antibodies against smooth muscle actin 
(SMA), transforming factor (TGF)-beta and tenascin C, which serve as markers for cancer-associated fibroblasts, 

Figure 1. Lymph flow in swine. The lymph centre is formed by the inflowing lymph node group to which 
lymph flow is formed for each tributary area. (A) The parotid lymph centre receives lymph flow from the half-
side region of the cranial dorsal side and orbital and masticatory muscles. The superficial cervical lymph centre 
receives lymph flow from the neck, chest and proximal regions of the forelimbs. (B) The iliofemoral lymph 
centre receives lymph flow from the flank, dorsal side of the abdominal wall, scrotum and mammary glands. 
(C,D) Lymph flow and sentinel lymph nodes detected using indocyanine green (ICG). The lymph flow from 
the right hindlimb to the superficial inguinal lymph nodes was visualized when illuminated with near-infrared 
light. Lymph nodes illuminated with near-infrared light (E) and white light (F).
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cytokines and the extracellular matrix, respectively. Alpha SMA was expressed at higher levels in involved lymph 
nodes (Fig. 5I) vs the control (Fig. 5J). TGF-beta was only expressed in cancer cells (Fig. 5K) but not in control lymph 
nodes (Fig. 5L). Tenascin C was expressed at higher levels (Fig. 5M) compared with control lymph nodes (Fig. 5N).

Discussion
Here we describe the establishment of a model of metastasis to SLNs using immunodeficient swine. To our knowl-
edge, there are no other reports of using swine or other large animals for this specific purpose. Several related 
studies of SLNs in swine have been published. For example, ultrasound employing microbubbles can be used to 
identify SLNs29, and SLNs can be identified using Sonazoid30. However, these studies employed wild-type swine. 
Therefore, the results may not be generalized to metastasis to SLNs.

Figure 2. Lymph nodes of wild-type swine. (A–C) CT images of parotid lymph nodes (A), ventral superficial 
cervical lymph nodes (B), and superficial inguinal lymph nodes (C). (D–F) Lymph flow to parotid lymph nodes 
(D), ventral superficial cervical lymph nodes (E), and superficial inguinal lymph nodes (F). Asterisks indicate 
the injection sites of indigo carmine, and arrowheads indicate lymph flow. (G–I) Stained lymph nodes: parotid 
lymph nodes (G), ventral superficial cervical lymph nodes (H) and superficial inguinal lymph nodes (I). (J–L) 
Extracted lymph nodes: parotid lymph nodes (J), ventral superficial cervical lymph nodes (K) and superficial 
inguinal lymph nodes (L).

https://doi.org/10.1038/s41598-019-44171-w


5Scientific RepoRts |          (2019) 9:7923  | https://doi.org/10.1038/s41598-019-44171-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

We previously established a rodent model of SLN metastasis that offers the possibility of preoperative rapid 
diagnosis of SLNs to enable the use of minimally invasive treatments such as photodynamic therapy23. Here it 
was possible to apply clinical identification and extraction methods to study SLNs, which will make possible the 
experiments aimed to study metastasis in a large animal. An example is provided below.

First, large animal models can confirm the clinical efficacy and safety of new drugs, as well as for the develop-
ment of innovative therapeutic strategies of lymph node metastasis. Thus, the metastasis model is more suitable 
for preclinical experiments, because it is possible to target progressive cancers, particularly those with lymph node 
metastasis. Specifically, photodynamic therapy (PDT) has attracted attention as a minimally invasive treatment. 
A study of a rodent model of lymph node metastasis employed PDT25. In this study, A431 cells were injected to 
the forelimbs of BALB/c nude mice to develop lymph node metastasis, 2-methacryloyloxyethyl phosphorylcho-
line -verteporfin was subsequently injected at the dorsum manus, and 75 J of light was delivered to the skin. This 
combination significantly reduces SLN metastasis compared with the control. The depth of penetration of a laser 
beam is wavelength-dependent. Therefore, using large animals vs small rodents to test PDT is obviously more 
applicable to clinical practice. Further, a large animal model provides the ability to study metastasis residing in 
tumours of visceral organs. Second, large animal models of metastasis can be applied to confirm new SLN ver-
ification methods for noninvasive diagnosis. For example, a published method identified SLNs in patients with 
breast cancer treated with agents such as SPIO nanoparticles11. Moreover, imaging methods that assess the phar-
macokinetics of SLNs are applied in clinical practice12,13. Our swine model likely will prove useful to verify these 
methods. Further, studies are available that determined the sizes of tin and phytate-isotope colloids particles that 
specifically accumulate in target lymph nodes in the presence of a consistent lymph flow31. Magnetic nanoparti-
cles, 20-nm in diameter, enhance detection of SLNs in combination with magnetic resonance imaging in intact 
rodent and models of SLN metastasis23. For these new SLN identification methods, we consider that our model 
can verify the optimal size and structural features of the particles. Third, we detected the expression of SMA, 
TGF-beta and tenascin C, indicating the applicability of our model for studying tumour-stroma interactions.

