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Nonclassicality Invariant of General 
Two-Mode Gaussian States
Ievgen I. Arkhipov1, Jan Peřina Jr.1, Jiří Svozilík1 & Adam Miranowicz2

We introduce a new quantity for describing nonclassicality of an arbitrary optical two-mode Gaussian 
state which remains invariant under any global photon-number preserving unitary transformation of 
the covariance matrix of the state. The invariant naturally splits into an entanglement monotone and 
local-nonclassicality quantifiers applied to the reduced states. This shows how entanglement can be 
converted into local squeezing and vice versa. Twin beams and their transformations at a beam splitter 
are analyzed as an example providing squeezed light. An extension of this approach to pure three-mode 
Gaussian states is given.

Despite of several decades of active research, the nonclassical properties of light remain one of the most intriguing 
problems in quantum optics (for a review see, e.g., refs 1–4). A widely accepted criterion to distinguish nonclassi-
cal states from the classical ones says that a quantum state is nonclassical if its Glauber-Sudarshan P function fails 
to have the properties of a probability density5,6.

For practical purposes, several operational criteria for determining nonclassicality of either single-mode7–11 
or multimode9,11–15 fields have been derived using the fields’ moments8,12,14,16 or the Bochner theorem17. 
Alternatively, the majorization theory also provides useful criteria18. Nonclassicality can directly be identified 
according to its definition when the quasidistributions of fields’ amplitudes19 or integrated intensities20 are recon-
structed. The nonclassicality, which can be revealed in the continuous variables domain is becoming one of the 
most promising resourse for quantum communication technologies21.

Up to now the two most widely studied kinds of nonclassical light in the continuous variable domain are those 
exhibiting squeezing and entanglement. Both kinds of light have recently been recognized as potentially interest-
ing not only for fundamental physical experiments but also for many applications in quantum technologies21–25. 
Both squeezed and entangled light can easily be generated in nonlinear processes, e.g., in second-subharmonic 
generation and parametric down-conversion, respectively.

In these processes, the optical fields are generated in Gaussian states. It has been shown in refs 26 and 27 that 
the Gaussian states obtained in both processes are mutually connected by linear transformations easily acces-
sible by ‘passive’ linear optics. A suitable linear transformation then allows to obtain an entangled state at the 
expense of the original squeezed state under suitable conditions. Also, entanglement can serve as the source of 
squeezed light generated after suitable linear-optical transformations. Here, we explicitly reveal the conditions for 
the transformations of squeezed light into entangled light and vice versa by constructing a suitable global non-
classicality invariant (NI) that is composed of the additive identifiers of entanglement and local nonclassicalities 
(e.g. squeezing).

This allows rigorous control of the transformations of nonclassical resources (encompassing both local non-
classicalities and entanglement) in quantum-information protocols. Another example of importance of our result 
is the capability of testing the performance of schemes for the nonclassicality quantification based on transform-
ing local nonclassicalities into entanglement10. Such schemes are considered as important as the determination 
of, e.g., the Lee nonclassicality depth28 or the Hillery nonclassical distance29, which are commonly used as non-
classicality measures, need the reconstruction of the P function. On the other hand, several measures of entan-
glement are known both for discrete and continuous quantum systems11,23,30–34. An intimate relation between 
entanglement and nonclassicality of, in general, noisy twin beams has recently been revealed in ref. 35. A general 
approach for analyzing this relation has been proposed in ref. 36 considering two-mode states. On the other hand, 
this NI allows to explicitly determine the entanglement of a given Gaussian state through local squeezing of the 
reduced single-mode states37.
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From the general point of view, entanglement implies global nonclassicality of the overall field. On the other 
hand, nonclassical multimode fields do not necessarily have to be composed of mutually entangled parts. This 
occurs, when the parts as such exhibit marginal (local) nonclassicalities. Examples studied earlier have indicated 
that the action of global unitary transformations may be viewed as a ‘certain flow’ of entanglement into local 
nonclassicalities and vice versa. We note that, in the case of Gaussian fields, only the global unitary transforma-
tions, which preserve the overall number of photons, are naturally considered here. Such transformations are 
realized by passive optical devices and, from the mathematical point of view, they belong to the unitary group 
U(n). Indeed, there exists a tight relation between entanglement and local nonclassicalities which originates in 
the existence of a global nonclassicality invariant which splits into entanglement and local nonclassicalities quan-
tifiers. In the past, an attempt to find such NI for single-mode Gaussian states and the vacuum was done in ref. 38 
considering the logarithmic negativity23 as an entanglement measure and the Lee nonclassicality depth as a local 
nonclassicality measure. However, this approach worked only under quite specific conditions. On the other hand, 
the approach based on a global invariant succeeded when amplitude coherence and entanglement quantified by 
the maximal violation of the Bell-CHSH inequality have been analyzed together for a general two-qubit state39.

