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Animal viruses are parasites of animal cells that have characteristics such as heredity and
replication. Viruses can be divided into non-enveloped and enveloped viruses if a lipid
bilayer membrane surrounds them or not. All the membrane proteins of enveloped viruses
that function in attachment to target cells or membrane fusion are modified by
glycosylation. Glycosylation is one of the most common post-translational modifications
of proteins and plays an important role in many biological behaviors, such as protein
folding and stabilization, virus attachment to target cell receptors and inhibition of antibody
neutralization. Glycans of the host receptors can also regulate the attachment of the
viruses and then influence the virus entry. With the development of glycosylation research
technology, the research and development of novel virus vaccines and antiviral drugs
based on glycan have received increasing attention. Here, we review the effects of host
glycans and viral proteins on biological behaviors of viruses, and the opportunities for
prevention and treatment of viral infectious diseases.
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INTRODUCTION

Animal viruses are parasites of animal cells that have characteristics such as heredity and
replication, and are mainly composed of DNA or RNA, proteins and in some, a lipid membrane
with glycoproteins (1). Commonly, viruses achieve invasion and infection with the help of the
synthetic machinery of host cells. Viruses can be divided into two groups depending on whether
they have a lipid bilayer membrane on their outer surface or not: enveloped viruses and non-
enveloped viruses. Enveloped viruses have a lipid bilayer that comes from the host cell. It
incorporates receptor attachment proteins and membrane fusion proteins that are both encoded
by the virus. And all attachment or fusion proteins of enveloped viruses are modified by
glycosylation. Glycosylation is important for the life cycle of the virus and plays essential roles in
stability, antigenicity and infectivity of viruses (2). We summarize the functions of common
enveloped viral glycoproteins in Table 1.

Glycosylation is one of the most important post-translational modifications of proteins, and there are
two main types: N-glycosylation and O-glycosylation (Figure 1). N-glycosylation means that N-
acetylglucosamine (GlcNAc) in an oligosaccharide binds covalently to the polypeptide chain by an N-
glycoside linkage with the amide nitrogen of an asparagine residue in the sequence Asn-X-Ser/Thr (X is
org April 2021 | Volume 12 | Article 6385731
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any amino acid other than proline). The main type of
O-glycosylation is the mucin-type O-glycosylation, which means
that N-acetylgalactosamine (GalNAc) bonds covalently to the
oxygen atom of the hydroxyl group of a serine or threonine
residues replacing the hydrogen in the hydroxyl group to form an
O-ligand glycoprotein by O-glycoside linkage. Other types of
O-ligand subclasses also exist in animal cells, such as O-mannose
glycosylation (O-Man), O-fucosylation (O-Fuc), O-galactose
(O-Gal) and O-linked b-N-acetylglucosamine (O-GlcNAc) glycans
(12). The formation and extension of glycans requires the
Frontiers in Immunology | www.frontiersin.org 2
synergistic completion of two types of glycan processing enzymes,
one is glycosyltransferase which catalyzes the formation of glycoside
linkages, and another is glycosidase which catalyzes the hydrolysis
of glycoside linkages (13).

The entry of a virus into a host cell is closely related to the
glycans on its own structural proteins. The glycoproteins of some
viruses play an important role in host infection, especially in the
recognition of the host cell and the interaction with other
molecules in the cell after the attachment (14). Furthermore,
due to the fact that viruses can fully depend on cellular host cells
TABLE 1 | Glycosylation of viral envelope proteins and its functions.

