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Abstract

Background: The monitoring of intracranial pressure (ICP) has a crucial role in the
surveillance of patients with brain injury. During long-term monitoring of ICP, we
have seen spontaneous shifts in baseline pressure (ICP sensor zero point), which are
of technical and not physiological origin. The aim of the present study was to
explore whether or not baseline pressures of ICP sensors can be affected by
electrostatics discharges (ESD’s), when ESD’s are delivered at clinically relevant
magnitudes.

Methods: We performed bench-testing of a set of commercial ICP sensors. In our
experimental setup, the ICP sensor was placed in a container with 0.9% NaCl
solution. A test person was charged 0.5 - 10 kV, and then delivered ESD’s to the
sensor by touching a metal rod that was located in the container. The continuous
pressure signals were recorded continuously before/after the ESD’s, and the pressure
readings were stored digitally using a computerized system

Results: A total of 57 sensors were tested, including 25 Codman ICP sensors and 32
Raumedic sensors. When charging the test person in the range 0.5-10 kV, typically
ESD’s in the range 0.5 - 5 kV peak pulse were delivered to the ICP sensor. Alterations
in baseline pressure ≥ 2 mmHg was seen in 24 of 25 (96%) Codman sensors and in
17 of 32 (53%) Raumedic sensors. Lasting changes in baseline pressure > 10 mmHg
that in the clinical setting would affect patient management, were seen frequently
for both sensor types. The changes in baseline pressure were either characterized by
sudden shifts or gradual drifts in baseline pressure.

Conclusions: The baseline pressures of commercial solid ICP sensors can be altered
by ESD’s at discharge magnitudes that are clinically relevant. Shifts in baseline
pressure change the ICP levels visualised to the physician on the monitor screen, and
thereby reveal wrong ICP values, which likely represent a severe risk to the patient.

Background
In patients with brain injury due to traumatic brain injury, stroke, or complications to

neurosurgery, the continuous monitoring of intracranial pressure (ICP) is crucial for

surveillance [1-3], even though no randomized trials have confirmed the benefit of ICP

monitoring in patients with brain injury [4].

Modern ICP monitoring was first introduced by Janny in 1950 [5] and Lundberg in

1960 [6]. While ICP initially was mostly measured from fluid-filled catheters in
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connection with the ventricular cerebrospinal fluid (CSF), the first ICP micro transdu-

cers were introduced in the 1980’s [7,8]. The ICP micro transducers most commonly

used today include Camino [9] and Codman [10] ICP sensors which were introduced

in the 1980’s, the Spiegelberg ICP sensor [11] introduced in the 1990’s, the Raumedic

ICP sensor introduced in the beginning of 2000 [12], and the Pressio ICP sensor [13]

introduced more recently. There is an extensive literature on the assessment of these

ICP sensors, including bench testing [10,11,13-19] and clinical evaluation [9,12,20-30].

In our hospital, we have particularly addressed the problem of spontaneous shifts in

baseline pressure (zero point) that occur during continuous ICP monitoring. Simulta-

neous monitoring from two ICP sensors placed nearby in the brain demonstrated

spontaneous shifts in baseline pressure, which produced differences in ICP even > 20

mmHg [31]. Since the differences in ICP were accompanied by close to identical ICP

waveforms, the differences in ICP could be explained by shifts in baseline pressure of

technical, not physiological, origin. Similar observations of marked differences in ICP

even > 10-20 mmHg despite identical ICP waveform were done when the ICP sensors

were placed in different intracranial locations [30,32]. Moreover, during long-term ICP

monitoring, sudden shifts in baseline ICP occurred with few hours interval [33]. The

reasons for spontaneous shifts in baseline pressure have not been identified.

The present study was undertaken to explore whether or not commercial ICP sen-

sors are affected by electrostatic discharges (ESD’s). To our knowledge this topic has

previously not been addressed. The issue of electrical safety in hospitals has received

much attention since many years [34-37]. The need for increased awareness of electro-

magnetic interference with medical equipment also was addressed more recently [38].

In the hospital environment, ESD’s can be evoked during patient care such as bedding

of hospital beds [39]. The frequency and severity of ESD’s are affected by numerous

factors such as humidity and temperature, the in-house environment (textiles used in

clothing, antistatic floor and washing).

In this study, we made an experimental set-up to deliver ESD’s to ICP sensors at

magnitudes that are clinically relevant. We tested different types of solid ICP sensors

that have previously been extensively tested and are still widely used, namely the Cod-

man ICP sensor, and the Raumedic NeuroVent and NeuroDur ICP sensors.

Methods
ICP sensors

The following types of commercially available ICP sensors were tested: Codman ICP

MicroSensor (Codman, Johnson & Johnson, Raynham, MA, USA; Figure 1a), Raumedic

NeuroVent P-C (Raumedic AG, Münchberg, GE; Figure 1b), Raumedic NeuroVent P

(Raumedic AG, Münchberg, GE; Figure 1c), and Raumedic NeuroDur sensor (Raume-

dic AG, Münchberg, GE; Figure 1d).

Those ICP sensors that had previously been used in patients were stored in closed

plastic bags at room temperature.

