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A dysregulated immune response toward self-antigens characterizes autoimmune and
autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to
autoimmune diseases, while autoinflammation results from a hyper-functional innate
immune system. Aside from their differences, many studies suggest that monocytes
and macrophages (Mo/Ma) significantly contribute to the development of both types of
disease. Mo/Ma are innate immune cells that promote an immune-modulatory, pro-
inflammatory, or repair response depending on the microenvironment. However,
understanding the contribution of these cells to different immune disorders has been
difficult due to their high functional and phenotypic plasticity. Several factors can influence
the function of Mo/Ma under the landscape of autoimmune/autoinflammatory diseases,
such as genetic predisposition, epigenetic changes, or infections. For instance, some
vaccines and microorganisms can induce epigenetic changes in Mo/Ma, modifying their
functional responses. This phenomenon is known as trained immunity. Trained immunity
can be mediated by Mo/Ma and NK cells independently of T and B cell function. It is
defined as the altered innate immune response to the same or different microorganisms
during a second encounter. The improvement in cell function is related to epigenetic and
metabolic changes that modify gene expression. Although the benefits of immune training
have been highlighted in a vaccination context, the effects of this type of immune response
on autoimmunity and chronic inflammation still remain controversial. Induction of trained
immunity reprograms cellular metabolism in hematopoietic stem cells (HSCs), transmitting
a memory-like phenotype to the cells. Thus, trained Mo/Ma derived from HSCs typically
present a metabolic shift toward glycolysis, which leads to the modification of the
chromatin architecture. During trained immunity, the epigenetic changes facilitate the
specific gene expression after secondary challenge with other stimuli. Consequently, the
enhanced pro-inflammatory response could contribute to developing or maintaining
autoimmune/autoinflammatory diseases. However, the prediction of the outcome is not
simple, and other studies propose that trained immunity can induce a beneficial response
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both in AIF and autoimmune conditions by inducing anti-inflammatory responses. This
article describes the metabolic and epigenetic mechanisms involved in trained immunity
that affect Mo/Ma, contraposing the controversial evidence on how it may impact
autoimmune/autoinflammation conditions.
Keywords: trained immunity, autoimmunity, autoinflammation, vaccines, trained immune cells, BCG (Bacille
Calmette-Guérin)
INTRODUCTION

Classically the immune response in vertebrates has been
classified as innate and adaptive. The latter requires the
presence of B and T lymphocytes that, when faced with a
pathogen, mount a specific response and establish a memory.
Although this process requires time (days), a faster and more
effective specific response takes place after subsequent antigen
encounters. On the other hand, innate responses have
historically been characterized by constitutive systems, such as
complement and phagocyte activity, which are non-specific, run
rapidly (hours), and do not establish a memory (1). However, a
large body of evidence supports that exposure to pathogens can
induce a memory-like response in the innate system (2, 3), as we
will discuss below in this review.

Trained immunity was first proposed in 2011 as the enhanced
innate immune response during a second encounter with the same
or different microorganisms (cross-protection) (4). It should be
noted that this innate memory differs from adaptive memory since
it is not antigen-specific and is based on the strengthening of the
innate response to the subsequent encounter with pathogens. This
type of immune response cannot be classified as either innate
org 2
(only observed in the second encounter) or as adaptive (no specific
memory itself), so it is defined as another mechanism occurring
after a second encounter (4). Trained immunity is mainly
mediated by Mo/Ma and NK cells independently of T and B
cells. The improvement in cell function in these cell populations is
related to epigenetic and metabolic changes that modify gene
expression and the phenotype of these cells (Figure 1). Although
the benefits of immune training have been extensively highlighted
in a vaccination context, its effects on autoimmunity and chronic
inflammation are still controversial.
BRIEF DESCRIPTION OF
TRAINING MECHANISMS

A type of innate memory against previous inflammatory events
has been described in plants (5) and various invertebrates as an
adaptation to the lack of an adaptive immune system (6). In the
case of vertebrates, the stimulation of innate cells through
different pattern recognition receptors (PRRs), such as Toll-like
receptors (TLRs), nucleotide-binding oligomerization domain-
FIGURE 1 | Schematization of trained immunity concepts. The first encounter with a specific stimulus (vaccine, glucan, pathogen) determines metabolic changes
and establishes an epigenetic scar either in mature cells (peripheral training) or in stem cells (central training). These marks enable trained immunity to a strengthened
response when facing a second stimulus, either to an increase of the pro-inflammatory or anti-inflammatory response. Although the pro-inflammatory response has
been the most documented for trained immunity, the anti-inflammatory response has recently been described.
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like receptors or NOD-like receptors (NLRs), or C-type lectin
receptors (CLRs) promotes long-term modifications that
modulate cell metabolism and epigenetic reprogramming (7,
8). PRRs interact with pathogen-associated molecular patterns
(PAMPs) and damage/danger-associated molecular patterns
(DAMPs). However, the specificity of these receptors can also
recognize non-harmful elements generating sterile inflammation
(9). For example, macrophages express dectin-1 and TLR-4,
recognizing the DAMPs vimentin and high-mobility group box
protein-1 (HMGB-1), respectively. These molecules are secreted
under injury situations and can train macrophages, making them
prone to produce IL-6 and TNF under a second stimulus (10).
Therefore, a strict balance between pro- and anti-inflammatory
responses is required to avoid chronic inflammation or immune
paralysis (11).

Metabolically, cells in a quiescent state have low biosynthetic
demand and mainly metabolize glucose via glycolysis coupled
with oxidative phosphorylation (12). Thus, circulating
monocytes in the resting state mostly use the Krebs cycle to
synthesize essential molecules or oxidative phosphorylation (13).
However, once the cells are activated, they produce biosynthetic
precursors by increasing glucose consumption through aerobic
glycolysis and oxidative phosphorylation (14). Thus, it has been
observed that b-glucans (cell wall components of fungi that are
prototype agonists that induce trained immunity) produce a shift
in cellular metabolism from oxidative phosphorylation to aerobic
glycolysis in monocytes (15). This increased metabolic activity
raises the synthesis of metabolites that modulate long-term
innate immunity (15, 16).