Virus Viral glycoproteina) N-glycosylation sites Viral glycoprotein functions

HIV-1 gp120 20~30 (3, 4) Attachment, Transmission, Glycan shield
H1N1 HA 0~11 (5, 6) Attachment, Glycan shield
EBOV GP 11~18 (7) Infectivity, Attachment, Glycan shield
HCV E1, E2 4~15 (8) Infectivity, Entry
RABV GP 2 (9) Infectivity, Entry, Virulence
WNV prM, E 1~2 (10) Entry, Release
SARS-CoV-2 S 22 (11) Assembly, Attachment, Entry
a)These viral glycoprotein are classified as: (1) GP, glycoprotein; (2) HA, hemagglutinin; (3) E, enveloped proteins; (4) prM, premembrane; (5) S, spike protein.
FIGURE 1 | Glycoconjugates that formed by carbohydrates are covalently bonded to proteins and lipids on mammalian cell membranes. Proteins can be
glycosylated and covalently bound to a polypeptide chain via an N-glycoside linkage to Asn or via an O-glycoside linkage to Ser/Thr. N-linked glycans share a
common pentasaccharide core structure, which is composed of two GlcNAc and three mannoses. The main type of O-linked glycosylation is the mucin-type O-
glycosylation, which has N-acetylgalactosamine (GalNAc) as a common core. Glycosphingolipids are ubiquitous molecules that formed via the covalent linkage
between a glycan moiety and a ceramide.
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for their reproduction, thus, they must complete glycosylation
with the help of host glycoprotein synthesis mechanism (1, 15).
Viral glycoproteins are involved in many important biological
processes, such as protein folding and stabilization, viral
infection and invasion, recognition of host receptors and
immune escape of the virus from the immune system (16).
With the development of glycan-related research technology,
the research and development of novel virus vaccines and
antiviral drugs modified by glycosylation are receiving
increasing attention. In this review, we will explore the effects
of glycosylation of host and virus proteins on virus biological
behavior, with the aim of providing a reference for the
prevention and treatment of viral infectious diseases.
GLYCANS OF VIRAL PROTEINS AND
THEIR FUNCTIONS

Glycan Influences the Virus Replication
Cycle
The life cycle of enveloped viruses includes the processes of
adsorption, penetration, uncoating, biosynthesis, assembly and
release. Figure 2 summarizes the life cycle of SARS-CoV-2.
Frontiers in Immunology | www.frontiersin.org 3
Viral replication depends on successful infection of the host
cells. The replication cycle starts with a virus particle attaching
to a specific receptor on the surface of a host cell, and viral entry
can be realized by endocytosis (non-enveloped or enveloped
viruses), membrane fusion (enveloped viruses) or direct fusion
with the plasma membrane (20, 21). After internalization, the
capsid is released into the cytoplasm with negative strand viruses,
it is uncoating the nucleocapsid, which will be copied to produce
the antigenome which itself is then used to transcribe many copies
of the genome, ormRNA that are translated into viral proteins (17,
18). The viral glycopeptides are translated on the endoplasmic
reticulum (ER) where the N-linked glycans are added and
transported through the Golgi complex where the N-linked
glycans are modified and the O-glycans are added (22, 23). At
the same time, the viral genome with its associated proteins are
transported to the Golgi apparatus, where they are released outside
the cell by exocytosis after maturation (24). Glycoproteins are
essential for the infectivity of the virions that have them.

Glycan Participates in Mutual Recognition Between
Viruses and Host Receptors
The glycoproteins in the membrane of enveloped viruses bind
specifically to the receptors on the cell membrane and cause
FIGURE 2 | An overview of the life cycle of SARS-CoV-2 in host cells. Spike protein of SARS-CoV-2 binds to the host receptor ACE2 (angiotensin-converting
enzyme 2); host factor TMPRSS2 (a cell surface serine protease enzyme), which helps the virion enter the host cells. SARS-CoV-2 enters through membrane fusion
or endocytosis. Then it releases RNA to the cytoplasm. Some genomic RNA can be translated into viral proteins as the template, some of these proteins form a
replication complex to make more RNA. Viral proteins and genome RNA are subsequently assembled into a new virion in ER and Golgi. Finally, the mature virions are
released from the infected cell via exocytosis. The detailed life cycle of SARS-COV2 in host cells is referred to in the following literature (17–19). nsps, non-structural
proteins; RTC, replication/transcription complex; ER, endoplasmic reticulum; ERGIC, ER-to-Golgi intermediate compartment.
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membrane fusion enabling virus contents to enter the cell. In this
process, the surface glycans of the virus can be involved in initiating
the recognition of host cells and thus affect the organs and the cells
that in the organs. Human immunodeficiency virus 1 (HIV-1) is an
enveloped virus, and its envelope contains of gp120 surface protein
and gp41 transmembrane protein. Moreover, gp120 is one of the
most highly glycosylated proteins in nature. It accounts for
approximately 50% of the total mass (25). These glycans not only
affect the conformation of the envelope but also affect the entry and
infectivity of the virus. It is generally believed that HIV-1 gp120
promotesviral entrybysequentiallybinding toCD4andchemokine
receptorsCCR5orCXCR4on target cells (26).However, there have
been many reports that gp120 can bind to various cell types
independently of CD4. Some HIV-1 isolates were able to infect
CD4-negative but CCR5 expressing cells due to the deficiency of
Asn197 in gp120, which leads to the exposure of the CCR5-binding
region of gp120, thus HIV-1 can enter cells (27). Similarly, the
binding of virus to CD4 was reduced significantly by removing the
glycan chains from gp120 by endoglycosidase treatment or N-
glycosylation site mutation (28, 29). In contrast, in Vero cells,
removing theN-glycan near the highly conserved receptor binding
domain on the envelope glycoprotein (GP) of the Ebola virus
(EBOV) increased GP-mediated virus entry efficiency (30).