Here, considering two-mode Gaussian states, we reveal a nonclassicality invariant resistant against any passive 
(i.e., photon-number preserving) unitary transformation of their covariance matrix. We show that this invariant 
naturally decomposes into the expressions giving the local nonclassicality and entanglement quantifiers, which 
are monotones of the Lee nonclassicality depth and the logarithmic negativity, respectively. A global nonclassical-
ity invariant is also suggested and verified for pure three-mode states.

In section Theory, general two-mode Gaussian states are analyzed. The generalization to pure three-mode 
Gaussian fields is given in section Extension to pure three-mode Gaussian states.

Theory
The characteristic function or, equivalently, the corresponding complex covariance matrix A, can be used for the 
description of a Gaussian bipartite state with its statistical operator ρ̂ as follows:
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The normally-ordered characteristic function is then expressed as β β β= †C A( ) exp( /2)  using the vector 
β β β β β= ⁎ ⁎( , , , )T1 1 2 2 . Elements of the covariance matrix A in Eq. (1) are defined as40
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using the annihilation â( )j  and creation ˆ†a( )j  operators of mode j, j =  1, 2.
The negative determinants = − | |I B Cj j j

2 2 (j =  1, 2) of the diagonal blocks of the covariance matrix A imme-
diately determine local nonclassicalities of modes 1 and 2. Indeed, the Fourier transform of the normal character-
istic function of mode 12 given as  β β ⁎C ( , , 0, 0)1 1  β β ⁎C[ (0, 0, , )]2 2  diverges if I1 <  0 [I2 <  0]. Determinant Ij is 
a monotone of the Lee nonclassicality depth τj of mode j that is given as the maximal eigenvalue of the jth diago-
nal block of the matrix A; i.e., τj =  |Cj| −  Bj

28. Admitting also negative values for τj which can quantify the distance 
from the quantum-classical border we reveal the following monotonous relation:

τ τ= − + .I B( 2 ) (3)j j j j

As the determinants Ij are invariant under local unitary transformations, we may define the local nonclassical-
ity invariants (LNI) = −I Ij

jncl
( ) , which quantify the local nonclassicalities.

On the other hand, the separability criterion for a two-mode state ρ̂ derived in refs 32, 41 and 42, which is 
based on the positive partial transposition (PPT) of ρ̂, can be used to quantify the entanglement of ρ̂ as
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where ∆ = + −˜
SS SS SS SSI I I21 2 3. Equality in Eq. (4) holds for separable Gaussian fields. In Eq. (4), SSI 1, SSI 2, and 

SSI 3 are the local invariants and SSI 4 is a global invariant of the covariance matrix SSA  written for the symmetric 
ordering of field operators. As shown below, the quantity Ient, which we will call the entanglement invariant (EI), 
can serve as an entanglement quantifier since it is a monotone of the logarithmic negativity EN, i.e., it is also a 
monotone under unitary transformations43. The invariants SSI k of the symmetrically-ordered covariance matrix 
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, as introduced in Eq.  (4), are determined as =SSI Sdet( )j j , j =  1, 2, =SSI Sdet( )3 12 , and 

=SS SSI Adet( )4 .
The quantity ∆̃ in Eq. (4), is related to the symplectic eigenvalue d_ of the partially transposed covariance 

matrix SSA  as follows44
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Combining Eqs. (4) and (5) we arrive at
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where ′ = + +SSI I I4 4 1/44 ent . The eigenvalue d_ then gives the logarithmic negativity EN as follows

= − .−E dmax [0, ln (2 )] (7)N

For pure states, we have =SSI 1/164  and the following monotonous relation between logarithmic negativity EN 
and entanglement invariant Ient can be given:

= + + .E I Imax[0, ln(2 1 4 )] (8)N ent ent

A detailed analysis of Eq. (6) confirms that, by keeping the global invariant SSI 4 fixed, the EI Ient remains a 
monotone of the logarithmic negativity EN even for general two-mode Gausssian states.

It is easy to show that the global nonclassicality invariant (GNI) Incl defined as

= + +I I I I2 (9)ncl ncl
(1)

ncl
(2)

ent

is invariant under any global passive unitary transformation applied simultaneously to both covariance matrices 
A and SSA . Using the definitions of Incl

(1), Incl
(2), and Ient, together with the fact that the local invariant SSI 3 does not 

depend on operator ordering, we have
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In Eq. (10), ∆ = + +SS SS SS SSI I I21 2 3 represents the global invariant of the symmetrically-ordered covariance 
matrix, whereas the quantity ∆ = + + SSI I I21 2 3 gives the global invariant of the normally-ordered covariance 
matrix.