This study did not include research on humans or animals; ethical approval for the

study was not applicable.
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Experimental setup

The experimental setup is illustrated in Figure 2. The sensor was placed in a container

filled with 0.9% NaCl solution. Also a metal rod was placed in the container, whereby

a test-person could deliver ESD’s to the sensor. The sensor cable was wrapped around

the container in order to compare with the clinical situation, wherein the cable is

placed on the patient, resulting in increased capacitance. The wrapping procedure was

not done for SensorID’s 1-3. The Codman sensor was connected to a Codman ICP

Express (Codman, Johnson & Johnson, Raynham, MA, USA), which is a pressure trans-

ducer. The Raumedic sensors were connected to a MPR1 Raumedic pressure transdu-

cer (Raumedic AG, Münchberg, GE). The continuous ICP signals from the Codman

ICP express were sampled at 200 Hz using the Sensometrics pressure logger, which is

an analogue to digital converter, and stored on a computer using the Sensometrics®

software (dPCom A/S, Oslo). The continuous signals provided by the Raumedic MPR-

1 were transferred directly to the computer and stored using Sensometrics® software.

In order to record the electrostatic levels reached, we used the Stat Arc II model 265

(Monroe Electronics Inc., 100 Housel Ave., Lyndonville, N.Y.).

The testing was done in standardized room temperature of 22-23°C.

Figure 1 The different sensors/sensor transducers applied in this study. In this study we tested the
(a) Codman Microsensor, (b) Raumedic NeuroVent P-C, (c) Raumedic NeuroVent P, and (d) Raumedic
NeuroDur solid sensors.
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Testing of effects of electrostatic discharges

After initiating the pressure recording, the test person was charged using a Metriso

5000 insulation tester (Metrawatt GmbH, Germany) and thereafter touching the metal

rod. The test-person was charged in the following sequence: 0.5 kV, 1.0 kV, 2.5 kV,

and 5.0 kV. For deliverance of 10 kV, the test person first charged the container to

5kV and then swiftly charged himself to 5 kV opposite polarity before touching the

metal rod. The test-person noted whether or not he detected the current impulse

being delivered.

The testing of a Codman sensor is shown in Additional file 1, and the testing of a

Raumedic sensor is shown in Additional file 2.

Assessment of leakage current

All sensors were tested for leakage current using the Metriso 5000 insulation tester

and a Fluke 87 III True RMS Multimeter (in the voltage range). The procedure of test-

ing for leakage current is shown in Figure 3. All leakage current measurements were

done at 500V unless otherwise stated; resistance was calculated.

Results
ICP sensors

We tested a total of 57 sensors (25 Codman and 32 Raumedic sensors). Six Codman

sensors (SensorID’s 39 and 49-53) and seven Raumedic sensors (SensorID’s 46-48 and

54-57) were new while the other sensors had previously been used in patients. The

proportion of ICP sensors with changes in baseline pressure ≥ 2 mmHg is indicated in

Table 1.

Figure 2 Experimental set-up. The ICP sensor (a) was placed in a container (b) containing 0.9% NaCl
solution. A metal rod (c) was placed in the 0.9% NaCl solution; thereby the test person (d) could deliver
ESD to the sensor (a). The ICP sensor was connected via a cable (e) to the pressure transducer (f), which
was the Codman ICP Express for Codman sensors, and Raumedic MPR-1 for the various Raumedic sensors.
The pressure transducer (f) was further connected with a laptop computer (g) with Sensometrics software
for sampling and storage of the continuous pressure signals. In order to record the ESD delivered to the
sensor, a meter (h) was connected with the container to read the magnitude of ESD.
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The Codman sensors typically responded with sudden shifts in baseline pressure,

though gradual drifts in baseline pressure were seen in two sensors (SensorID’s 7 and

37). The maximum lasting changes in baseline pressure of Codman sensors are shown

in Table 2. Charging the test person to 5 kV caused baseline shift in five sensors (Sen-

sorID’s 37, 38, 40, 41 and 50), with a measured potential change of 2-5 kV in the 0.9%

NaCl solution with the sensor. In the other Codman sensors, changes in baseline pres-

sure occurred when the test person was charged to a 10 kV differential, in which

potential changes to the sensor were comparable to that evoked when charging the

person to 5 kV. For only one sensor (SensorID 38), we managed to deliver a 10 kV

potential change directly to the sensor (taking place after the sensor already had

responded to 5 kV). Figure 4 illustrates shifts in baseline pressure in two sensors, and

Figure 3 Set-up for testing of leakage current. The ICP sensor (a) was placed in a container (b)
containing 0.9% NaCl solution. A metal rod (c) was placed in the 0.9% NaCl solution and connected to
one side of a 500V source (h). All pins of the ICP sensor connector (f) were connected to the Volts input of
the digital multimeter (g) and the multimeter Common input was connected to the other side of the 500V
source. The multimeter’s input impedance of 10 MΩ thus acted as a shunt resistor providing a current
scale of 100pA/mV.

Table 1 ICP sensors tested for altered baseline pressure following ESD

Type of sensor Number Number (%) with change baseline pressure ≥ 2 mmHg

Codman ICP Microsensor 25 24 (96)

Raumedic

NeuroVent P-C 11 11 (100)

NeuroVent P 12 3 (25)

NeuroDur 9 3(33)
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gradual drift of baseline pressure in another. An animation of baseline shift subsequent

to ESD’s of SensorID 4 is shown in Additional File 3.