Hemagglutinin (HA) and neuraminidase (NA) are the surface
glycoproteins of influenza A virus. Influenza virus attaches to the
surface of a host cell when its HA protein interacts with the
terminal sialic acid (SA) of the host cell surface glycoproteins or
glycolipids. On the other hand, NA can cleave SA residues from
glycoproteins of the enveloped virus itself and enhance
infectivity by preventing aggregation of virus particles (31). NA
may also act on the SA residues of host mucin to gain access to
the epithelial cells, playing a secondary role in helping viruses to
enter host cells (32).

Glycan Affects the Folding and Transport of Viral
Glycoproteins
One of the key roles of protein glycosylation is its effect on folding,
structure, transport, and stability (33). Glycans can be structurally
integrated into protein folding, and the interaction between the
glycan and protein could stabilize the protein. Besides, glycans can
also assist glycoprotein folding in the biosynthetic process by
mediating interactions with chaperones (34). Calnexin (CNX) and
calreticulin (CRT) act as chaperones to facilitate the correct
folding of viral proteins. In cells, when all nascent N-glycans
added to a protein, they have three terminal glucose residues.
These residues will be removed sequentially, with a -glucosidase I
(aGI) removing the outermost glucose residue and a-glucosidase
II (aGII) removing the next two residues produce the immature
GlcMan9GlcNAc2 N-glycans (35). CNX and CRT have a lectin
domain, and this domain can specifically bind to immature
GlcMan9GlcNAc2 N-glycans on misfolded proteins and recruit
ATP, calcium, and protein disulfide isomerase A3 to promote the
folding of glycoproteins, thereby regulating glycoprotein entry into
the CNX/CRT folding cycle (36, 37).

Glycans on enveloped virus surface proteins can not only
facilitate the folding of proteins but can also affect their
Frontiers in Immunology | www.frontiersin.org 4
transport. During HIV-1 replication, a high mannose type
gp160 trimer assembles in the rough ER of host cells, and then
gp160 is transported to the Golgi apparatus and cleaved by a furin-
like protease in the late Golgi to its mature gp120 and gp41
proteins which remain associated (38, 39). HIV-1 gp41 contains
four N-glycosylation sites, removing of Asn332 in gp41 can disrupt
the proteolytic processing and the transportation of gpl60 (40, 41).
Herpes simplex viruses 1 (HSV-1) and herpes simplex viruses 2
(HSV-2) are globally prevalent pathogens, which often lead to
recurrent oral and genital ulcers (42). HSV encodes at least 12
different glycoproteins, and at least four of them are necessary and
sufficient to mediate membrane fusion when they infect target
cells, namely glycoprotein B (gB), gD, gH and gL (43–45).
Similarly, mutations of N390, N483 or N668 in total seven
potential N-glycosylation sites on gB of HSV-2 can reduce the
ability of cell-cell fusion and virus entry. However, the mutation of
N133 mainly prevents the transport of gB from the ER to the
Golgi, thus affecting protein expression and the production of
infectious virions (46).