Metabolic processes, such as glycolysis and fatty acid
metabolism can influence immune cell function rather than
simply generating energy or modulating general biosynthesis
(17). In fact, metabolic reprogramming joins other key
immunoregulatory events that influence the immune response
(18). Metabolic flexibility in cells is essential to respond to critical
changes in the environment and functional demands. In other
words, cells can reprogram their metabolism due not only to
Frontiers in Immunology | www.frontiersin.org 3
changes in the availability of nutrients but also in response to the
signaling by PRRs and other receptors (cytokine and antigen
receptors) (18). Thus, the shift toward aerobics glycolysis and
fatty acid synthesis away from the Krebs cycle and fatty acid
oxidation is a feature of activated macrophages and DCs (19).
Thus, in various immune cells, the increment in glycolysis leads
to immune activation contrary to the induction of fatty acid
oxidation, oxidative phosphorylation (OXPHOS), and lipid
uptake that contribute to immune suppression (20).

Moreover, macrophages are highly plastic cells that can adopt
a pro-inflammatory (classical or M1) or anti-inflammatory
(alternative or M2) profile, and in each case, their metabolic
commitment is adapted accordingly (21). For example, in M1
macrophages aerobic glycolysis predominates while the M2
macrophages engage with OXPHOS and the Krebs cycle (22).
As macrophages, DCs undergo cellular changes (morphology,
synthesized cytokines, antigenic presentation, increased
glycolysis) that define their activated state after stimulation
by PRRs (23). Furthermore, the formation of neutrophil
extracellular traps (NETs) by neutrophils is dependent on
glycolysis, and their activation with PMA increases glucose
uptake (24). Similarly, NK cells are activated in the periphery,
increasing glucose uptake, glycolysis, and lipid synthesis (25).

On the other hand, despite most of the metabolic studies
focusing on glucose pathway shifts, there have also been reports
of increased cholesterol synthesis in trained immunity.
Consistently with this notion, it was observed that the
induction of this pathway is crucial for the establishment of
innate memory (26). Furthermore, inhibition of cholesterol
synthesis pathways block the trained immunity seen from b-
glucan exposure (26), and a deficiency in mevalonate kinase
(MVK) associates with a constitutive phenotype of trained
immunity and greater susceptibility to sterile inflammation (26).

The above-mentioned metabolic changes are not isolated
events within the cellular networks because these changes are
closely related to epigenetic alterations capable of regulating
innate immune memory (Figure 2). This is partly because
FIGURE 2 | A schematic representation of the changes that occurred during trained immunity over time is shown, focusing on the major metabolic and epigenetic changes.
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many epigenetics events are closely associated with metabolic
pathways by producing substrates and cofactors required for
enzymatic activities (27). Accordingly, it has been observed that
epigenetic modifications depend on cellular metabolism changes
(16), and these modifications are blocked when metabolic
changes are avoided (15, 28). Along these lines, the activation
of the cell produces variations in the levels of various intracellular
metabolites that lead to changes in the activity of specific
enzymes responsible for modifying or reading the
modifications in histones or DNA (29). For example, although
the mechanisms are not yet fully understood, it is thought that
there is a relationship between acetyl-CoA levels and histone
acetylation (30). Besides, the accumulation of metabolic
intermediates of the Krebs cycle, such as fumarate, inhibits
demethylases increasing epigenetic changes in histones and
trained immunity in monocytes (31).

On the contrary, the increase in itaconate, a product of the
Krebs cycle, reduces epigenetic marks leading to immune
tolerance after stimulation with PAMPs (32). Epigenetic
regulation refers to phenotype changes without genotype
alterations and includes both transient and stable structural
alterations of the chromatin that impact gene expression (33).
The mechanisms include various post-transcriptional
modifications on histones (methylation, acetylation, among
others), DNA chemical modifications, and regulation of non-
coding RNAs (34). During primary stimulation of innate cells,
active gene transcription is made possible by chromatin
decondensation that facilitates access of the transcription
machinery to DNA. The challenge of monocytes with stimuli
such as b-glucans produces a long-lasting enrichment with
marks such as the methylation of lysine (K) 4 or the K27
acetylation on histone H3 (H3K4me and H3K27ac,
respectively) in the promoters of pro-inflammatory genes,
increasing their expression (Figure 2) (35).

The effect induced on myeloid cells depends on the nature of
the stimulus (the receptor involved) and on the concentration at
which the exposure occurs. In this way, the same component can
induce an attenuated or strengthened response when used in
different concentrations (31). The major TLRs and NLR
microbial ligands have been evaluated and their ability to
attenuate or enhance the immune response in monocytes to a
second encounter (36). These data show that muramyl dipeptide
(MDP) and flagellin can induce trained immunity, and the latter
is of particular interest because it has been assigned relevance to
the pathogenesis of inflammatory bowel diseases (36). Thus,
repeated exposure to LPS can induce selective and transient
alterations in histones that repress the expression of pro-
inflammatory factors in murine macrophages, favoring
tolerance and reducing tissue damage by excessive
inflammation (37).

On the other hand, exposure to Candida albicans or b-
glucans induces stable epigenetic changes based on H3K4me,
producing expression of inducible genes (35). Thus, b-glucan can
at least partially reverse LPS-induced tolerance in Mo/Ma
through changes in histones and reactivation of non-
responding genes (38). Besides, stimulation with b-glucans in
Frontiers in Immunology | www.frontiersin.org 4
human monocytes produces both H3K4me3 and H3K27ac after
seven days, and these changes were associated with induction of
the glycolysis pathway (15).

Considering that trained immune response has been
described several months after the first encounter (39), and
due to the short life span of circulating Mo/Ma and NK cells,
the question initially arose about how long-term reprogramming
is established in these cells (4). In turn, this programming can be
carried out at various levels of cellular function and locations, as
will be mentioned in the following sections.

