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Abstract
Interactions between proteins are essential for intracellular communication. They
form complex networks which have become an important source for functional
analysis of proteins. Combining phylogenies with network analysis, we investigate
the evolutionary history of interaction networks from the bHLH, NR and bZIP
transcription-factor families. The bHLH and NR networks show a hub-like structure
with varying γ values. Mutation and gene duplication play an important role
in adding and removing interactions. We conclude that in several of the protein
families that we have studied, networks have primarily arisen by the development of
heterodimerizing transcription factors, from an ancestral gene which interacts with
any of the newly emerging proteins but also homodimerizes. Copyright  2004 John
Wiley & Sons, Ltd.
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Introduction

Genome, proteome and other ‘ome’ projects have
generated a vast amount of data over the last
few years. These data can be analysed by com-
parative analysis. Proteome analysis became most
important for studying regulatory proteins, since
many signalling proteins, from membrane-bound
receptors down to the DNA-binding regulatory ele-
ments (transcription factors), interact directly with
each other via so-called protein–protein interac-
tions (PPIs). Some of these interactions are ‘unspe-
cific’, e.g. both SH3 and SH2 domains interact
with many other domains [8,27]. Since some of
the interaction partners interact with yet other pro-
teins, this gives rise to a ‘network of interactions’
where proteins can be imagined as nodes that
are connected by edges, representing their physi-
cal interactions. However, interactions can also be
very specific and limited to only few partner pro-
teins, e.g. many transcription factors heterodimer-
ize with several partners under specific physiolog-
ical conditions and expression states, while they

may homodimerize under other conditions. An
example is the leucine zipper-mediated interaction,
e.g. the competing Jun–Fos/Jun–Jun interactions
in the bZIP family [7,19] or the much weaker
Mad–Max/Max–Max interactions in the bHLH
family [7,12,17].

The molecular details of dimerization are very
complicated and are not the focus of this study.
Several groups have begun to investigate the
‘global’ features of PPI networks, trying to infer
functional properties by applying statistical meth-
ods to the analysis of the networks [9,14,24,25].
Among the most intriguing of these findings are
their small-world characteristics. Although the net-
work is very big, each protein is linked to every
other by chains of only a few edges. This is possi-
ble because some proteins interact with many oth-
ers, representing so-called ‘hubs’, and many have
only very few interactions [14]. Furthermore, these
interactions appear to be confined to cellular com-
partments [24].
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The reliability of experimental PPI data is con-
troversially discussed [13,22,23]. However, one
should consider that binding is not an all-or-nothing
process and at least in vivo interactions are fre-
quently competitive, as shown in the bZIP net-
work [18]. Furthermore, the combination of data
from various sources can significantly improve
their quality. In our research efforts we have col-
lated database information with data mined from
the literature to generate more reliable, ‘confirmed’,
datasets [1]. Several models of network evolu-
tion have been developed recently [20,21,26,29].
Some models are based on gene duplication, some
on domain rearrangements. Others assume that an
existing initial network is duplicated when all genes
coding for the interacting proteins are duplicated
simultaneously. This could happen, for example,
via a whole-genome duplication or other large-scale
duplication events, such as tandem duplications. In
the following a certain fraction of interactions is
assumed to be lost again.

The goal of this study is to complement exist-
ing perspectives on network evolution with stud-
ies based on phylogenies and comparative analysis
from genomic and proteomic data. We have chosen
to work on several families of eukaryotic transcrip-
tion factors for which many data from different
sources are known and for which phylogenies are
either known or can be computed with a reason-
able reliability. In particular, we concentrate on the
question of how the evolution of interaction speci-
ficity, such as homo- vs. heterodimerization, may
reveal the evolutionary dynamics of network evo-
lution. Accordingly, results on the families of NR,
bZIP and bHLH proteins are reported and discussed
in the following.

Methods

Interactions for all three networks were extracted
from a literature search in PubMed, with the focus
on mammalian transcription factors (http://www4.
ncbi.nlm.nih.gov/PubMed/). Specifically for the
bZIPs, interactions were extracted from Newman
and Keating [18], in which protein arrays were
used to test 492 pairings of a nearly complete set
of coiled-coil strands from all known human bZIP
proteins. We included interactions that were sym-
metrical in the consensus interaction matrix, mean-
ing that the use of the protein in the array surface or

as a probe was not inhibiting the interaction. Also,
we disregarded interactions with Z < 1, which is
the threshold value for the signal : noise ratio. Data
for bHLH proteins are the same as in Amoutzias
et al. [1] but with close family members collapsed
to one node. For the NR family we excluded all
data for which interactions were shown not to
be direct.