The Raumedic sensors responded differently to ESD’s depending on the design of the

sensors. While Raumedic NeuroVent P-C was highly unstable to ESD’s, the Raumedic

NeuroVent P and NeuroDur sensors differed. The maximum lasting changes in base-

line pressure for the individual Raumedic sensors are presented in Table 3.

All the Raumedic NeuroVent P-C sensors responded with gradual drifts in their

baseline pressure; drifts occurred when the test person was charged to 0.5 kV in 3 sen-

sors (SensorID’s 16, 29 and 46), 2.5 kV in 6 sensors (SensorID’s 11-15, and 18), and 5

kV in two sensors (SensorID’s 10 and 57). The gradual drift of NeuroVent P-C in Sen-

sorID 14 is shown in Figure 5a (see also Additional file 4).

The shifts in baseline pressure of NeuroVent P sensors were seen after charging the

test person to 0.5 kV in two (SensorID’s 33 and 47), and to 2.5 kV in another (Sen-

sorID 32). In Figure 5b is illustrated how SensorID 33 gradually changed its baseline

pressure following repetitive ESD’s of 0.5 kV (an animation of the pressure signal is

shown in Additional file 5).

All the three NeuroDur sensors responding to ESD (SensorID’s 23, 25 and 28)

responded when the test person was charged to 0.5 kV, with a corresponding 0.5 kV

potential change in the solution around the sensor. The responses of SensorID’s 25

and 28 are shown in Figure 6 (see also Additional file 6).

Table 2 Lasting alterations in baseline pressure of Codman sensors following ESD

ICP Sensor Baseline pressure (mmHg)

Codman SensorID Before After Maximum change1

Microsensor 1 -0.7 -13.3 -12.6

“ 2 0.2 13.4 13.2

“ 3 -1.5 -9.5 -8

“ 4 1.7 -24.4 -26.1

“ 5 -0.02 -1.2 -1.18

“ 6 -0.2 -5 -4.8

“ 7 -0.2 -17.7 -17.5

“ 8 -0.6 8.7 9.3

“ 9 11.5 3.8 -7.7

“ 20 0.5 9.5 9

“ 36 0 4.8 4.8

“ 37 8.8 -5.3 -14.1

“ 38 0 23.2 23.2

“ 39 -0.7 2.8 3.5

“ 40 0.4 40 39.6

“ 41 0 16 16

“ 42 -6.3 -26 -19.7

“ 43 1.8 13.1 11.3

“ 44 -9.3 -0.1 9.2

“ 45 -4.3 0.02 4.32

“ 49 -12.2 -23.1 -10.9

“ 50 -0.1 -15.9 -15.8

“ 51 -15.3 -0.8 14.5

“ 52 4.9 12.5 7.6

“ 53 -0.4 -8.6 -8.2
1Change in baseline pressure ≥ 2 mmHg (absolute value) is highlighted.
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Figure 4 Continuous pressure signal from Codman sensors before/after electrostatic discharge. The
continuous pressure signals retrieved from Codman Microsensor are shown before and after electrostatic
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Experimental setup

When the test-person was charged to 0.5 kV, the ESD delivered to the sensor was typi-

cally 0.5 kV pulse peak. Charging to 5 kV provided for a potential change of 2.5 kV on

average (range 2-5 kV). When charging to 10 kV, typically 3.5-4.0 kV change was seen;

in a few occasions we observed even 7 kV change (10 kV on one occasion). While

ESD’s < 3 kV hardly provided any unpleasant sensations, ESD’s of about 5 kV gave

weak unpleasant sensations, while ESD’s ≥ 7 kV provided a sensation which is evident,

though not painful, to the test person.

Table 3 Lasting alterations in baseline pressure of Raumedic sensors following ESD

ICP Sensor Baseline pressure (mmHg)

Raumedic SensorID Before After Maximum change1

NeuroVent P-C 10 18.4 -9.3 -27.7

“ 11 -0.3 -11.5 -11.2

“ 12 9.5 3.6 -5.9

“ 13 0.6 6.9 6.3

“ 14 -5.4 11.4 16.8

“ 15 -0.7 -14.1 -13.4

“ 16 0 18.3 18.3

“ 18 -1.4 1.1 2.5

“ 29 -5.7 17.3 23

“ 46 -12.1 -0.1 12

“ 57 1.3 -8.3 -9.6

NeuroVent P 17 1.6 0.1 -1.5

“ 30 -0.2 -0.5 -0.3

“ 31 -0.05 -0.9 -0.85

“ 32 -0.3 4.7 5

“ 33 0 9.6 9.6

“ 34 0.2 0.7 0.5

“ 35 0.1 0.5 0.4

“ 47 2.5 -0.1 -2.6

“ 48 0.4 -0.1 -0.5

“ 54 0.6 -0.9 -1.5

“ 55 0.3 0.5 0.2

“ 56 0 -0.1 -0.1

NeuroDur 19 0.1 -0.6 -0.7

“ 21 -0.05 -0.1 -0.05

“ 22 0 0.1 0.1

“ 23 52.4 0.8 -51.6

“ 24 0.8 0.9 0.1

“ 25 0.4 10.7 10.3

“ 26 0.8 0.3 -0.5

“ 27 0.1 0.2 0.1

“ 28 0 39 39
1Change in baseline pressure ≥ 2 mmHg (absolute value) is highlighted.

discharges (ESD’s) for SensorID 4 (a), SensorID 38 (b), and SensorID 7 (c). Note that sudden changes in
baseline pressure occurred for SensorID’s 4 and 38, while SensorID 7 showed gradual drift of baseline
pressure. The baseline pressure level (mmHg) is indicated on the y axis, and the time line on the × axis
levels; the ESD is indicated by an arrow.