Importantly, trained immunity can be established
peripherally in circulating mature cells or centrally in bone
marrow progenitor cells, thus maintaining immune training
for long periods (Figure 1). Different stimuli were shown to
induce systemic changes, affecting hematopoiesis and
reprogramming progenitor cells in the bone marrow (40, 41).
Induction of trained immunity reprograms cellular metabolism
in hematopoietic stem cells (HSCs), transmitting a memory-like
phenotype to the cells (40, 42, 43). Thus, trained Mo/Ma derived
from HSCs typically present a metabolic shift toward glycolysis,
which leads to the modification of the chromatin architecture by
methylases and acetylases (40). Stem cells express receptors for
many inflammatory elements, allowing them to sense and adjust
to changes in the environment (44). For example, acute
stimulation with LPS induces persistent alterations in specific
myeloid lineage enhancers, improving innate immunity against
P. aeruginosa by a C/EBPb dependent mechanism (45).

Similar to some infections, vaccines have also been reported
to induce trained immunity, conferring non-specific protective
effects against other non-related infections. For example, using
the Bacillus Calmette-Guérin (BCG) vaccine, metabolic and
epigenetic alterations were observed in monocytes both in vivo
and in vitro (16, 46, 47). The result of the exposure of monocytes
to the BCG vaccine or b-glucan is an increased cross-response
(higher cytokine production) to subsequent exposure to another
unrelated pathogen seven days later (35, 48, 49). Below we will
detail the most important elements that induce trained immunity
and the mechanisms that have been described for each of them.

Vaccines
Vaccines have been developed to induce a specific immune
response against a wide variety of pathogens for which they
were designed. However, some vaccines can also protect against
other pathogens with no specific vaccine by eliciting immune
responses related to the concept of trained immunity (46, 47, 50).
Furthermore, trained innate cells can boost vaccine strategies by
increasing antigen uptake, presentation, migration, and cytokine
production (51).

BCG, the vaccine for tuberculosis, has reduced mortality by
decreasing morbidities other than tuberculosis in Africa (52).
Interestingly, in the current pandemic against SARS-CoV-2,
those countries where BCG vaccination is given at birth, it has
been shown to have fewer COVID-19-related deaths and a lower
contagion rate (46, 47, 53). Accordingly, BCG-vaccinated mice
also increase their immune response against C. albicans or
Schistosoma mansoni, at least in part through a T-independent
April 2022 | Volume 13 | Article 868343
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mechanism (54). Moreover, BCG can improve vaccine
performance against viral infections, such as influenza and
hepatitis B, by enhancing cytokine production in humans and
mice (55). It was shown that three months after BCG
vaccination, the production of pro-inflammatory cytokines
increased following ex vivo stimulation of NK cells with
mycobacter ia and other unrelated pathogens (48) .
Furthermore, in response to unrelated bacterial and fungal
pathogens, through epigenetic reprogramming of innate
immune cells, BCG increased not only the production of IFN-g
but also augmented the release of monocyte-derived cytokines,
such as TNF and IL-1b (56). On the other hand, the induction of
glycolysis and glutamine metabolism, regulated by epigenetic
mechanisms at the chromatin organization level, has been
demonstrated to be essential underlying BCG-induced trained
immunity in monocytes both in an in vitro model and after
vaccination of mice and humans (16).

The occurrence of trained immunity has also been observed
in live-attenuated vaccines other than BCG, such as vaccines
against smallpox (vaccinia virus), measles, polio (live oral
vaccine), yellow fever, and the new live-attenuated M.
tuberculosis candidate vaccine MTBVAC (57–62).

The stimulus involved in the induction of trained immunity
by vaccines is unclear. However, it is assumed that the
immunogen from the vaccine can reach the bone marrow,
where the hematopoietic stem and progenitor cells are
stimulated, detecting PAMP, or could be indirectly stimulated
by detecting systemic inflammatory signals like growth factors
and cytokines such as GM-CSG, M-CSG, G-CSF, IL-1b, IL-6
(51). For instance, the bioactive peptidoglycan motif common to
all bacterial vaccines is MDP (63), which activates innate cells
through PRRs and leads to inflammatory cytokine release.
Besides, BCG employs the mechanistic Target of Rapamycin
Frontiers in Immunology | www.frontiersin.org 5
(mTOR) pathway to activate specific downstream metabolic
reprogramming and epigenetic changes (16). To date, the only
intracellular PRR identified to be involved in the induction of
trained immunity is NOD2/Rip2 in response to BCG (Figure 3).
Moreover, activation of NOD2 (63) stimulates epigenetic
changes in macrophages and induces trained immunity (56).

Products Derived From Lipid Metabolism
The endotoxin LPS is the main outer membrane component of
Gram-negative bacteria (64) and can regulate innate immune
memory by promoting either inflammation or tolerance
depending on acute or chronic stimulation and doses (37, 65).
For instance, repeated low doses of LPS can increase the
inflammatory response in mice after a stroke through changes
in H3K4me1 in microglia (65). Moreover, acute stimulation with
LPS induced persistent alterations in specific myeloid lineage,
improving innate inflammatory immunity against Pseudomonas
aeruginosa by a C/EBPb dependent mechanism (45).

Other studies have shown that low doses of LPS reduced the
expression of costimulatory molecules and increased expression
of iCOS-ligand and DC-SIGN, promoting a mixed M1/M2
phenotype (66). Macrophages with a tolerogenic profile
alleviated fibrosis and inflammation in a mouse model of
systemic sclerosis (SSc), even by adoptive transfer (66). The
gene response after LPS treatment is dynamically regulated to
confer the tolerance phenotype (67). Thus, acetylation and
methylation of histones are reconfigured to diminish
transcription of pro-inflammatory cytokines, lipid metabolism,
and phagocytic pathways (38, 67).