There are several limitations in the present study. We used A431 cells as we did in previous studies23,25. To 
better assess the clinical relevance of our model, we plan to use cell lines or primary tumour cells derived from 
other cancers (i.e. breast cancer). Tumour cells were subcutaneously injected into the limbs or auricles to facilitate 
their entry into the lymphatic flow. Considering the mechanism of lymph flow-mediated lymph node metastasis 
in clinical practice, this method is feasible and more clinically relevant. However, metastasis to SLNs did not 
always occur even when tumour growth was confirmed at the implantation site. The size of the primary tumour 
differed depending on the site, although there was no apparent relationship between tumour size and lymph node 
metastasis. Therefore, it may be difficult to use this model to analyse processes such as the immune response and 
metastasis. To effectively apply this model to experiments, it will be necessary to establish a diagnostic method to 
confirm the presence or absence of metastasis to the SLNs before their removal.

Figure 3. Lymph nodes in RAG2-knockout swine without tumours. (A–C) CT images of parotid lymph nodes 
(A), ventral superficial cervical lymph nodes (B) and superficial inguinal lymph nodes (C). (D–F) Extracted 
lymph nodes: parotid lymph nodes (D), ventral superficial cervical lymph nodes (E) and superficial inguinal 
lymph nodes (F).
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In the present study, we used CT to measure and compare the diameters of lymph nodes. Previous studies 
employed ultrasound to identify SLNs29,30. We believe that combining these diagnostic imaging techniques will 
more accurately evaluate the presence or absence of metastases. In clinical practice, metastasis is confirmed at the 
time of SLNB, but it is difficult to diagnose metastases, such as micrometastases, in preoperative images. We plan 
to establish a micrometastasis model but must consider other methods to detect metastatic tumour cells before 
the SLNB is performed.

Figure 4. Transition of average body weight and the size of the primary tumour and lymph nodes in the 
metastatic model. (A) Transition of average body weight. The average weight decreased by week 7, because 
one swine was poorly conditioned and lost weight. (B) Transition of the size of the primary tumour at the 
auricle and limbs. (C–E) CT images of parotid lymph nodes (C), ventral superficial cervical lymph nodes (D) 
and superficial inguinal lymph nodes (E). (F–H) Extracted lymph nodes: parotid lymph nodes (F), ventral 
superficial cervical lymph nodes (G) and superficial inguinal lymph nodes (H). (I–K) Lymph nodes observed 
using a stereoscopic fluorescence microscope: parotid lymph nodes (I), ventral superficial cervical lymph nodes 
(J) and superficial inguinal lymph nodes (K). The scale bar = 10 mm (F–K).
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Methods
Cell lines. The human epithelial carcinoma cell line A431 (American Tissue Culture Collection, Rockville, 
MD) was used to generate cells stably transfected with green fluorescent protein (GFP). A431 cells were main-
tained in Dulbecco’s modified Eagle’s medium with 10% heat-inactivated foetal bovine serum (Gibco, Grand 
Island, NY) in a humidified 5% (v/v) CO2 incubator at 37 °C.