Results

bHLH proteins

We first focus on bHLH proteins. They represent an
ancient family of transcription factors being present
in all eukaryotic clades, that expanded since the
emergence of multicellularity [16]. bHLH proteins
are involved in cell-cycle regulation, metabolic
sensing and tissue-specific development. Their
main constituent is a ≈60 amino acid-long domain
comprising the DNA-binding basic region and
the HLH motif which mediates interaction. How-
ever, they usually also contain additional dimeriza-
tion domains which contribute to the specification
of homo- and heterodimerization. While further
details on their evolution are reported elsewhere
[4,16], the feature which is most relevant for this
study is that five major groups exist. These can be
distinguished by their domain architecture, in par-
ticular the presence of the additional dimerization
domain (leucine zipper — LZ, PAS, Orange), such
that their clustering into groups is fairly reliable.
Recently, we found that PPIs between bHLH pro-
teins form two hub-based networks. One of them
can be divided into two hub-based subnetworks.
The two networks have a striking similarity in their
topology but no interactions between any member
of one family to any member of the other family
are known to exist [1].

Analysing these networks of protein families
(Figure 1), the most prominent feature appeared to
be that, just like the overall network, they have
a hub-like topology. Interaction data have been
obtained from a number of different sources and
the low number of interactions for the majority
of the nodes has been explicitely confirmed by
experiments on these nodes. Hubs are a feature of
scale-free networks and such properties have been
observed in social networks, the world-wide web,
the western US power grid, citations of scientific
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Figure 1. Protein interaction networks of eukaryotic transcription factors: bHLH (A), NR (B) and bZIP (C).
Homodimerization is indicated by larger dots

publications, metabolic networks, protein domains,
protein interaction networks and the distribution
of proteins in sequence space [3,5,6,31,32]. For
the bHLH protein-interaction network, we calcu-
lated the frequency of nodes with K interactions,
P(K ), and plotted this against the number of inter-
actions, K .

The plot (Figure 2.) of ln[P(K )] − ln(K ) shows
clearly that the bHLH PPI network is scale-free,
because the distribution of connectivity decays as
a power-law P(K ) = K −γ , where γ ≈ 1. A scale-
free network is a non-homogeneous network with
a few highly connected nodes (the hubs) and many

poorly connected nodes (the peripheral members).
Other analyses on scale-free networks estimated
that γ is usually in the range 2–3 [11]. The biologi-
cal significance of this lower value for γ appears to
be a direct consequence of the fact that gene dupli-
cation events (single or large-scale) have generated
new peripheral proteins that then interact preferen-
tially with the hub. Apparently the homodimerizing
factors are the most highly linked (at least within
their networks) and represent hubs (Figure 2). Con-
sequently, we conclude that homodimerization was
the ancestral function. This feature was maintained
with the emergent hub, even though the peripheral
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Figure 2. Scaling behaviour of protein interaction networks
of eukaryotic transcription factors: bHLH (squares), NR
(triangles), bZIP (diamonds). Linear fits for bHLH (full line,
γ ≈ 1) and NR (dashed line, γ ≈ 0.95)

members, which emerged as constitutive interac-
tion partners, became free to bind only under more
limited physiological conditions. This is reflected
by the fact that hubs are typically constitutive and
widely expressed, while peripheral members are
often tissue-specific. It is also noteworthy that in
a recently published model [20], which is based
on gene duplication alone, γ ≈ 1.2 when only few
links (PPIs) are lost, while the ‘classical’ values of
γ ≈ 2–3 require a relatively high rate of loss.

NR proteins

Members from the superfamily of nuclear recep-
tor proteins are transcription factors which can
homo- or heterodimerize or even bind to DNA as
monomers. With the exception of a few so-called
‘orphan receptors’, they are activated by binding a
ligand and regulate metabolic pathways, develop-
ment homoeostasis and reproduction [15].

NR proteins are organized in four domains: the
N-terminal transactivation domain A, the DNA-
binding domain (DBD) that contains two zinc-
fingers, the ligand-binding domain (LBD) and a
flexible hinge between the DBD and the LBD. The
DBD and the LBD are involved in dimerization.