On the other hand, non-microbial molecules have been
studied as trained immunity inducers, such as endogenous
atherogenic particles (68–70). Compared to PAMPs, DAMPs
have been much less studied as inducers of trained immunity.
FIGURE 3 | The figure shows in a simplified way the connection of the main metabolic pathways involved in the establishment of trained immunity through the
commitment to some PAMPs (b-glucans, BCG, LPS).
April 2022 | Volume 13 | Article 868343
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DAMPs are host-derived molecules capable of inducing an
innate immune response. For example, oxidized low-density
lipoprotein (oxLDL) is recognized by receptors as lectin-like
oxidized low-density lipoprotein receptor-1 (LOX-1), CD36, and
scavenger receptor class B type I (SR-BI) and, after a brief
exposure, enhances the long-term pro-inflammatory response
in Mo/Ma (69). Thus, oxLDL-trained macrophages present an
epigenetic reprogramming associated with mTOR signaling
showing high histone methylation and a pro-inflammatory
profile (68). In addition, large containers of mitochondria have
been found after exposure to ox-LDL, which correlates with an
increased oxidative phosphorylation activity (69).

Hyperlipidemia has recently been studied as a factor to
modulate or induce the inflammatory trained immune cell
response (71), but the specific mechanisms regarding this
matter remain unknown. A positive correlation between lipid
concentration and the induction of metabolic genes has been
observed, contributing significantly to trained immunity (70).
Hyperlipidemia is linked with the increase of lysoPC and oxLDL
as a stimulus for trained immunity (70); however, it has also been
linked with increased aldosterone and liver X Receptor (LXR)
activation, both proposed as part of a mechanism promoting
trained immunity (72, 73).

b-Glucan
The b-glucans are iconic inductors of trained immunity
described throughout the literature (35, 74–77). b-glucans are
glucose polymers found in the cell wall of fungi, rich in D-glucose
units with b-1,3 links and b-1,6 branching, and recognized as
PAMPs by dectin-1 in macrophages (Figure 3) (78). It has been
reported that b-glucans from different sources (algae, yeast,
bacteria, oat, and mushroom) can induce a strengthened
response in vitro in peripheral blood mononuclear cells
(PBMCs) (74). In murine models lacking functional T and B
lymphocytes, trained immunity can be observed using C.
albicans and fungal cell wall b-glucan. In that model, b-glucans
induce functional reprogramming of monocytes, leading to
augmented cytokine production and lower mortality under
reinfection (35). Accordingly, the b-glucan treatment produces
subsequent protection against Staphylococcus aureus infections
in mice (75). Similarly, macrophages trained with b-glucan can
protect mice against a P. aeruginosa infection (76).

The early inflammatory response induces epigenetic and
metabolic changes, but interestingly, in this report, the induced
immunity was independent of dectin-1 and TLR2 (76). Notably,
b-glucan-mediated induction of training in macrophages
requires cAMP production and activation of the mTOR-HIF1a
pathway and aerobic glycolysis, similar to BCG trained
immunity mechanisms (15, 79). Consistently, when glycolysis
and glutaminolysis were inhibited, a reduction in histone marks
was observed at the promoters of IL-6 and TNF (26). Besides,
DCs also have shown enhanced response after fungal exposure.
Mice exposed to Cryptococcus neoformans have DCs with strong
IFN-g production on a challenge and epigenetic changes (77).

b-Glucan-trained human monocytes undergo chromatin
restructuring, identified by increased levels of H3K4me3,
H3K27ac, and H3K4me1, as well as DNA demethylation, and
Frontiers in Immunology | www.frontiersin.org 6
increased accessibility of specific transcription factors at gene
promoters corresponding to inflammation mediators (38, 79).
Importantly, it has been observed that b-glucans also influence
the myeloid progenitors of the bone marrow by producing
epigenetic remodeling (80). Moreover, b-glucan promotes the
expansion of myeloid-biased CD41+ HSCs in mice (41) and
induces changes in HSCs in an IL-1b dependent manner (41).
BENEFICIAL AND DETRIMENTAL
EFFECTS OF THE INDUCTION OF
TRAINED IMMUNITY FOR
AUTOIMMUNE DISORDERS

Based on the above, trained immunity could play a pivotal role in
defense against pathogens and even cancer cells, which is why it
has been proposed as possible new immunotherapy (81).
However, it is still debated whether this enhanced phenotype
of innate cells could also contribute to establishing or
maintaining chronic inflammatory conditions (82). Although
the contribution of the genetic profile in the development of
autoimmunity and the critical role of the adaptive immune
system is well known, the innate response also plays essential
functions in these conditions (83, 84). Autoimmune diseases are
pathologies in which the immune response is unbalanced,
characterized by autoreactive T and B cells, and complex
pathogenesis with multifactorial etiology. Thus, immune cells
recognize and attack the healthy tissues in a systemic or organ-
specific manner, generating even more chronic inflammation
(85). Along these lines, alterations in innate response
characterized by a pro-inflammatory profile have also been
described in innate cells from patients with autoimmune
diseases (83, 86).

Two main scenarios can be identified with regard to trained
immunity and autoimmune diseases. First, multiple factors, such
as epigenetic alterations could be related to the observed
inflammatory profile in autoimmune diseases (33, 87) and
suggest a “training” state in the innate system under
established autoimmunity. These findings have led to
proposing new therapeutic strategies based on reversing
metabolic or epigenetic changes to reduce or reverse the
enhanced inflammatory state of the immune system (88).
Second, the promotion of trained immunity could be harmful
to individuals prone to developing autoimmune diseases.
Therefore, a trained immunity signature in lupus mice and
patients has been suggested by the reported reprogramming of
HSCs towards the myeloid lineage that could contribute to
exacerbated immune responses and flares in systemic lupus
erythematosus (SLE) patients (87). Thus, SLE inflammatory
milieu could promote immune training memory on bone
marrow progenitor cells, similar to the observed b-glucan
signature of HSCs after training (41). Besides, exposure to
Candida b-glucans in two lupus-prone mouse models
(FcGRIIB-/- and pristane) increased the production of NETs
and exacerbated disease activity (Table 1) (89). Accordingly,
the administration of b-glucans in a lupus mouse model
April 2022 | Volume 13 | Article 868343
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(NZBxNZW F1) has been reported to produce a more aggressive
disease (90) and raises the re-evaluation of these components as
immunomodulatory therapy in human lupus patients.