Eide and Bakken BioMedical Engineering OnLine 2011, 10:75
http://www.biomedical-engineering-online.com/content/10/1/75

Page 8 of 16



Figure 5 Continuous pressure signal from Raumedic sensors before/after electrostatic discharge.
The continuous pressure signals retrieved from Raumedic NeuroVent sensors are shown before and after
electrostatic discharges (ESD’s) for SensorID 14 (NeuroVent P-C; a), and for SensorID 33 (NeuroVent P; b).
The baseline pressure level (mmHg) is indicated on the y axis, and the time line on the × axis levels; the
ESD is indicated by an arrow. Note that gradual drifts in baseline pressure occurred. For SensorID 33,
repeated low ESD’s of 0.5 kV (not being sensed by the test person) causes gradual build-up of baseline
pressures.
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Figure 6 Continuous pressure signal from Raumedic sensors before/after electrostatic discharge.
The continuous pressure signals retrieved from Raumedic NeuroDur sensors are shown before and after
electrostatic discharges (ESD’s) of SensorID 28 (a), and for SensorID 25 (b). The baseline pressure level
(mmHg) is indicated on the y axis, and the time line on the × axis levels; the ESD is indicated by an arrow.
Note that gradual drifts in baseline pressure occurred.
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Leakage current

The results of testing leakage current are presented in Table 4. Leakage current was

seen in 1 of the 25 Codman sensors (SensorID 45); this sensor revealed leakage current

of up to100 nA with continuous breakthrough.

The Raumedic sensors differed depending on design. The NeuroVent P-C sensors

showed a marginally higher leakage current. Two of the NeuroVent P sensors respond-

ing to ESD’s (SensorID’s 32 and 33) showed leakage current. The three NeuroDur sen-

sors (SensorID’s 23, 25 and 28) being affected by ESD’s of 0.5 kV, all showed abnormal

current leakage.

Discussion
This study shows that the baseline pressures (zero point) of Codman and Raumedic

ICP sensors can be altered by ESD’s at magnitudes that are clinically relevant. The

observations indicate severe limitations with currently used ICP sensors.

ICP sensors used for clinical monitoring of ICP

The ICP sensors tested in this study are widely used ICP sensors. Both the Codman

[10,14,16,21,22,25,27] and Raumedic [12,19,29,30] sensors have undergone extensive

bench and clinical testing. In general, the assessment of ICP sensors has previously

focused on long-term-drift of the sensors, sensitivity to temperature changes, and

inter-sensor accuracy comparisons [10,11,13-19,22,25].

All the ICP sensors measure pressure relative to atmospheric pressure, which means

that they have to be zeroed before measuring ICP. Hence, their zero point equates the

atmospheric pressure, and the ICP level displayed on the monitor represents the differ-

ence between pressure level within the intracranial compartment and the sensor zero

point. It should be noted that in daily clinical practice, various notations are used to

refer to the zero point, such as set point, reference pressure, or baseline pressure. In

this paper and previous publications [30-33], we have preferred the term baseline pres-

sure, when referring to the zero point of the ICP sensor.

Depending on clinical state, the upper normal threshold of ICP varies between 15

and 25 mmHg [1-4]. Obviously, if the baseline pressure (zero point) spontaneously

shifts > 10-20 mmHg, the ICP presented to the physician becomes wrong. Since the

continuous monitoring of ICP is done for surveillance of patients with brain injury, e.

g. due to traumatic brain injury, stroke complications to brain surgery [1-3], false ICP

values represent a likely hazard to the patient. For example, when ICP increases, efforts

may be done to reduce the ICP; such efforts include medication, artificial ventilation

and surgical procedures.

When the impact of ESD’s on ICP sensors previously has not been considered, the

reason may be that the issues of non-physiological changes in baseline pressure have

not been regarded as a problem in ICP monitoring.

Electrostatic discharges in the hospital environment

There are different ways to test ESD’s; it has also been addressed that there is a need

for more standardized methods [40]. The rational for our experimental setup was to

best possible test ESD’s of clinically relevant magnitudes. Therefore, the ESD’s were

delivered from a test person, and caused pulse peak discharges to the sensor typically
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Table 4 Results of testing of current leakage