Swine. We used nine crossbred swine (Landrace, Yorkshire, and Duroc), including two wild-type and seven 
RAG2 knockouts. The information about the swine are shown in Supplementary Tables 1 and 2. Tumour cells 
were implanted into six RAG2 knockout swine 12 ± 2-days-old, weighing 2.7 ± 0.4 kg. A431 cells (1 × 106 in 1 mL 
phosphate-buffered saline) stably expressing GFP were injected into the posterior side of the auricle, forelimb, 
and hindlimb. Tumour size and swine weight were measured every 2 weeks. Animals were maintained on a 
standard laboratory chow diet and had free access to tap water. SLNs were extracted at 10 weeks of age (8 weeks 
after tumour transplantation) when the swine weighed 18.0 ± 2.0 kg. SLNs were observed using a stereoscopic 
fluorescence microscope and were analysed using HE staining and IHC. National Agriculture and Food Research 
Organization maintains several heterozygous RAG2-knockout males and females. Therefore, we can regularly 
produce homozygous RAG2-knockout swine by simple matings to insure the reproducibility of our experiments. 
We used swine of approximately the same age and size.

Figure 5. Histological analysis of lymph nodes. HE-stained lymph nodes of wild-type (A) and lymphoid 
follicles is indicated by the arrows. HE-stained lymph nodes of RAG2-knockout swine (B). HE-stained 
metastatic lymph nodes of RAG2-knockout swine (C). Metastatic tumour cells are surrounded by a dotted 
line. Immunohistochemical analysis of GFP expression in RAG2-knockout swine with tumours (D). HE-
stained lymph nodes of RAG2-knockout swine with metastatic tumour (E) and IHC analysis using an anti-GFP 
antibody (F). HE-stained lymph nodes of RAG2-knockout swine (G) and IHC analysis using an anti-GFP 
antibody (H). Immunohistochemical analysis of alpha SMA expression in lymph nodes of RAG2-knockout 
swine with (I) and without (J) a metastatic tumour. Immunohistochemical analysis of TGF-beta expression in 
lymph nodes of RAG2-knockout swine with (K) or without (L) a metastatic tumour. Immunohistochemical 
analysis of tenascin C expression in lymph nodes of RAG2-knockout swine with (M) and without (N) a 
metastatic tumour. The scale bar = 1 mm (A–D) and 250 µm (E–N).
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The Institutional Animal Care and Use Committees of Keio University (Approval number: 8073) and the 
University of Tokyo (Approval number: 986-2732) approved this study. All animal experiments were performed 
in accordance with the local ethics law, the regulations of the local ethics committee and Institutional Guidelines 
on Animal Experimentation at Keio University.

CT. CT was performed after the swine were administered general anaesthesia. The whole body was scanned 
without a contrast medium (1-mm slices).

Surgical and histological procedures. Indigo carmine dye or ICG was used to detect SLNs in the same 
manner applied in clinical practice9,10. Indigo carmine (1 mL) or ICG (0.5 ml) was injected into the posterior 
sides of the auricle, forelimb and hindlimb, and SLNs were excised 15 min later. Incisions were made in the groin 
and neck to follow the lymph flow. Blue lymph nodes were defined as SLNs and removed. During the procedures, 
sedation was induced by intramuscular injection of medetomidine and butorphanol (1 mL per animal, each), and 
anaesthesia was maintained using 1.5–2% isoflurane after intubation. SLNs were observed using a stereoscopic 
fluorescence microscope and pathologically evaluated.

Fluorescence microscopy. A Nikon stereoscopic fluorescence microscope SMZ25 (objective lens, SHR 
Plan Apo 0.5×) was equipped with a Nikon DS-Ri2 camera. Images were processed using NIS-Elements D 
(Nikon Corporation, Minato, Japan).

IHC. Specimens were deparaffinized in xylol, rehydrated in a descending series of ethanol concentrations 
and antigens were retrieved using Target Retrieval Solution (Dako Japan, Tokyo Japan) at 121 °C for 10 min. 
After inactivated with endogenous peroxidase in 0.5% periodic acid for 10 min, specimens were blocked in 4% 
skimmed milk in TBS for 30 min. Antibodies (all from Dako Japan, Tokyo) against GFP (1:100, ab183734), alpha 
SMA (1:1000, ab7817), TGF-beta (1:100, ab190503) and tenascin C (1:100, ab108930) were incubated overnight 
at 4 °C, washed with TBS for 30 min and then incubated with ENVISION (Dako Japan, Tokyo, Japan) for 30 min. 
After washing with TBS for 30 min, immune complexes were visualised using DAB for 1–5 min, counterstained 
with hematoxylin for 1 min and then dehydrated and mounted on coverslips. The images were acquired using a 
NanoZoomer (Hamamatsu photonics K.K., Shizuoka, Japan).

Data Availability
All the data used in this paper are available.
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