On the other hand, b-glucans derived from C. albicans have
been employed as an adjuvant for collagen, resulting in mice
Frontiers in Immunology | www.frontiersin.org 7
arthritis and suggesting that fungal metabolites can contribute
exacerbating to autoimmune diseases such as rheumatoid
arthritis (RA) (92). Accordingly, SKG mice (prone to
autoimmune arthritis) failed to develop the disease under a
specific pathogen-free (SPF) environment (91, 102). However,
TABLE 1 | Selection of reports that describe the effects of stimuli that produce trained immunity in patients or in vivo models of autoimmunity and the key molecules
involved. The administration route is described as well.

Condition Model Stimuli Route of
administration

Immune training effect and key molecules involved References

SLE FcGRIIB-/-
and pristane
female mice

Candida
albicans

Oral Increased production of NETs and exacerbated disease activity. Induction of prominent
NETs formation by Syk and NFkB expression in neutrophilic.

Saithong
et al., (89)

Female
NZBxNZW F1

mice

b-glucans from
Saccharomyces

cerevisiae

Oral More aggressive disease. The involvement of TLRs is suggested. Fagone
et al., (90)

RA Female SKG
mice

b-glucans
(Zymosan)

Intraperitoneal Trigger severe chronic arthritis with a higher incidence. b-glucans stimulate BM-DCs to
mature and produce pro-inflammatory cytokines in a Dectin-1- but not TLRs dependent
way.

Yoshitomi
et al., (91)

Male CIA
model in

DBA/1, DBA/
2, BALB/c,
C57BL/6,
C3H/HeN

and C57BL/
10 mice

Particles
containing b-

glucan prepared
from Candida
albicans by
oxidation

Subcutaneous
or

intraperitoneal

Exacerbate autoimmune arthritis. Genetic background (MHC and complement system)
influences the ability of b-glucans as adjuvants.

Hida et al.,
(92)

Male CIA
model in

DBA/1J mice

b-glucans
derived from

Aureobasidium
pullulans

Intradermal Inhibition of histopathological changes in CIA. Molecular mechanisms are unknown. Kim et al.,
(93)

T1D Female NOD/
Mrk/TacfBR
mice and
new-onset
diabetic
patients

CFA or BCG Intracutaneous Inhibited the development of clinical diabetes in mice and clinical remission was
observed in BCG-treated patients. Molecular mechanisms are not mentioned.

Shehadeh
et al., (94)

Healthy and
diabetic
subjects

BCG Intradermal Insulin-autoreactive T cell expansion and transient restoration of C-peptide. Mechanism
related to TNF-induced death of insulin-autoreactive T cells.

Faustman
et al., (95)

Female NOD
mice

CFA Intradermal CFA induces TNF-a production, a consequent elimination of TNF-a–sensitive cells and
reverses the early stages of disease.

Ryu et al.,
(96)

SSc Female
HOCl-

induced SSc
mice

LPS and BCG Intraperitoneal Low-dose LPS alleviates fibrosis and inflammation, but BCG-training exacerbates
disease. BCG-macrophages enhance the expression of pattern recognition receptors
(TLR4, CD206, and CD14), chemokine receptors (CCR2 and CXCR4), costimulatory
and/or signalling molecules (CD43, CD14, CD40, CD80, CD68, and Ly6C) and pro-
inflammatory cytokines release (IL-6, TNF, and IL-1b). LPSlow-macrophages express
less costimulatory receptors and pro-inflammatory cytokines but upregulate IL-10,
iCOS-ligand and DC-SIGN.

Jeljeli et al.,
(97)

MS EAE in
C57BL/6
mice

Fasciola
hepatica total

extract

Subcutaneous
or

intraperitoneal

FHTE increased the expression of arg1, retlna, chi3l3, CD206 and PD-L2 and the
secretion of IL-1RA and IL-10 by macrophages while inhibiting TNF and IL-12p40
production in response to a TLRs restimulation. Besides, FHTE trained macrophages
suppressed IL-17 production by T cells.

Quinn et al.,
(98)

EAE in female
C57BL/6
mice

F. hepatica
excretory-
secretory

products (FHES)

Subcutaneous Delay in the induction of murine EAE. FHES activates metabolic pathways (including
mTOR) in HSCs, and the BMDM from FHES-treated mice reduces the production of
pro-inflammatory cytokines and MHC-II expression but enhances IL-1RA. Besides had
reduced costimulatory molecules expression and enhanced TGF-b, IL-10, IL-1R, and
IL-6 production.

Cunningham
et al., (99)

EAE in female
CD45.2
C57Bl/6J

mice

CpG Intravenous Protection against EAE development by migration of pre-pDCs to the spine. BM cells
stimulated by the TLR-9 agonist CpG generates plasmacytoid dendritic cell (pDC) with
enhanced TGF-b and IL-27 production and PD-L1 expression.

Letscher
et al., (100)

EAE in
C57BL/6
females

BCG inactivated
by extended
freeze-drying

Subcutaneous Attenuates the inflammation systemically and at the CNS level, alleviating EAE. EFD
BCG treated mice reduce pro-inflammatory cytokines production (IL-6, IL-1b, TNF-a
and IP-10).

Lippens
et al., (101)
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a single administration of fungal b-glucan triggered severe
chronic arthritis in SKG mice and transient arthritis in normal
mice (91, 102). Moreover, the administration of C. albicans b-
glucans acts as an adjuvant in the collagen-induced arthritis
(CIA) model and induces more severe arthritis (92). In contrast,
administering a b-glucan derived from Aureobasidium pullulans
on the CIA DBA mice model for four weeks markedly reduced
arthritis signs in a dose-dependent manner (93). These results
suggest that the effect of b-glucan in the case of RA could vary
depending on the source of b-glucan and the dose applied. For
example, it was shown that b-glucan derived from
Aureobasidium pullulans can effectively preserve bone mass by
an inhibitory effect on osteoclast differentiation and by
attenuating the production of pro-inflammatory cytokines
(TNF and IL-1b) (103, 104).