For pure two-mode Gaussian states we have ∆ =SS 1/2, =SSI 1/164 , Incl =  − Δ  =  B1 +  B2, and = − SSI Ient 3. 
Therefore in this case, the GNI Incl is determined by invariants of the normally-ordered CM.

We note, that our invariant can also be applied to a single-mode Gaussian state. Specifically, this is a special 
case of our two-mode analysis if we assume that one of the input modes to the beam splitter (shown in Fig. 1) is 
in the vacuum state. This case is in analogy to the original approach of Asboth et al.10.

According to Eq. (9), which gives the central result of this paper, any passive unitary transformation modifies 
in general the LNIs Incl

(1) and Incl
(2) as well as the EI Ient, such that the value of the GNI Incl is unchanged. During such 

a transformation, the decrease (increase) of the local nonclassicalities has to be compensated by the increase 
(decrease) of entanglement. Thus, formula (9) represents a conservation law of the nonclassicality.

Example: A twin beam (TWB) at a beam splitter. TWBs are provided by parametric down-conversion 
and, in their noiseless variant, are composed of many photon pairs with the twin photons embedded in the signal 
and idler fields. This guarantees strong entanglement in a TWB. As the marginal fields are thermal, no local non-
classicality is observed. Mixing of the signal and idler fields at the beam splitter represents a unitary transforma-
tion that modifies both entanglement and local nonclassicality as follows (for the setup, see Fig. 1).

Figure 1. Pump field α generates photon pairs in the signal (â1) and idler (â2) fields via parametric down-
conversion (PDC). Photon pairs are mixed on a beam splitter (BS) with transmissivity T: photons in a pair 
either stick together (bunch) to contribute to squeezing or remain in different beam-splitter ports (antibunch) 
to form entanglement.
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The LNIs I j
ncl
( ) and EI Ient acquire the form
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where Bp is the mean photon-pair number. According to Eq. (11), the LNIs I j
ncl
( ) are given by two terms. The first 

(negative) term arises from the input thermal statistics and describes photon bunching. The second (positive) 
term is much more interesting as it describes the squeezing effect at a beam-splitter output port. At the ‘micro-
scopic level’, this effect originates in pairing of photons in the output port caused by sticking of two twin photons 
at the beam splitter3,26,45. Such local pairing of photons creates local nonclassicalities of the field. The ‘sticking 
effect’ at the beam splitter reduces the number of photon pairs with photons found in different output ports and, 
so, it naturally reduces their entanglement, in agreement with Eq. (11). The strength of the relation between the 
micro- and macroscopic pictures is revealed when the formula for the GNI in Eq. (9) is written, Incl =  2Bp. The 
GNI being linearly proportional to the number of photon pairs clearly shows that, in case of TWBs, only individ-
ual photon pairs are responsible for their entanglement and local nonclassicalities.

Analyzing Eq. (11), the maxima in the LNIs I j
ncl
( ) are reached for the balanced beam splitter (T =  1/2) that does 

not allow any entanglement45. The more unbalanced is the beam splitter, the greater is the Ient and also the smaller 
are the LNIs I j

ncl
( ). Local nonclassicalities of the output fields occur only for | − |< +T B1/2 1/(2 1 )p . The quanti-

fication of this behavior is done in the graphs of Fig. 2 showing the LNIs I j
ncl
( ) and EI Ient as functions of the mean 

photon-pair number Bp and transmissivity T.
We note that, similarly as the input TWB may provide squeezed light at the beam-splitter outputs, the incident 

squeezed light present in one or both input ports allows for the generation of the entangled output fields.

Extension to Pure Three-mode Gaussian States
Motivated by the results for two-mode Gaussian states, we suggest an appropriate form of a three-mode NI rely-
ing only on the LNIs and pairwise (two-mode) EIs. The proposed NI is invariant under any global passive unitary 
transformation provided that only pure three-mode Gaussian states are considered. This observation accords with 
the results in refs 26, 37 and 46 showing that (a) any entangled three-mode state can be transformed via a global 
unitary transformation into a state of three independent squeezed modes and (b) genuine three-mode entangle-
ment can be expressed through the two-mode entanglements of three subsystems obtained by the reduction with 
respect to one mode. We note that this result applies also to the symmetric GHZ state in the continuous domain.

The symmetrically-ordered covariance matrix SSA(3) of a three-mode Gaussian state is written as

=
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S S S
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,
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where the matrix Sj describes mode j and matrix Sjk characterizes the correlation between modes j and k. The 
matrices Sjk are independent of the operator ordering and, so, they occur also in the normally-ordered covariance 
matrix A(3). We construct the three-mode GNI Incl

tm as follows

Figure 2. Local nonclassicality invariants =I Incl
( )

ncl
( )1 2  (yellow light surface) and entanglement invariant Ient 

(blue dark surface) as functions of the mean photon-pair number Bp and transmissivity T for twin beams 
(only positive values are plotted).
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(2) . Since ∆ =SS 3/4(3)  and =SS SAdet( ) det( )/4ij k
(2)  for pure three-mode states, we have = −∆Incl

tm (3). 