Glycan Affects the Release of the Virions
Enveloped viruses mainly release their progeny by budding.
Their envelope is derived from the host cell membrane, and
the glycan on viral proteins can affect the release of progeny
virions. For example, gC of HSV-1 mediates the attachment of
HSV-1 to susceptible host cells by interacting with
glycosaminoglycan (GAG) on the cell surface. Also, gC
contains a mucin-like domain (MLD) located near the GAG
binding site, which may affect the binding activity between the
virus and GAG. HSV-1 mutants that lack these MLDs in gC and
found that compared with natural HSV-1, the binding affinity of
virions to the cell was reduced and the release ability of mutant
virus particles from the surface of infected cells was also reduced
(47). Similarly, glycosylation sites on the premembrane protein
and enveloped proteins of West Nile virus (WNV) are cell type-
dependent or even species-dependent and affect the release of
virus and infection efficiency (10).

Moreover, some viruses have even evolved glycosidases to
promote virus release (48). The most obvious example is that
influenza virus NA cleaves SA residues from the surface of
host cells, thereby reducing and weakening the ability of HA
to bind to host cell glycoprotein receptors (49, 50). During the
process of virus budding from the cell plasma membrane, HA
proteins continue to bind virions to SA residues on the cell
surface until the NA sialidase activity removes terminal
SA residues.

Glycan Affects Virus Transmission
During the process of viral evolution, viruses develop different
glycosylation modifications, and N-glycosylation sites of proteins
are added or deleted, these alterations can have an appreciable
impact on the survival and transmissibility of a virus (16). For
example, adding an N-glycosylation site to the HA protein can
increase the sensitivity of the respiratory system to innate immune
protein production, and reduce the transmissibility of influenza A
viruses (51–53). Similarly, N-glycan of HIV gp120 is also of vital
April 2021 | Volume 12 | Article 638573
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importance to viral infection and transmission (54). The majority
of HIV N-glycan deficient mutants show decreased infectivity and
transmission efficiency (N156Q, N197Q, N332Q, N386Q), but
two of theN-glycan mutants (N230Q and N295Q) show increased
infectivity and transmission efficiency (54). SARS-CoV-2 is
currently causing a health crisis, the magnitude of which is rare
in humans. The SARS-CoV-2 virus spike (S) glycoprotein is highly
glycosylated, if the glycosylation sites of both N331 and N343 are
mutated at the same time, the infectivity of SARS-CoV-2 can be
significantly reduced, suggesting that their glycans are important
for viral infectivity (55).

In addition, replication of the same virus in different cells can
generate different glycosylation, which severely affects the
transmission ability of the virus (56). For example, HIV from
different cell lines has different glycosylation in its envelope
proteins, and the glycosylation difference affects its interaction
with Dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-
SIGN). HIV from T cell lines or peripheral blood mononuclear
cells was well bound and transmitted by DC-SIGN, whereas HIV
from macrophages was poorly bound and transmitted (57, 58).

Glycan Affects Immune Escape
Enveloped viruses, such as HIV-1, influenza virus, SARS, and
SARS-CoV-2 are a great threat to humans. The envelope proteins
of these viruses are heavily glycosylated, and these glycans can
hide an antigenic epitope to thereby avoiding recognition by
neutralizing antibodies (nAbs) against that site and providing a
convenient way for viruses to infect host cells and to promote
immune escape. There are two main mechanisms by which
viruses can escape the nAbs response.

Glycan Shielding
Despite major efforts to produce a vaccine for HIV-1, it is
unfortunate that all of the traditional methods of vaccine
preparation have generated little expected effect due to the
great diversity of HIV-1 strains (59). Only a minority of people
produce nAbs after receiving HIV vaccines. Mutation of Asn332

in gp120 after HIV infection and also nAbs that target this site
were detected in the sera from two people who had responded to
an HIV vaccine (a recombinant glycoprotein 120 vaccine),
suggesting that HIV antigenic sites are blocked by glycans,
resulting in most people failing to produce broadly nAbs (60).
Similarly, patients with acute HIV infection do not produce
detectable nAbs until at least 52 days after infection. Hardly any
mutations were detected in the envelope proteins of the viruses
that successfully escaped after nAbs suppression, while an
increase in N-glycosylation was detected (61). Moreover, one
of the two N-glycosylation sites of Ebola virus GP2 is mutated,
which is very adverse to the antigenicity and immunogenicity of
GP (62). All of these observations illustrate that highly
glycosylated modifications can shield the antigenic sites of the
virus and present challenges to antiviral therapy.