Consequently, the encounter with components capable of
inducing trained immunity is not always detrimental for
autoimmunity (Table 1). Training induction in the context of
autoimmunity turns out to be complex, and in some of these
conditions, it has even been reported to be beneficial by reducing
the severity of the symptoms or delaying disease onset. For
example, while autoimmunity induces spontaneous IL-17
production and tissue damage, BCG vaccination only induces a
primed status of the cells with enhanced secondary pathogen
stimulation (105). Indeed, no higher production of these
cytokines was seen without second stimulation (105).
Consistently with this notion, some studies even reported a
beneficial effect of BCG vaccination on autoimmunity (94, 95).
As an example, the inoculation with complete Freund’s adjuvant
(CFA, which is composed in part by M. tuberculosis) into young
non-obese diabetic (NOD) mice not only prevented the
development of type 1 diabetes (T1D) but can also reverse the
early stages of disease (94, 96, 106). This impact was associated
with the production of TNF, which selectively killed only disease-
causing cells (autoreactive T cells) and allowed pancreas
regeneration (96). It was shown that CFA or BCG did not
inhibit the development of autoimmunity in mice but
redirected the disease from a destructive to a non-destructive
process (94). Accordingly, a study in humans using a single dose
BCG vaccination reported remission by 4-6 weeks with
stabilization of blood sugars in 65% of pre-diabetic patients
(94). Another trial concluded that BCG treatment or Epstein-
Barr virus (EBV) infection could transiently modify T1D severity
in humans by stimulating the innate immune response and
suggested that BCG or other stimulators of host innate
immunity may contribute to the treatment of long-term
diabetes (95). Also, the study proposed that more frequent or
higher dosing of BCG will likely be helpful for therapeutic and
sustained amelioration of the autoimmunity, based on
permanent elimination of autoreactive T cells (95, 107). In
addition to the above-mentioned effects, the metabolic changes
generated by vaccination with BCG could favor a closer control
of blood sugar levels, promoting hypoglycemia (108).

In the case of SSc, it has been shown that macrophages treated
with BCG adopt a pro-inflammatory profile, and BCG
vaccination in an SSc model exacerbated inflammation (66).
Frontiers in Immunology | www.frontiersin.org 8
Conversely, macrophages from the SSc model exposed to low
doses of LPS adopted a profile with lower costimulatory
molecules and higher expression of iCOS-ligand and DC-SIGN
(mixed M1-M2 phenotype) (66).

Trained immunity has been defined as the altered innate
immune response (increased or decreased) to a second
encounter, and the mechanisms involved are based on
epigenetic and metabolic changes (109). Some components
from pathogens, such as helminths, can induce lasting
epigenetic changes in stem cells, favoring an enhanced anti-
inflammatory response rather than a pro-inflammatory one in
the face of a second encounter (98, 99). These reports
demonstrate a trained immunity characterized by the
enhanced anti-inflammatory response, which poses an exciting
therapy that could induce long-term tolerance in the context of
autoimmunity. Thus, it has been described that other elements
such as helminth-derived compounds (Fasciola hepatica total
extract or FHTE) are capable of inducing an attenuated form of
trained immunity (anti-inflammatory profile) that protects
against the induction of the experimental autoimmune
encephalomyelitis (EAE), which is the animal model for
multiple sclerosis (MS) disease (98). An increased production
of IL-10 and IL-1RA by macrophages was observed after FHTE
exposure (98). Furthermore, it was recently reported that F.
hepatica excretory-secretory products (FHES) induce an anti-
inflammatory profile in HSCs by increasing the differentiation
and proliferation of Lys6Clow monocytes (99). These mice also
showed an increased proportion of M2 macrophages and all of
these events attenuated and delayed the induction of murine
EAE for at least eight months. Even more interesting is the fact
that the transfer of HSCs from FHES-treated mice to naive mice
transferred this resistance to developing EAE, showing that the
effect was both peripheral and central (99). Besides, in vivo and in
vitro stimulation of the TLR-9 in bone marrow induced the
migration of precursors of plasmacytoid dendritic cells (pDCs)
to the spinal cord and induced the production of TGF-b and IL-
27, protecting against the development of EAE (100). On the
other hand, at the peripheral level, BCG administration also
reduced the severity of EAE in mice by promoting pDCs to
induce IL-10-producing Treg cells (101). Although it is unknown
how training occurs during autoimmunity, knowing the
mechanisms that promote inflammation could lead to new
strategies based on metabolic and epigenetic modifications (82).
BENEFICIAL AND DETRIMENTAL
EFFECTS OF TRAINED IMMUNITY
INDUCTION FOR AUTOINFLAMMATION

In contrast with the autoimmune diseases triggered by an
aberrant adaptive immune response, in autoinflammatory
(AIF) diseases, the innate immune response directly induces
tissue inflammation in the absence of autoreactive T cells and
high autoantibody titers (110, 111). Autoimmune and AIF
diseases share some features despite the different key players,
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such as the prefix “auto” indicating a pathological response
against self and the chronic inflammation that develops in
genetically predisposed individuals (111). Indeed, AIF diseases
are monogenic and multifactorial (polygenic) inflammatory
conditions whose heterogeneous symptoms are recurrently
associated with fever, as in the periodic fever disorders and
episodes of acute inexplicable inflammation (85). In the
spectrum of AIF, a subset includes hereditary conditions
associated with monogenetic mutations affecting the innate
immune system, such as the autosomal dominant TNF
receptor-associated periodic syndrome (TRAPS), in which
mutations in the genes encoding for the tumor necrosis factor
receptor (TNFR1) have been identified (112). In the Hyper IgD
syndrome (HIDS), the affecting gene encoding MVK is
responsible for increased mevalonic acid, IgD, and IL-1b in the
serum (113). Remarkably, mevalonate accumulation is one of the
contributors to the induction of trained immunity (26). Another
subset of AIF is associated with polygenic mutations and involves
several environmental factors, such as Crohn’s disease, Behcet’s
disease, and ulcerative colitis (85). In addition, some rheumatic
diseases are intermediate autoimmune and AIF settings since
they are major histocompatibility complex (MHC)-I associated
but mainly autoantibody negative disorders, such as
spondyloarthritis (SpA) and other related diseases such
uveitis (114).