ICP sensor Test parameters

Type aSensorID Test Voltage Leakage Current Resistance

Codman Microsensor 1 500 V 70 pA 7 TΩ

Codman Microsensor 2 500 V 80 pA 6 TΩ

Codman Microsensor 3 500 V 130 pA 4 TΩ

Codman Microsensor 4 500 V 60 pA 8 TΩ

Codman Microsensor 5 500 V 60 pA 8 TΩ

Codman Microsensor 6 500 V 100 pA 5 TΩ

Codman Microsensor 7 500 V 60 pA 8 TΩ

Codman Microsensor 8 500 V 90 pA 6 TΩ

Codman Microsensor 9 500 V 50 pA 10 TΩ

Raumedic NeuroVent P-C 10 500 V 150 pA 3 TΩ

Raumedic NeuroVent P-C 11 500 V 140 pA 4 TΩ

Raumedic NeuroVent P-C 12 500 V 110 pA 5 TΩ

Raumedic NeuroVent P-C 13 500 V 270 pA 1.9 TΩ

Raumedic NeuroVent P-C 14 500 V 100 pA 5 TΩ

Raumedic NeuroVent P-C 15 500 V 150 pA 3 TΩ

Raumedic NeuroVent P-C 16 500 V 290 pA 1.7 TΩ

Raumedic NeuroVent P 17 143 V 27.6 μA 5.2 MΩ

Raumedic NeuroVent P-C 18 500 V 300 pA 1.5 TΩ

Raumedic NeuroDur 19 142 V 27.6 μA 5.1 MΩ

Codman Microsensor 20 500 V 50 pA 10 TΩ

Raumedic NeuroDur 21 500 V - 22 Ω

Raumedic NeuroDur 22 142 V 27.6 μA 5.1 MΩ

Raumedic NeuroDur 23 273 V ~16 μA ~17 MΩ

Raumedic NeuroDur 24 142 V 27.6 μA 5.1 MΩ

Raumedic NeuroDur 25 351 V 9.07 μA 38.7 MΩ

Raumedic NeuroDur 26 142 V 27.6 μA 5.1 MΩ

Raumedic NeuroDur 27 142 V 27.6 μA 5.1 MΩ

Raumedic NeuroDur 28 360 V 8 μA 45 MΩ

Raumedic NeuroVent P-C 29 500 V 130 pA 4 TΩ

Raumedic NeuroVent P 30 142 V 27.6 μA 5.1 MΩ

Raumedic NeuroVent P 31 143 V 27.6 μA 5.2 MΩ

Raumedic NeuroVent P 32 335 V 10.5 μA 32 MΩ

Raumedic NeuroVent P 33 500 V 200 pA 2.5 TΩ

Raumedic NeuroVent P 34 273 V ~16 μA ~17 MΩ

Raumedic NeuroVent P 35 500 V - 100 Ω

Codman Microsensor 36 500 V 80 pA 6 TΩ

Codman Microsensor 37 500 V 70 pA 7 TΩ

Codman Microsensor 38 500 V 70 pA 7 TΩ

Codman Microsensor 39 500 V 70 pA 7 TΩ

Codman Microsensor 40 500 V 50 pA 10 TΩ

Codman Microsensor 41 500 V 90 pA 6 TΩ

Codman Microsensor 42 500 V 90 pA 6 TΩ

Codman Microsensor 43 500 V 80 pA 6 TΩ

Codman Microsensor 44 500 V 60 pA 8 TΩ

Codman Microsensor 45 500 V 0.5~100 nA ~

Raumedic NeuroVent P-C 46 500 V 210 pA 2.4 TΩ

Raumedic NeuroVent P 47 142 V 27.5 μA 5.2 MΩ

Raumedic NeuroVent P 48 142 V 27.5 μA 5.2 MΩ

Codman Microsensor 49 500 V 100 pA 5 TΩ

Codman Microsensor 50 500 V 210 pA 2.4 TΩ
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in the range 0.5 - 5 kV. Such ESD’s may not be unpleasant to the test person, and are

below the levels that can be seen clinically [39,41]. ESD’s of magnitudes < 2-3 kV may

not even be appreciated by the personnel taking care of the patients. It was previously

demonstrated that potentials > 30 kV could be induced on the bed framework when

the bedding is pulled from the bed; the degree of charging being dependent on the

material of hospital bedding [39]. In comparison, previous tests in our hospital showed

that ESD’s of 20-40 kV could be seen, depending on the textiles used in clothing (Jen-

sen, Grimnes, unpublished data). Using the test approach described here, we avoided

ESD’s of magnitudes that are not clinically relevant. Only in a few instances, we mana-

ged to deliver 7 kV potential changes to the sensor (10 kV in one sensor that first

responded markedly to 5 kV). Accordingly, the voltages referred to here are quite low.

Different characteristics of Codman and Raumedic ICP sensors

There were some differences between the Codman and Raumedic sensors in their

responses to ESD’s. The Codman sensors consistently responded to electrostatic

changes of 2-3 kV, with sudden shifts in baseline pressure. Gradual drift was only seen

in 2 of 25 Codman sensors (8%). These findings compare with our clinical observations

of spontaneous alterations in baseline ICP despite unchanged ICP waveform. The

observation that baseline pressure was changed maximally > 10 mmHg in 13 of 25

(52%) sensors (and > 20 mmHg in 3 (12%) sensors), indicate that effects of ESD’s are

of a magnitude that likely would affect patient management.

The Raumedic sensors responded differently depending on their design. Two types of

responses were seen, namely gradual drifts and sudden shifts in baseline pressure.

While the NeuroVent P-C was completely unstable to ESD’s, even at levels of 0.5 kV,

the NeuroVent P was less affected. The P-C type incorporates a ceramic coating on

the sensor tip while the P type uses titanium. Also the NeuroDur sensor using tita-

nium was more stable, where the tip seemed connected to the sensor with a 5 MΩ

resistance. Nevertheless, the observation of alterations in baseline pressure > 10 mmHg

in 10 of 32 (31%) Raumedic sensors (> 20 mmHg in 4 of 32 (12.5%) indicate that the

effects of ESD’s would affect patient management also when using these sensors. In a

recent study comparing simultaneous ICP signals from Raumedic NeuroVent and Neu-

roDur sensors, we encountered average differences between sensors during over-night

monitoring > 10 mmHg in 4 of 12 (33%) patients [30].