As Δ (3) is a global invariant of the normally-ordered covariance matrix A(3) under passive unitary transforma-
tions, the GNI Incl

tm becomes unchanged when such transformations are applied. Similarly as for pure two-mode 
states, we have = ∑ =I Bi incl

tm
1

3 , where Bi gives the mean number of photons in mode i. Therefore the GNI for pure 
three-mode state is determined by the local invariants of the normally-ordered covariance matrix A(3). Formula 
(13) for the pure three-mode GNI Incl

tm shows that the three-mode entanglement can be quantified by the sum of 
three two-mode entanglements. Monitoring the three LNIs and three EIs involved in Eq. (13) allows to quantita-
tively analyze the evolution of nonclassicality resources in any quantum-information protocol described by pas-
sive unitary transformations.

We note that the generalization to the case of m >  3 modes based on the assumption of two-mode entangle-
ment quantifiers = ∑ − ∑<

−
=K S S( 2 )i j

m
ij

m
k
m

k
2

2 1  is not useful since the obtained quantity is not a global invariant, 
similarly as in the case of mixed three-mode states.

Example: A twin beam transformed by two beam splitters. A simple method providing varying 
bipartite entanglement among three output ports as well as locally nonclassical output fields can easily be con-
structed from the previous example of a TWB at a beam splitter. We enrich this method by additional splitting the 
field at the output port 2 by a balanced beam splitter with the output ports 2 and 3 (for the scheme, see Fig. 3)47,48.

This results in a general three-mode state. From the point of view of entanglement, photon pairs, which are 
originally responsible for the entanglement between modes 1 and 2, are divided by the second beam splitter to 
those establishing entanglement either in modes 1 and 2, or modes 1 and 3. On the other hand, the photon pairs, 
which are localized in mode 2 and responsible for its squeezing, may split at the second beam splitter giving rise to 
the entanglement between modes 2 and 3. This results in a full three-mode entanglement. Indeed, the presented 
theory provides the following formulas:

= = = − + − +
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These formulas are visualized in Fig. 4, which confirm our predictions. For the transmissivities T in certain 
interval found in the previous example and excluding T =  1/2, we have a genuine three-mode entanglement. 
Moreover all the three output fields are locally nonclassical. Whereas the LNIs I j

ncl
( ) decrease with the increasing 

unbalance of the first beam splitter, the decrease of the EI Ient
(23) is compensated by the increase of the EIs Ient

(12) and 
Ient

(13). We note that the GNI is again linearly proportional to the initial photon-pair number Bp, =I B2ncl
tm

p.

Critical analysis of the Asboth et al. scheme for nonclassicality quantification. If T =  1/2 in the 
above example, two separable squeezed states beyond the first beam splitter occur and, so, we retain the standard 
Asboth et al. approach10 for the nonclassicality quantification for the field in output port 2 of the first beam split-
ter. As certain amount of squeezed photon pairs remains in the output fields 2 and 3 beyond the second beam 

Figure 3. Pump field α generates photon pairs in the signal (â1) and idler (â2) fields via parametric down-
conversion (PDC). Photon pairs are mixed on a beam splitter (BS) with transmissivity T. Field in one output 
port of this beam splitter is combined with the vacuum |0〉  at another balanced beam splitter. LNIs I j

ncl
( ) and EIs 

Ient(jk) characterized the three output fields.
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splitter, the standard approach cannot provide a full quantification of the nonclassicality of the analyzed field. 
Nevertheless, the EI Ient

(23) accessible in the Asboth et al. method provides a good estimate of the nonclassicality of 
the analyzed field since, according to Eq. (14), the LNI ≡ + +I I I I2ncl

(2)
ncl
(2)

ncl
(3)

ent
(23) is linearly proportional to the EI 

Ient
(23) for an arbitrary transmissivity T.

Conclusions
We have found an invariant for general two-mode Gaussian states which comprises the terms describing both 
marginal nonclassicalities of the reduced states and the entanglement of the whole system. Those terms being 
monotones under any unitary transformation of the Lee nonclassicality depth and the logarithmic negativity, 
respectively, quantify the flow of nonclasical resources when passive unitary transformations are applied. We 
gave the extension of these results to pure three-mode Gaussian states. As examples, we found a relation between 
twin beams and squeezed states. Moreover we critically analyzed the Asboth et al. method for quantifying 
nonclassicality.
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