A critical pathogenetic mechanism in AIF diseases is the
dysregulation of the inflammasomes, multiprotein cytoplasmic
complexes relevant to innate immunity and inflammatory
responses. The main components of inflammasomes are
members of the NLR family that detect PAMPs or DAMPs
and initiate inflammasome assembly. Thus is induced the
proteolytic activation of caspase 1 or 11 and the cleavage and
subsequent release of bioactive IL-1b, a key molecule of
inflammation and innate immunity (115). Notably, mutations
of genes encoding for the components of the proteins involved in
the inflammasome (NLRP3) are implicated in the AIF called
Cryopyrin-associated periodic syndromes (CAPS) (116).

On the other hand, some AIF diseases are caused by
abnormalities of the ubiquitin-proteasome system (UPS),
which regulates multiple cellular processes (117). Mutations
that cause loss of UPS function in humans lead to a typical
type I IFN gene signature and proteasome-associated
autoinflammatory syndromes (PRAASs) (118). Although the
causes of the induction of sterile inflammation in subjects with
PRAAS are still unknown, it is believed that it could be associated
with the propagation of endoplasmic reticulum (ER) stress (119).
Proteasome defects are known to lead to the retention of
misfolded proteins in the ER, leading to inflammation in a
pathogen-free setting (120). Another recently described AIF
disease related to UPS malfunction is VEXAS (vacuoles, E1
enzyme, X-linked, autoinflammatory, somatic) syndrome
(121). Myeloid lineage-restricted somatic mutations of UBA1
(a gene encoding the ubiquitin-activating enzyme 1) characterize
VEXAS, leading to inflammation (121). Although the impact of
trained immunity in these conditions is unknown to date, it
could be assumed that stimuli that establish the capacity of a
Frontiers in Immunology | www.frontiersin.org 9
strengthened response by the innate system could be harmful in
these systemic inflammatory diseases.

Aicardi–Goutières syndrome (AGS) is an inherited disease
characterized by mutations that produce the accumulation of
nucleic acids and ultimately lead to an abnormal IFN response
(chronic overproduction of type I IFN) (122). IFN stimulation
could induce trained immunity, but chronic exposure to IFN I or
IL-1b could cause the HSC pool to become exhausted, in part
because of DNA damage caused by replication stress (123). Even
though it is still unknown how HSC exhaustion impacts the
trained immunity process, it is believed that DNA damage could
be influencing renewal capacity and memory in HSCs (124).
Remarkably, similar events are described in AGS patients, and it
has been reported that they develop AGS during early childhood
and many of them after vaccinations or infections (122).
Although an association between AGS and trained immunity
has not yet been established, it would be a novel approach to
study new therapies (124).

Since AIF diseases are characterized by hyperreactivity of the
innate immune system, several recent studies have investigated
trained immunity in these diseases. Therefore, trained
immunity-related signatures such as increased cytokine
production, changes in cellular metabolism (mainly increased
glycolysis and lactate production in an mTOR/HIF-1a-
dependent manner), and epigenetic reprogramming have been
analyzed in AIF conditions. Indeed, genetic studies by
microarray demonstrated overexpression of IL-1b and IL-1
receptor 1 (IL-1R1) under basal conditions and following LPS
stimulation of monocytes of TRAPS compared with controls
(125). Another transcriptomic study demonstrated that the
treatment with a human anti-IL-1b monoclonal antibody
(Canakinumab) reversed the overexpression of inflammatory
response genes including IL-1b, suggesting the central role of
IL-1b in the TRAPS pathogenesis (126). Also, in vitro
experiments demonstrated that mTOR contributes to
inflammation in TRAPS patients (127), indicating metabolic
changes in this AIF disease. In addition, LPS-stimulated
peripheral blood monocytes from Behçet’s disease patients
produced more TNF than healthy volunteers (128). Enhanced
spontaneous and MDP-induced cytokine secretion by
monocytes suggested an in vivo pre-activation of monocytes in
SpA patients under conventional therapy, which was reverted
under TNF inhibitor treatment (129). In patients with HIDS,
circulating monocytes with a trained immunity phenotype have
been detected since accumulated mevalonate amplifies the AKT-
mTOR pathway, which in turn induces HIF-1a activation and a
shift from oxidative phosphorylation to glycolysis (26).

The Mo/Ma activation depends on epigenetically controlled
functional reprogramming to coordinate a proper response.
Thus, demethylation of several inflammasome-related
molecules has been described in stimulated monocytes and
macrophages. Also, the epigenetic changes characterize trained
immunity phenotype, and they have been reported in Mo/Ma of
patients with several monogenic or complex AIF diseases (130,
131). During macrophage differentiation and monocyte
activation, DNA methylation levels of inflammasome-related
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genes were analyzed in patients with CAPS, an archetypical
monogenic AIF syndrome. Monocytes from untreated patients
with CAPS undergo more efficient DNA demethylation than
those of healthy subjects. Interestingly, patients with CAPS
treated with anti-IL-1 drugs display methylation levels similar
to those of healthy control subjects (131). Also, when genome‐
wide DNA methylation patterns were analyzed in monocytes
from 16 male patients with Behçet’s disease and matched healthy
controls, 383 CpG sites were differentially methylated between
patients and control (only 125 sites in CD4+T cells) (132).
Furthermore, mevalonate accumulation induces epigenetic
changes in HIDS (26).

Trained immunity could be a likely contributor to AIF
diseases. Indeed, heat-inactivated M. tuberculosis immunization
increased spondylitis and arthritis incidence and accelerated the
synchronized onset of spondylitis and arthritis in males and
females HLA-B27/Hub2m transgenic rats (133). On the other
hand, etanercept (a TNF inhibitor) treatment delayed the
appearance of spondylitis and arthritis and suppressed arthritis
severity, evidencing a role of TNF and innate immune activation
in the induction phase in this SpA animal model (133).

