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Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease
that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of
patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood,
the development of effective tools for early diagnosis and disease-modifying therapies has
been hindered. Animal models play a key role in understanding the pathological process of
diseases and evaluating new therapeutic interventions. Although some similarities in
disease processes between animals and humans are known, no one animal model is
sufficient for studying all characteristics of TMJOA, as each model has different
translatability to human clinical conditions. For the past 4 decades, TMJOA animal
models have been studied by numerous researchers and can be broadly divided into
induced, naturally occurring, and genetically modifiedmodels. The induced models can be
divided into invasive models (intra-articular injection and surgical induction) or non-invasive
models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal
models simulate different pathological expressions of TMJOA and have their unique
characteristics. Currently, mice, rats, and rabbits are commonly used in the study of
TMJOA. This review sought to provide a general description of current experimental
models of TMJOA and assist researchers in selecting the most appropriate models for
different kinds of research.

Keywords: temporomandibular joint, osteoarthritis, animal models, induced models, naturally occurring models,
genetically modified models

INTRODUCTION

Osteoarthritis (OA) is a chronic degenerative condition that often affects the stress-bearing joints,
such as the knee, spine, hips, and fingers (Kloppenburg and Berenbaum, 2020). The
temporomandibular joint (TMJ), one of the most common and complex joints in the human
body, can also be affected by OA. Temporomandibular joint osteoarthritis (TMJOA) is the most
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common form of arthritis occurring in TMJs due to its high
clinical prevalence and consequences on TMJ (Wang et al., 2015).
Patients with TMJOA usually have joint pain, swelling and
stiffness that leads to activity limitations and even reduced
quality of life. Therefore, numerous studies are needed to
better understand the development and progression of TMJOA.

The etiology of TMJOA is complex and multifactorial, which
is generally considered to be associated with mechanical
overloading, abnormal occlusion, trauma, and psychological
stress (Tanaka et al., 2008; de Souza et al., 2012). However,
the causes of impaired cartilage and subchondral bone of TMJ
remain unclear. Currently, the treatments of TMJOA mainly aim
to reduce pain, restore TMJ function, and improve the quality of
life of patients (Tanaka et al., 2008; Al-Moraissi et al., 2020).
Although many clinical studies have investigated the effect of
various treatments, no clinically approved therapeutics are
currently available to restore the TMJ structure, given the
limited understanding of its pathogenesis and the limited
blood supply of the cartilage (Huey et al., 2012; Wang et al.,
2015). Since obtaining clinical samples from patients with
TMJOA is difficult and clinical symptoms often occur late in
the disease process, animal models of TMJOA play a key role in
understanding the pathogenesis of diseases and evaluating new
therapeutic approaches (Vapniarsky et al., 2018; Liu et al., 2021).
As various animal models of TMJOA have been developed over
the past four decades, a major challenge lies in selecting the “best”
model when designing a study. Animal models for TMD research
and mouse genetic models for TMJ preclinical research have been
reviewed elsewhere (Suzuki and Iwata, 2016; Ghassemi Nejad
et al., 2017; Almarza et al., 2018; Bhatti et al., 2021; Xiang et al.,
2021). This review serves to systematically summarize the
usefulness, histopathological changes, and scope of application
of each model and current animals used in TMJOA research. We
hope to provide an evidence-based reference for researchers to
deepen their understanding and to select appropriate TMJOA
animal models.

CHARACTERISTICS OF
TEMPOROMANDIBULAR JOINT/
TEMPOROMANDIBULAR JOINT
OSTEOARTHRITIS

Anatomy and Physiology of the
Temporomandibular Joint
TMJ, a joint that connects the mandible to the skull and regulates
mandibular movement, is composed of the mandibular condyle,
articular disc, and the articular eminence and glenoid fossa. The
cartilage layer on the mandibular condyle is from the superficial
layer downward and composed of several layers: the fibrous,
proliferative, hypertrophic and calcified cartilage layers
(Thilander et al., 1976). Instead of being covered by the
hyaline cartilage, the articular surface of the mandibular
condyle is covered with a layer of mature fibrous tissue,
consisting of a mass of collagen fibers (Toller, 1974). The
hyaline cartilage is mainly composed of type II collagen,

whereas the fibrocartilage is mainly composed of type I
collagen (Vos et al., 2014). The orientation of the fibers on the
condylar surface is a wavy interlacing of collagen fibers, which
makes most fibers tangent to the surface (Toller and Wilcox,
1978). This property allows the TMJ to better withstand shear
forces, whereas the hyaline cartilage is more resistant to
compressive loading. Unlike the articular cartilage of the knee,
the condylar cartilage has a different embryonic origin, which is
derived from cranial neural crest cells (Shen and Darendeliler,
2005). Moreover, the most intriguing biological aspect of the
condylar cartilage that differs from other cartilages lies in its
ability to remodel in response to the changes in condylar
repositioning, articular functioning, and mechanical loading
(Nakano et al., 2003). Possibly, these essential structural
differences in the TMJ significantly modifies the clinical
expression of its pathological changes.