While leakage current was seen in only one Codman sensor, and no Raumedic Neu-

roVent P-C sensors, current leakage was seen in 2 of 3 Raumedic NeuroVent P sensors

that responded to ESD’s, and in all three Raumedic NeuroDur sensors responding to

ESD’s. The testing of leakage current indicated that in Raumedic titanium sensors

Table 4 Results of testing of current leakage (Continued)

Codman Microsensor 51 500 V 130 pA 4 TΩ

Codman Microsensor 52 500 V 100 pA 5 TΩ

Codman Microsensor 53 500 V 120 pA 4 TΩ

Raumedic NeuroVent P 54 143 V 27.6 μA 5.2 MΩ

Raumedic NeuroVent P 55 143 V 27.6 μA 5.2 MΩ

Raumedic NeuroVent P 56 143 V 27.6 μA 5.2 MΩ

Raumedic NeuroVent P-C 57 500 V 320 pA 1.6 TΩ

SensorIDa: The SensorID’s of new and previously non-used sensors are presented with numbers in bold.
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(NeuroVent P and NeuroDur) there is an internal 5 MΩ resistance between the metal

shell and the connector. Hence, the sensors with resistance different from 5 MΩ

(Table 4) might have a broken protection resistor. We found, however, no evidence of

sensor damage using microscopy, though damage to ICP sensors may happen both

during the implantation and explanation.

Control of risk associated with ESD’s

A major issue with both the Codman and Raumedic ICP sensors is that the health care

personnel get no warning about sudden shifts in baseline pressure (zero point) of ICP

sensors, or even damage to the ICP sensor during/after implantation. Thereby it is

impossible for the physician or nurse to know whether changes in ICP are related to

ESD’s or not. The Codman sensor cannot be re-zeroed because this is done within the

operating room before sensor implantation. The Raumedic sensors, on the other hand,

can be re-zeroed after implantation; however, this procedure is not necessarily done by

the nurse/physician when ICP is changing.

While the present study focused on effects of ESD’s on ICP sensors, the baseline

pressure can also be affected by user-related wrong zeroing or even damage to the sen-

sor during implantation, which may not be recognized. Therefore, it can be questioned

why modern monitoring systems include no warning. Such warning should be incorpo-

rated as part of risk control.

We suggest that a robust way of incorporating risk control is by determining the ICP

from the ICP waveform itself. Thereby quality control is accomplished and the issue of

baseline pressure alterations is eliminated. The first author previously described a proce-

dure for automatic identification of the cardiac-induced waves in the ICP waveform [42].

Using this approach, the ICP parameters such as the mean ICP wave amplitude (MWA),

can be determined from the cardiac induced ICP waves [42]. Since such determination of

single wave pressure parameters is done within the ICP signal itself, the analysis results is

not affected by changes in baseline pressure. The automatic identification of verified car-

diac induced ICP waves also recognizes other ICP sensor-related issues. For example, if an

ICP sensor is placed wrong by mistake, artificial waves and no cardiac induced ICP waves

will be identified, providing feedback to the user that the ICP signal is erroneous.

Conclusions
The baseline pressure (zero point) of the Codman and Raumedic ICP sensors can be

altered by ESD’s at discharge magnitudes that are clinically relevant levels. The shifts

in baseline pressure will directly affect the ICP levels visualised to the health care per-

sonnel. The alterations in baseline pressure can be extensive (> 10-20 mmHg), thereby

revealing wrong ICP values, which subsequently poses a high risk for erroneous

treatment.

Additional material

Additional file 1: The testing of a Codman sensor. The video shows the testing of a Codman sensor. A test
person is being charged, and then touches the metal rod, leading the electrostatic discharge to the container
filled with 0.9% NaCl Ringer solution, wherein the sensor is placed. A schematic illustration is shown in Figure 2.

Additional file 2: The testing of a Raumedic sensor. The video shows the testing of a Raumedic sensor. A test
person is being charged, and then touches the metal rod, leading the electrostatic discharge to the container
filled with 0.9% NaCl Ringer solution, wherein the sensor is placed. A schematic illustration is shown in Figure 2.
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Additional file 3: A continuous pressure signal before and after ESD - Codman sensor. The continuous
pressure signal of a Codman sensor (SensorID 4) is shown at a higher velocity (about × 30) than normal. The test
person was charged to 10 kV, which delivered an ESD of 5 kV to the sensor. At the time of the ESD, a sudden
change in baseline pressure occurs. See also Figure 4a.

Additional file 4: A continuous pressure signal before and after ESD - Raumedic NeuroVent P-C sensor.
The continuous pressure signal of a Raumedic P-C sensor (SensorID 14) is shown at a higher velocity (about × 30)
than normal. The test person was charged to 2.5 kV three times, which delivered ESD’s of 1-2.5 kV to the sensor.
At the time of the first ESD, a slight reduction of baseline pressure occurred, while at the second and third ESD’s,
the baseline pressures drifted to higher levels. See also Figure 5a.