Antigenic Drift
Antigenic drift is a small variation in antigens caused by
mutations in the genome, without new subtypes generation, but
Frontiers in Immunology | www.frontiersin.org 5
it often promotes immune escape and leads to the greater scope of
the spreading, which often occurs in influenza viruses. H1N1
broke out in 1918/1919, infecting nearly half of the world’s
population, with a mortality rate of 2.5%~5%, at least 50
million people died (63). Ninety-one years later, in April 2009,
the new H1N1 virus appeared and spread rapidly around the
world, causing an estimated 280,000 deaths worldwide. Low
immunity of the population to the novel H1N1 strain was the
main reason that led to its mass epidemic. HA is an effective target
for nAbs, and mutations in the antigenic sites in its globular head
region promote the immune escape of the virus. A complete
analysis of the amino acid sequence of the 1918 and 2009 H1N1
pandemic viruses showed that the HA of these viruses can be
glycosylated at the conserved glycosylation sites (64, 65).
It was reported that highly glycosylated seasonal Influenza A
viruses are inactivated by soluble lectins of the innate immune
system (66). Compared with seasonal H1N1 and H3N2 influenza
viruses, the HA globular regions of epidemic H1N1 are often
modified by a low degree of glycosylation, which correlates with a
greater difference at the amino acid level seen at or near the
known antigenic sites located in the globular head of the HA (67,
68). Furthermore, that only influenza (H1N1) shows antigenic
drift compared to several other RNA viruses that infect the
respiratory tract (69). These antigenic drifts contribute to the
immune escape of H1N1, contributing in part to the flu vaccine
failing to provide protection (70).

Glycan Affects Virulence/Pathogenicity of
the Virus
There are many glycans in virus surface glycoproteins, and they
affect the virulence of the virus by regulating the binding of the
virus to host receptors, covering up antigenic sites, or stimulating
host immune responses to affect virulence (71). These glycans
play different roles in the virulence of the virus.

Rabies viruses (RABVs) are non-segmented, negative-
stranded RNA viruses that belong to the genus Lyssavirus in
the family Rhabdoviridae. The RABV genome encodes five
structural proteins: nucleoprotein, phosphoprotein, matrix
protein, GP, and large transcriptase protein (9). GP is the only
viral transmembrane protein that is exposed on the virion
surface that interacts and the target cell receptor. The GP of
most RABVs has two N-glycosylation sites, Asn37 and Asn319.
The N-glycan at Asn37 plays a role in promoting the propagation
of the virus but also reduces the pathogenicity of the virus (53).
Similarly, the addition of a single N-glycan at Asn194 or Asn247

also reduced the pathogenicity of street rabies viruses, confirmed
by peripheral infection in mice (72). Furthermore, the virulence
of H1N1 for mice decreased with an increase in the number of
HA glycosylation sites (64).

On the other hand, the glycans of viral proteins can also
enhance their virulence. For example, glycosylated and non-
glycosylated E proteins of WNV are neurovirulent. However,
viruses containing glycosylated E proteins are more neuroinvasive
in BALB/c mice (73). Otherwise, the adding N-glycosylation of
amino acids at either 154 or 156 increase neuro-invasiveness in
mice, avian virulence, and vector competence (74).
April 2021 | Volume 12 | Article 638573
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HOST GLYCANS AFFECT VIRAL INFECTION

The specific binding of a virus to host receptor is a prerequisite
for viral infection, and the viral glycans responsible for
attachment and cell receptors of viruses play a decisive role.
Many studies have focused on the functions of glycans on the
viral protein: such as host cell recognition, replication, infection
and immune escape. However, hosts and viruses have
coevolutionary relationships, thus the functions of host
receptors are also crucial, and all viruses must interact with the
specific receptors when they enter a cell. The specificity of host
receptors is considered to be one of the major factors in
determining host range and tissue tropism. Host receptor
refers to a component of the host cell membrane that can bind
specifically to the virus, mediate virus entry, and promote virus
infection. Its chemical nature is a glycoprotein, proteoglycan,
lipid, or glycolipid (75, 76). According to their different
functions, virus receptors can be divided into two categories:
attachment factors and entry receptors (77). Entry receptors can
bind to the virus and mediate the internalization of the virus, for
example, HIV can bind to CD4. Attachment factors concentrate
viruses on the cell surface and play an auxiliary role in the
process of virus infection (78). For example, heparin sulfate,
which is proteoglycan widely found on various cell surfaces and
extracellular matrix in the body, can act as an auxiliary receptor
of SARS-CoV-2 to promote the entry of virus (79). Therefore,
glycans on a host cell receptor can play an important role in
influencing viral infection as a functional receptor or attachment
factor for the virus.