Radiographical Features of
Temporomandibular Joint Osteoarthritis
Several imaging techniques are available for TMJ visualization,
including panoramic radiography, plain radiography, computed
tomography (CT), magnetic resonance imaging (MRI), and high-
resolution ultrasonography. Currently, CT and MRI are the most
used imaging techniques (Talmaceanu et al., 2018). The
radiographic manifestations of TMJOA include flattening of
the anterior surface of the condyle, erosions, and irregularities
of the joint surfaces, flattening of the articular surface of the
temporal eminence, generalized sclerosis, subchondral cysts,
osteophytes, and idiopathic condyle resorption (Zhao et al.,
2011; Nah, 2012). Several studies suggest that erosive lesions
may indicate acute or active changes, whereas sclerosis and
flattening osteophytes may indicate a later and relatively stable
stage (Ahmad et al., 2009).

Histopathologic Features of
Temporomandibular Joint Osteoarthritis
The main manifestations of TMJOA are articular cartilage
damage and degeneration, as well as repair of periarticular
tissues and hyperplastic changes of the synovial membrane.
Cartilage damage is characterized by irregular thinning and
fibrillation of the fibrous layer, and reduced proteoglycan
content of the cartilage matrix. Chondrocytes are frequently
arranged in small groups or clusters, and many degenerated
and necrotic chondrocytes are observed (de Bont et al., 1985a;
de Bont et al., 1985b). In the superficial layers, the density of the
collagen fibrils is diminished. The collagen fibrils show a loose
and disordered arrangement. The calcified cartilage layer shows
an irregular border adjacent to the fibrous layer and subchondral
bone. Exposure of subchondral bone, hyperplasia, sclerosis,
osteophyte formation and osteoblast activity can be found in
subchondral bone (Toller, 1977) (Figure 1).

The synovial membrane of the TMJ may initially undergo
synovial intima hyperplasia and cell hypertrophy, and
subsequently result in deposition of fibrous material in the
intima matrix. Subintimal fibroblast activity increases, and
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subintima elastic fibers are present (Dijkgraaf et al., 1997).
Neovascularization of the fossa cartilage and articular disc
frequently occur. The joint capsule is usually thickened in
the TMJ. Adhesions to the lateral TMJ structures, including
the synovial membrane, articular disc, and articular eminence,
are often found in the latter stages of TMJOA (Dijkgraaf et al.,
1995).

In summary, TMJOA is a chronic disease characterized by
degenerative changes in the cartilage, accompanied by repair of
surrounding tissues. Notably, TMJOA is different from OA in
other synovial joints. Numerous elastic fibers, giant collagen
fibrils, prominent nuclear fibrous lamina, and mineral-
containing matrix vesicles are found in the degenerated
condylar cartilage, which are not found in knee joint OA.
Moreover, the inflammatory infiltrate is less often present in
the osteoarthritic synovial membrane of the TMJ than in other
synovial joints (Roy and Meachim, 1968; Meachim and Sheffield,
1969; de Bont et al., 1985b). The etiology and treatment of
TMJOA are different because of differences in the structure

and origin of cells that give rise to TMJ structures. Therefore,
special animal models are needed to study TMJOA.

CLASSIFICATION OF ANIMAL MODELS IN
TEMPOROMANDIBULAR JOINT
OSTEOARTHRITIS
Although some similarities in the disease processes between
animals and humans are known, no one animal model is
sufficient for studying all features of TMJOA. The
translatability of animal models mainly depends on how well
they correspond to human conditions. Therefore, we
systematically summarized the existing animal models of
TMJOA (Figure 2). Animal models used to study TMJOA are
broadly divided into induced, naturally occurring, and genetically
modified models, depending on whether the animals are treated
with or without intervention. The induced models can be divided
into invasive models (intra-articular injection and surgical