Additional file 5: A continuous pressure signal before and after ESD - Raumedic NeuroVent P sensor. The
continuous pressure signal of a Raumedic P sensor (SensorID 33) is shown at a higher velocity (about × 30) than
normal. The test person was repeatedly charged to 0.5 kV, which delivered ESD’s of 0.5 kV to the sensor. At the
time of each ESD, a slight increase of baseline pressure occurred. See also Figure 5b.

Additional file 6: A continuous pressure signal before and after ESD - Raumedic NeuroDur sensor. The
continuous pressure signal of a Raumedic NeuroDur sensor (SensorID 28) is shown at a higher velocity (about ×
30) than normal. The test person was charged to 0.5 kV, which delivered an ESD of 0.5 kV to the sensor. At the
time of ESD, a marked downward drift of baseline pressure occurred. See also Figure 6a.

Abbreviations
ICP: Intracranial pressure; ESD: Electrical discharge; kV: kilo Volt; CSF: cerebrospinal fluid; MWA: mean ICP wave
amplitude; SW: single wave.

Author details
1Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway. 2Faculty of Medicine, University of
Oslo, Oslo, Norway. 3Department of Clinical and Biomedical Engineering, Oslo University Hospital, Rikshospitalet, Oslo,
Norway.

Authors’ contributions
Both authors have made substantial contributions to conception and design, acquisition of data, analysis and
interpretation of data; and have been involved in drafting the manuscript or revising it critically for important
intellectual content. Both authors have read and approved the final manuscript.

Competing interests
AB reports no conflicts of interest. PKE has financial interest in the software company (dPCom A/S) that manufactures
the software (Sensometrics® Research software and Sensometrics® Software), which was used for digital recording of
the continuous pressure signals in this study.

Received: 29 March 2011 Accepted: 22 August 2011 Published: 22 August 2011

References
1. Marmarou A, Anderson RL, Ward JD, et al: Impact of ICP instability and hypotension on outcome in patients with

severe head trauma. J Neurosurg 1991, 75:S59-S66.
2. Ghajar J: Traumatic brain injury. The Lancet 2000, 356:923-929.
3. Czosnyka M, Pickard JD: Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 2004,

75:813-821.
4. Padayachy LC, Figaji AA, Bullock MR: Intracranial pressure monitoring for traumatic brain injury in the modern era.

Child’s Nerv Syst 2010, 26:441-452.
5. Janny P: La pression intracrannienne Chez l’Homme Paris, Thesis; 1950.
6. Lundberg N: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr

Neurol Scand 1960, 36:1-193.
7. Allen R: Intracranial pressure: A review of clinical problems, measurement techniques and monitoring methods. J

Med Engin Tech 1986, 10:299-320.
8. Zhong J, Dujovny M, Park HK, et al: Advances in ICP monitoring techniques. Neurol Res 2003, 25:339-350.
9. Gambardella G, d’Avella D, Tomasello F: Monitoring of brain tissue pressure with a fiberoptic device. Neurosurgery

1992, 31:918-922.
10. Piper IR, Miller JD: The evaluation of the wave-form analysis capability of a new strain-gauge intracranial pressure

microsensor. Neurosurgery 1995, 36:1142-1145.
11. Yau YH, Piper I, Clutton RE Whittle IR: Experimental evaluation of the Spiegelberg intracranial pressure and

intracranial compliance monitor. J Neurosurg 2000, 93:1072-1077.
12. Stendel R, Heidenreich J, Schilling A, et al: Clinical evaluation of a new intracranial pressure monitoring device. Acta

Neurochir 2003, 145:185-193.
13. Allin D, Czosnyka M, Czosnyka Z: Laboratory testing of the Pressio intracranial pressure monitor. Neurosurgery 2008,

62:1158-1161.
14. Czosnyka M, Czosnyka Z, Pickard JD: Laboratory testing of three intracranial pressure microtransducers: Technical

report. Neurosurgery 1996, 38:219-224.
15. Morgalla MH, Mettenleiter H, Bitzer M, et al: ICP measurement control: Laboratory test of 7 types of intracranial

pressure transducers. J Medical Engineer Techn 1999, 23:144-151.

Eide and Bakken BioMedical Engineering OnLine 2011, 10:75
http://www.biomedical-engineering-online.com/content/10/1/75

Page 15 of 16

http://www.biomedcentral.com/content/supplementary/1475-925X-10-75-S3.mpg
http://www.biomedcentral.com/content/supplementary/1475-925X-10-75-S4.mpg
http://www.biomedcentral.com/content/supplementary/1475-925X-10-75-S5.mpg
http://www.biomedcentral.com/content/supplementary/1475-925X-10-75-S6.mpg
http://www.ncbi.nlm.nih.gov/pubmed/15145991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21879411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12870259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1436417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7643994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7643994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11117854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11117854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18580814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8747977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8747977?dopt=Abstract


16. Morgalla MH, Krasznai L, Dietz K, et al: Methods of experimental and clinical assessment of the relative
measurement accuracy of an intracranial pressure transducer. Technical note. J Neurosurg 2001, 95:529-532.

17. Morgalla MH, Dietz K, Deininger M, et al: The problem of long-term ICP drift assessment: Improvement by use of
the ICP drift index. Acta Neurochir 2002, 144:57-61.