Diversification of SA as Virus Receptor
SA is a naturally existing nine-carbon monosaccharide and has
been identified as a functional receptor attached to the termini of
N-glycans or O-glycans of glycoproteins and glycolipids (80). SA
is one of the first sites for the contact between many pathogens
and hosts because it presents on the outer surface of cells and
mucosal tissues. SA carried by most mammals is called N-
glycolylneuraminic acid (Neu5Gc) (Figure 3A); however, our
ancestors also evolved another kind of SA, called N-
acetylneuraminic acid (Neu5Ac), probably to resist the malaria
parasite that was able to use Neu5Gc to enter the human body at
that time. After completing this evolution, making some diseases
seem more particularly specific to humans, such as typhoid,
cholera, mumps, pertussis, asthma, and coronavirus diseases
(COVID-19) (81). When SARS-CoV-2 enters the human body,
it recognizes SA first, and search for its receptor at the same time,
then it binds to angiotensin-converting enzyme 2 (ACE2),
opening the access into the cell (82, 83).

Usually, SA exists as a bound sugar at the terminal positions
of glycans via different glycosidic linkages (a2,3, a2,6, and a2,8).
Figure 3B shows common SA linkage types. SA can be found in
almost all animals, but the virus cannot infect all animals that
have SA. Besides, different viruses infect different hosts by
employing different receptors, which may be determined by
the diversification of SA residue linkage types (Figure 3B), that
is, viruses have a specific selectivity in the process of infecting the
Frontiers in Immunology | www.frontiersin.org 6
host. For example, the influenza virus binds to the receptor by
recognizing SA residue at the terminal position of the receptor
glycoprotein glycan chain, but it has the preference for certain
types of SA (such as Neu5Gc and Neu5Ac). The preferential
binding property may be attributed to the changes in the
penultimate galactose residue linkage to SA. Avian influenza
virus mainly binds to a2,3-linked SA residue, while human
influenza virus preferentially binds to a2,6-linked SA residue
(84, 85).

Other Glycans of Host Cells Can Also
Serve as Receptors Affect Viral Infection
Other glycans can also act as viral receptors to influence the
entry of viruses, such as heparan sulfate, which can act as an
initial adhesion receptors for various viruses, so it can help the
virus adhere to the cells and mediate entry before the virus binds
to the high-affinity receptors. HSV entry begins with the
attachment of the virus to target cells through binding of HSV
gC and/or gB to heparan sulfate proteoglycan syndecan-1 or
syndecan-2 of the epithelial cell surface. Then, via various cell
surface receptors such as nectin-1 or nectin-2. Finally, the
attached virus begins to enter the cells (86–88). Like HSV-1,
hepatitis C virus (HCV) enters cells by interacting with
syndecan-1 or syndecan-4 on the surface of human
hepatocytes to initiate its life cycle (89, 90). As for HCV, its
functional receptors include SRB1, CD81, CLDN1, and OCLN,
among which CD81 is the most important (91).

Also, neutral glycans may act as virus receptors, such as
histo-blood group antigens, which are present in red blood
cells, epithelial cells, and mucosal secretions, and play an
important role as attachment factors for Rotavirus and
Norovirus (92, 93).
DEVELOPMENT OF VACCINE

Faced with the threat of new viruses, the effective prevention
measure that we can take is to control the source of infection, cut
off the main route of transmission and protect the susceptible
population, these measures will be essential to bring the situation
under control and to alleviate the negative effects of the epidemic.
The definitive solution is effective vaccines that induce
uninfected people to generate protective antibody and build
long-term immune memory to combat the virus if the vaccine
ever comes in contact with that virus at a later time.