Phylogenies based on sequence analysis between
LBD and DBD revealed six distinct subfamilies
(I–VI), with two of them (I and IV) being more

closely related than the rest [15]. No other phy-
logenetic relationship between the subfamilies has
been reliably inferred as yet.

Again, the interaction pattern is well correlated
with the group membership. While there are, in
general, no interactions between different groups of
receptors within subfamilies I and IV, most mem-
bers of subfamilies I and IV tend to form efficient
heterodimers with some members of subfamily II,
whereas in other subfamilies, homodimerization is
most frequent (see Figure 1).

Laudet [15] and co-workers investigated the evo-
lutionary rates for the members of the NR family.
While they reported strong differences in evolution-
ary rates between individual proteins, there were no
significant differences among the six subfamilies.
However, by relating individual proteins with pro-
tein–protein interaction data it becomes apparent
that it is the hubs, which are generally also homod-
imerizing, that evolved slower than the peripheral
members. This is in agreement with the idea that
hubs are the predecessors from which new inter-
action partners (repressors or activators) emerged
by gene duplication, followed by mutation. The
two weakly linked proteins ER and ERR (see
Figure 1b) are homodimerizing. Apparently they
arose more recently and have not as yet differenti-
ated into an independent network. Further evidence
that the hubs are the ancestral part of the network
comes from the fact that they were present in early
metazoans such as sponges and cnidariaus, whereas
the peripheral members that belong to subfamilies
I and IV appeared much later, after the emergence
of the Bilateria [10,30].

bZIP proteins

bZIP proteins are an ancient family of transcrip-
tion factors present in all eukaryotic clades. They
regulate genes that are involved in proliferation,
immune response, cell death and response to stress
and toxicity [2]. bZIP proteins are named after
their well-conserved α-helical bZIP domain. The
bZIP domain comprises the DNA-binding basic
region (BR) and, C-terminally adjacent to it, the
leucine zipper (LZ), which forms a coiled coil and
determines the dimerization partner for homo- and
heterodimers [7,17–19].

It is difficult to reconstruct the phylogeny from
sequence information alone and domain arrange-
ments are not as conclusive as for the bHLH family.
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However, a classification has been suggested, based
on the amino acid composition and on dimeriza-
tion partners [28]. More comprehensive interac-
tion data from bZIP proteins have been analysed
most recently, using protein chip technology [18].
Applying network analysis as above reveals a more
even distribution of connectivities; however, there
is still a fair amount of clustering (Figure 2). This
is an indication of an evolutionary mechanism for
this family which is different from the bHLH and
NR families. Also, there is no such clear differenti-
ation between homo- and heterodimerization, since
most proteins have at least a limited capacity to
homodimerize.

Discussion

In this study we have combined network analysis
and phylogenies to investigate the emergence of
new interactions in the gene networks of eukaryotic
transcription factors.

In all three families we have studied (bHLH,
bZIP and NR), there is an indication that homod-
imerization preceded the development of het-
erodimerization. In NRs, strong evidence comes
from phylogenetic studies and the distribution of
NR families in early metazoans [10,30]. The evo-
lution of the bHLH networks is also consistent with
the ancestral nature of homodimerization. Typ-
ically, the ability for homodimerization appears
to be conserved, such that hubs emerge from
the ancestral homodimerizing proteins. Subsequent
gene duplication (large- or small-scale) and muta-
tion results in changes in dimerization properties,
thus forming a complex network. In particular, the
bHLH family have apparently evolved by repeated
single-gene duplications which led to the initial
network topology [1]. Subsequent large-scale gene
duplications may have increased the complexity of
the bHLH network. While the role of gene duplica-
tion was also important in the evolution of the NR
and bZIP networks, the central role of single gene
duplication cannot be confirmed with current data.

The basic principles, i.e. the hub-like structure
of the interaction networks, comply with the global
features as they were shown by other groups. How-
ever, the statistical properties (γ ) for the sub-
networks differ between the families and deviate
more or less from the global properties of PPI
networks as they have been analysed previously.

Obviously, these differences reflect different evo-
lutionary dynamics, such as the relative frequency
of gene duplication, large-scale duplication events
and loss of interactions. The loss of interactions
appears to be particularly important in the initial
stages of network development and its influence
on the value of γ appears to be in good agree-
ment with the predictions by Pastor-Satorras and
co-workers [20].

Our results have obvious implications for the
understanding of network evolution. Further the-
oretical studies and models of network evolution
should consider these variations in γ and the fact
that, at least in many cases, heterodimerization
emerges from homodimerization.
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