18. Piper I, Barnes A, Smith D, et al: The Camino intracranial pressure sensor: Is it optimal technology? An internal audit
with a review of current intracranial pressure monitoring technologies. Neurosurgery 2001, 49:1158-1165.

19. Citerio G, Piper I, Cormio M, et al: Bench test assessment of the new Raumedic Neurovent-P ICP sensor: a technical
report by the Brain-IT group. Acta Neurochir (Wien) 2004, 146:1221-1226.

20. Pople IK, Muhlbauer MS, Sanford RA, et al: Results and complications of intracranial pressure monitroing in 303
children. Pediatr Neurosurg 1995, 23:64-67.

21. Gray WP, Palmer JD, Gill J, et al: A clinical study of parenchymal and subdural miniature strain-gauge transducers
for monitoring intracranial pressure. Neurosurgery 1996, 39:927-932.

22. Fernandes HM, Bingham K, Chambers IR, Mendelow AD: Clinical evaluation of the Codman microsensor inracranial
pressure monitoring system. Acta Neurochir 1998, 71(Suppl):44-46.

23. Guyot LL, Dowling C, Diaz FG, et al: Cerebral monitoring devices: Analysis of complications. Acta Neurochir 1998,
71(Suppl):47-49.

24. Rossi S, Buzzi F, Paparella A, et al: Complications and safety associated with ICP monitoring: A study of 542 patients.
Acta Neurochir 1998, 71(Suppl):91-93.

25. Signorini DF, Shad A, Piper IR, et al: A clinical evaluation of the Codman Microsensor for intracranial pressure
monitoring. Br J Neurosurg 1998, 1:223-227.

26. Lang J-M, Beck J, Zimmermann M: Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery
2003, 52:1455-1459.

27. Koskinen L-O, Olivecrona M: Clinical experience with the intraparenchymal intracranial pressure monitoring
Codman Microsensor system. Neurosurgery 2005, 56:693-698.

28. Gelabert-Gonzàlez M, Ginesta-Galan V, Sernamito-Garcia R, et al: The Camino intracranial pressure device in clinical
practice. Assessment in a 1000 cases. Acta Neurochir 2006, 148:435-441.

29. Poca M, Martinez-Ricarte F, Sahuquillo J, et al: Intracranial pressure monitoring with the Neurodur-P epidural sensor:
A prospective study in patients with adult hydrocephalus or idiopathic intracranial hypertension. J Neurosurg 2008,
108:934-942.

30. Eide PK, Sorteberg W: Simultaneous measurements of intracranial pressure parameters in the epidural space and in
brain parenchyma in patients with hydrocephalus. J Neurosurg 2010, 113:1317-1325.

31. Eide PK: Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino
ICP sensor. Med Eng Physics 2006, 28:542-549.

32. Eide PK: Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within
the brain parenchyma and the epidural space. Med Eng Physics 2008, 30:34-40.

33. Eide PK, Rapoport BI, Gormley WB, et al: A dynamic nonlinear relationship between the static and pulsatile
components of intracranial pressure in patients with subarachnoid hemorrhage. J Neurosurg 2010, 112:616-625.

34. Bruner JM: Hazards of electrical apparatus. Anesthesiology 1967, 28:396-425.
35. Bruner JM, Aronow S, Cavicchi RV: Electrical incidents in a largehospital: a 42 month register. J Assoc Adv Med

Instrum 1972, 6:222-230.
36. Leonard PF: Characteristics of electrical hazards. Anesth Analg 1972, 51:797-809.
37. Weibell FJ: Eletrical safety in the hospital - 1974. Ann Biomed Engineer 1974, 2:126-148.
38. Abenstein JP: Safety While Swimming in a Sea of Energy. Mayo Clinic Proceedings 2007, 82:276-278.
39. Holdstock P, Wilson N: The effect of static charge generated on hospital bedding. EOS/ESD Symposium 1996,

356-364.
40. Smallwood J: Standardisation of electrostatic test methods and electrostatic discharge prevention measures for the

world market. J Electrostatics 2005, 63:501-508.
41. Kathirgamanathan P, Toohey MJ, Haase J, et al: Measurements of incendivity of electrostatic discharges from textiles

used in personal protective clothing. J Electrostatics 2000, 49:51-70.
42. Eide PK: A new method for processing of continuous intracranial pressure signals. Med Eng Physics 2006, 28:579-587.

doi:10.1186/1475-925X-10-75
Cite this article as: Eide and Bakken: The baseline pressure of intracranial pressure (ICP) sensors can be altered
by electrostatic discharges. BioMedical Engineering OnLine 2011 10:75.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Eide and Bakken BioMedical Engineering OnLine 2011, 10:75
http://www.biomedical-engineering-online.com/content/10/1/75

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/11565881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11565881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8555097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8555097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8905747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8905747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12762891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15792507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15792507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18447710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18447710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20799859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20799859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19731984?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19731984?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5338059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5035678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4672177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17352361?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	ICP sensors
	Experimental setup
	Testing of effects of electrostatic discharges
	Assessment of leakage current

	Results
	ICP sensors
	Experimental setup
	Leakage current

	Discussion
	ICP sensors used for clinical monitoring of ICP
	Electrostatic discharges in the hospital environment
	Different characteristics of Codman and Raumedic ICP sensors
	Control of risk associated with ESD’s

	Conclusions
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