HIV
Although we know that the envelope proteins in HIV are the
only target for nAbs (94), it is unfortunate that almost all of the
traditional methods of vaccine preparation have generated little
expected effect due to the great diversity of HIV-1 strains.
Removal of the N-glycan modifications in the highly variable
V1-V3 region of HIV-1 envelope protein improves the
sensitivity of the virus to nAbs (95). Similarly, the gp120
complex mutated at the glycosylation site N448E can activate
April 2021 | Volume 12 | Article 638573
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antiviral immunity better than the gp120 wild type. This
suggests that removing N-glycans can increase the
effectiveness of HIV vaccine (3). However, the heterogeneity
of the HIV envelope, viruses tend to escape from most
neutralizing antibody responses. Currently, HIV vaccine
development research is focused on inducing unique broadly
nAbs to act on diverse strains of HIV-1.

Influenza Virus
Because of the antigenic drift of influenza viruses, current
influenza vaccines need to be updated annually. The number
and length of glycans on HA can affect the immune response;
reducing the length of glycans can induce nAbs to make a
stronger immune response to antigenic epitopes (96). The
binding of nAbs to the HA glycans was inhibited at low
temperature because the low temperature can stiffen the
glycan structure (97). Interestingly, increased density of viral
Frontiers in Immunology | www.frontiersin.org 7
glycans in oligosaccharide-modified influenza viruses can
directly activate the immune response and there exists a class
of conserved epitopes in influenza viruses, that after adding
hyperglycosylated artificially will become dominant (It was
verified by mice in vivo experiment) (98). This finding suggests
that further study on glycosylation of influenza virus HA protein
can be helpful to develop antiviral drugs.

HSV
Experimental vaccines against HSV-1 target particular viral
glycoproteins. HSV envelope gD is expressed on the surface of
the virus and induces a nAbs response. The largest current
clinical trial of HSV subunit vaccines has found an inhibitory
effect on HSV-1, but no effect against HSV-2 (99). A different
attenuated vaccine strategy has been attempted by using HSV
without glycoprotein D2, this vaccine can induce neutralizing
antibody which displays antibody-dependent cell-mediated
A

B

FIGURE 3 | Chemical structure of sialic acid (SA) and glycosidic linkage types. (A) Neu5Ac and Neu5Gc are the most common two SAs. The C5 carbon is modified
with an N-acetyl group to form Neu5Ac. CMP-Neu5Ac can be hydroxylated to CMP-Neu5Gc, catalyzed by cytidine monophosphate N-acetylneuraminic acid
hydroxylase (CMAH). Most mammalian tissues contain both SAs. In contrast, this enzyme is inactive and Neu5Gc is not expressed in normal human tissues. (B) SAs
attached to the terminal positions of N-glycans or O-glycans of glycoproteins and glycolipids via different glycosidic linkages as viral receptors. SA can be linked
through an a2,3-linkage or an a2,6-linkage to a penultimate galactose residue; through an a2,6-linkage to N-acetylgalactosamine (GalNAc) moiety, and an a2,8-
linkage to another SA moiety on a glycan.
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cytotoxicity activity to achieve better protection from HSV
infection (100, 101).

EBOV
The GP of EBOV is the main target of nAbs. Most of the current
research on Ebola vaccines uses GP as the immunogen. Mature
GP is composed of GP1 and GP2. They are presented on the
surface of virions as trimers of disulfide-linked GP1-GP2
heterodimers. The GP1 subunit contains two heavily
glycosylated domains, the glycan cap, and the MLD. The MLD
is highly variable and contains both N- and O-linked glycans
(30). The MLD is essential for immune shielding, studies have
shown that the MLD-deleted GP1 and GP2 can induce an
immune response that may result in cross-species immunity
(102). Similarly, a subunit vaccine that contains the extracellular
domain of the GP fused with the Fc fragment of human IgG1 to
protect mice against EBOV lethal challenge (103). Further
research found that mutation of Asn565 on GP2 was highly
detrimental to the immunogenicity of GP; However, mutation of
two N-glycosylation sites on GP1 (388, 415 sites) may enhance
immunogenicity (62). Hence, the glycan on EBOV GP play an
important role in inducing immunity, and further study of
glycan may help us develop more effective vaccines.