As aforementioned, BCG vaccination aids in inducting trained
immunity. Thus, it has been shown that BCG vaccination
enhances the antimicrobial response of innate immune cells
(assessed by cytokine production capacity), but at the same
time downregulates the systemic inflammation as measured by
decreased concentrations of pro-inflammatory proteins in the
circulation of a large cohort of healthy volunteers (134). This
modulatory effect on systemic inflammation may explain some of
the beneficial effects of BCG vaccination in inflammatory diseases
(134). Inline, BCG vaccination in mice reduces inflammation in
murine models of colitis by stimulating IL-10 and TGF-b
production and expansion of Tregs (135). Furthermore, BCG
decreased mice’s circulating pro-inflammatory cytokines,
cholesterol levels, and atherosclerotic lesions [114]. Also, BCG
vaccination had a beneficial effect on Alzheimer’s disease,
downregulating inflammatory processes (136). In addition, a
recent study showed that LPS low-tolerized human
macrophages elicit a suppressor effect and mitigate the fibro-
inflammatory phenotype of endometriotic cells in an IL-10-
dependent manner (97). Although much more needs to be
learned, these studies show that the manipulation of trained
immunity has therapeutic potential for treating a wide range of
hyper-inflammatory conditions.
THERAPIES TARGETING TRAINED
IMMUNITY IN AN AUTOIMMUNE/
AUTOINFLAMMATORY CONTEXT

As we have discussed throughout this review, understanding
trained immunity and its detrimental effect on some
autoimmune diseases such as SLE or RA (Table 1) or AIF have
made a call to consider new factors that could increase the severity
of these diseases. In this way, PBMC from RA patients compared
to healthy individuals shows a different in vitro response against
Frontiers in Immunology | www.frontiersin.org 10
BCG extract exposure. Healthy controls produce higher TGF-b
and IL-10 levels and lower IFN-g by BCG stimulation than RA
patients, suggesting a tighter regulation in healthy individuals
(101). However, there has not been evidence of established trained
immunity in monocytes from RA patients, at least concerning the
epigenetic alterations in pro-inflammatory genes TNF and IL-6
(137). On the other hand, the relapses in RA and SpA patients are
frequent despite bone marrow transplantation. Hence, it has been
suggested that transient infections of the bone marrow close to the
synovium and entheses (in RA and SpA, respectively) could have
induced lasting epigenetic changes in some bone marrow-derived
mesenchymal stem cells (BM-MSCs) (138). Furthermore, a
trained immunity signature was detected in HSCs in mice with
lupus, and in patients, both showed more significant cell
proliferation and differentiation, as well as transcriptional
activation of cytokines that lead to myelopoiesis (87).

Hence, some therapies propose different strategies to restore or
erase the mark of trained immunity to reduce chronic
inflammation and tissue destruction. In this sense, we could find
drugs that prevent the activation of NOD2 or dectin-1 (GSK669,
GSK717, or laminarin) (139) or those that affect the metabolic
pathways associated with trained immunity, such as mTOR
inhibitors, such as rapamycin (140). Furthermore, trained
immunity induced by b-glucan can be inhibited by blocking the
rate-limiting enzyme HMG-CoA reductase (reduction of
cholesterol synthesis) with fluvastatin in vitro (26). Otherwise,
another strategy is to modulate epigenetic changes using inhibitors
of enzymes that methylate histones or DNA, including DNA
methyltransferases, lysine methyltransferases, and histone
deacetylases (141). In this sense, the use of nanocarriers that
lead the mentioned compounds to a particular cell type (or its
progenitors) emerges as a promising alternative to avoid the
damaging effects of blocking the indicated pathways (81).

On the other hand, several studies propose (as we have detailed
above) that trained immunity can promote a beneficial response in
autoimmune conditions by inducing a macrophage response that
can result in the apoptosis of active autoreactive T cells or by the
promotion of an anti-inflammatory profile (96). Moreover, other
reports indicate that by using helminths components (98, 99) or
low LPS-dose (66), we could redirect trained immunity to regulate
immune responses and reduce chronic inflammation (Figure 1).
On the other hand, the observation that vaccination (more
frequently documented with BCG) could be helpful to treat
autoimmune and AIF diseases is encouraging since it has been
widely used for many decades worldwide. Interestingly, although
the duration of trained immunity has been reported for a few
months, and even 1-5 years (39), transgenerational effects have
recently been suggested (142, 143). Consequently, these strategies
are interesting in the context of chronic diseases, as they promise a
long-term beneficial effect.
CONCLUSIONS

This article aimed to review the cellular changes produced during
trained immunity and weigh the effect of immune boost in the
development/treatment of autoimmune and AIF conditions.
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As we discuss, components that induce trained immunity aid in
prevention and inducing antimicrobial therapy and mitigate
some immune-mediated diseases. Thus, the use of stimuli that
induce a trained immune response (enhanced or attenuated)
may be beneficial in reducing the severity of various autoimmune
diseases, as observed in SSc, MS, and T1D models. Along these
lines, the consequences of this trained response will depend not
only on the nature and concentration of the stimulus but also
on the pathologic context (the type of autoimmunity/
autoinflammation or infection).

In addition to the vaccination, b-glucans, helminth
components, or pharmacological strategies for rebalancing the
immune response, it is interesting to mention that other factors
such as diet also affect the establishment of trained immunity
(144). In this way, a set of environmental factors, such as diet and
pollution, may be influencing the long-term immune response
profile in the long term. Furthermore, already established
“epigenetic scars” can be detected in autoimmunity, which
opens the possibility of developing therapies that reverse this
scenario (erasure or rewriting in the direction of an attenuated
response). These events have been studied for decades in MS and
T1D models; however, the warning arises to consider certain
factors that can worsen conditions such as SLE and RA in
response to some stimuli (Table 1).

This article intends to contrapose the controversial evidence
concerning how trained immunity may impact autoimmune/
autoinflammation conditions. Furthermore, understanding the
mechanism of trained immunity raises new immunotherapy
Frontiers in Immunology | www.frontiersin.org 11
strategies aimed at long-term rebalancing immune responses.
In this way, one could use the understanding to delete trained
immunity marks if it favors the establishment of harmful chronic
inflammation or increase it in the situation in which helps
lowering the severity of autoimmune diseases.
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