SARS-CoV-2
The S protein is the only antigen that is target of nAbs. The RNA
vaccine that expecting S protein now aims to use all over the
world. The S glycoprotein of SARS-CoV-2 is highly glycosylated
with 22 N-glycosylation sites (104). However, in the face of
mutant virus strains, existing vaccines are less effective (105,
106). Deletion of the N331 and N343 glycosylation sites of SARS-
CoV-2 S protein could significantly reduce the ability of the virus
to infect, and mutations of N234Q and N165Q could markedly
resist to nAbs and be more sensitive, respectively (55). The
functional study of different glycosylation sites on S protein
may provide references for the development of effective vaccines
and drugs against SARS-CoV-2 in the future.
APPLICATION OF GLYCOSYLATION
INHIBITORS

Glycans can affect the host cell recognition, replication,
infection and immune escape of virus. With the deepening
understanding of the structure and function of enveloped virus
glycoproteins, research and development of antibody drugs that
target enveloped virus glycoproteins have become a current hot
topic (94). Studies have shown that lectins can inhibit HIV-1
infection by binding directly to the viral glycans, thereby
disrupting the receptor-induced conformational changes,
inhibiting membrane fusion, and blocking the binding of DC-
SIGN (107–109). In addition, tetherin is a protein molecule on
the surface of human cells that can block the spread of HIV and
inhibit the release of a broad-spectrum of enveloped viruses by
retaining virions on the surface of the infected cell. It has been
reported that the antiviral activity of tetherin is related to its
Frontiers in Immunology | www.frontiersin.org 8
glycosylation. Human tetherin contains two putative N-linked
glycosylation sites (Asn65 and Asn92), and glycosylation of at
least one Asn of tetherin is necessary and sufficient for the
inhibition of HIV-1 release (110). The use of mannosidase-I
inhibitor such as kifunensine inhibits the biosynthesis of N-
glycan and enhances proteolysis of S proteins, which reduces
receptor-binding domain presentation on SARS-CoV-2
pseudovirus, lowers the binding to host ACE2 and decrease
viral entry (111). In addition, other N-glycosylation inhibitors,
like swainsonine, which is mannosidase II inhibitor and has
been shown to be safe in humans, can cause N-glycan
truncation may be used to reduce viral entry (112).
Iminosugars are known inhibitors of aGI and aGII, like
celgosivir, castanospermine, and UV-4, which can effectively
inhibit the replication of SARS-CoV-2 in cell culture (113).
These drugs and compounds may be used to reduce viral load
and moderate SARS-CoV-2 related respiratory symptoms.
Other potential inhibitors that may modulate viral entry
include carbohydrate-based small molecules (e.g. 4F-GlcNAC,
4F-GalNAC) and acceptor decoys (e.g. ONAP, SNAP) are used
by interfering with the mutual recognition process of glycan
and lectin (114).
CONCLUSIONS AND PERSPECTIVES

Historically, viral diseases have repeatedly caused large-scale
global public health concerns and threats to human health and
survival. Figure 4 illustrates the transmission pathway of
several common viruses that infect humans. Increasing
evidence shows that the alterations in the N-glycan profile
and sugar recognition pattern in host cells can reflect the
progress of viral infection to some extent and are expected to
be a new target for the diagnosis and treatment of viral infection
(116). In short, glycosylation can be a tool for the virus to infect
the host and escape host immunity. Here, we have summarized
the progress in studying the effects of glycan on viral behavior
in recent decades, which will provide new insights for the
development of viral vaccines and help to develop new targets
to protect against these viruses.

Finally, faced with the ongoing COVID-19 pandemic, we
need to identify the key therapeutic targets including
glycosylation sites in vaccines and drug targets. With the
development of the SARS-CoV-2 vaccine, although we have
effective countermeasures, the mutated version of the virus still
threatens the health safety of mankind. In general, the existing
vaccines are still effective against the mutated virus, but the
neutralization efficiency is lower (106). How to develop a more
effective vaccine has become an urgent task at present. As one of
the most important post-translational modifications,
glycosylation is an indispensable factor in virus function.
Glycosylation inhibitors can significantly inhibit viral infection
and reduce the synthesis of viral proteins (117). We need to
design a new vaccine virus by researching the glycosylation sites
that have an impact on the viability of the virus, and modifying
the glycosylation of the virus (118). Similarly, it is also very
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important to study SARS-CoV-2 S glycans differ from typical
host glycan processing and develop targeted glycosylation
inhibitors. In addition, the use of this inhibitor in combination
with other types of antiviral drugs may have a better effect in
combating viral infection, replication and overcoming viral
resistance (119).
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