FIGURE 1 | Common microstructural and histopathological alterations in cartilage and subchondral bone of TMJOA animal models with showing the normal joint
and pathological joint. In normal joint, the surface of condylar cartilage is intact and smooth with four layers, including fibrous, proliferative, hypertrophic, and calcified
cartilage layers. Lesions of cartilage include loss of cartilage surface integrity and proteoglycan, reduced and irregular arrangement of chondrocytes, presence of
chondrocyte clusters and cell-free areas, decreased thickness of cartilage, apoptosis of chondrocytes and osteophyte formation. Subchondral bone appears as
osteochondral angiogenesis, increased trabecular separation, large marrow cavities, decreased bone volume fraction, and activation of osteoblasts and osteoclasts.
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induction) or non-invasive models (mechanical loading, high-fat
diet, and sleep deprivation). Different modeling approaches
mimic different etiologies of TMJOA. Selection of an
appropriate animal model in studying TMJOA may be
challenging. Therefore, we summarized the advantages,
disadvantages, and indications of TMJOA animal models
(Table 1).

Induced Models
Invasive Models
Invasive TMJOA models mainly work by producing joint
destabilization, altered articular surface contact forces, and
intra-articular inflammation in TMJs of animals. The
procedures include injection and surgical approaches, which
are related to high technique sensitivity. Therefore,
improvement in the technical stability of researchers by long-
term practice is the key to creating invasive models.

Intra-Articular Injection Models
Intra-articular injection is a well-characterized preclinical model
of OA in the knee joint and TMJ. It causes disease by inducing
intra-articular inflammation, cytotoxicity, or direct matrix
damage in articular cartilage. Chondrocytes are the only cell
type responsible for producing extracellular matrix and
maintaining the homeostasis of cartilage (Dijkgraaf et al.,
1995). Death of the chondrocytes, which results from necrosis
or apoptosis, is a major feature of cartilage degeneration in OA
(Aigner and Kim, 2002; Liu et al., 2021). Chemical drug injection
can cause rapid death of many chondrocytes and destroy the
homeostasis of chondrocytes, thereby creating joint damage
and pain.

The commonly used drugs include monosodium iodoacetate
(MIA) (Wang X. D. et al., 2012; Cledes et al., 2006; Guler et al.,
2011), complete Freund’s adjuvant (CFA) (Rotpenpian et al.,
2021; Xu et al., 2016; Xu et al., 2017), collagenase (Li W. et al.,

FIGURE 2 | Classification of temporomandibular joint osteoarthritis (TMJOA) models. These models and their subdivisions share a relationship with TMJOA
phenotypes. Black arrows indicate the classification based on whether the animals are treated with or without intervention. Dashed red box represents pathogenic
factors simulated by each model. Blue lines indicate the specific animal species or model-building methods for each animal model.
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2021; Li W. et al., 2014; Wu et al., 2015), papain (Molinet et al.,
2020) and vascular endothelial growth factor (VEGF) (Shen et al.,
2015) (Table 2). The first four drugs are common drugs in animal
models of knee OA, which can cause different types of
inflammation. The most frequently used drug among these
drugs is MIA. However, a transcriptome study reported that
≤4% of total gene overlap occur between MIA-induced model
and human OA (Barve et al., 2007). Despite this challenge, intra-
articular injection still has the advantages of ease of induction and

reproducibility. Additionally, the rate of disease progression and
severity of joint lesions can be adjusted by changing drug
concentration (Wang X. D. et al., 2012), which can provide
acute disease model for researchers to design short-term studies.

Mice, rats, and rabbits are widely used in intra-articular
injection models. The most common animal models are rats
(Wang X. D. et al., 2012; Li W. et al., 2014; Xu et al., 2016; Xu
et al., 2017), because rats are easily managed and require low
maintenance costs. Using radio-opaque dye, Hutchins et al. have

TABLE 1 | Common TMJOA models and their basic characteristics.

Model Pros Cons Indications

Intra-articular injection
models

Easy to operate Pathogenic mechanism is different from human
TMJOA

Mainly used for study of pain and inflammatory
responseSmall trauma

Dose-dependent effects
Surgical induction
models

Induce TMJOA quickly Risks of inflection Mimic post-traumatic TMJOA
Severe lesions May affect other part of the joint

Mechanical loading
models

No trauma Mild lesions Mimic TMJOA caused by occlusal factors
Present little risk for animals Complex process of model-building

Need specialized equipment
High-fat diet models Easy to operate Mild lesions Mimic TMJOA affected by obesity factors

High repeatability
Sleep deprivation
models

High repeatability Sleep of rodent animals are naturally different from
that of human

Mimic TMJOA under psychological stress

Naturally occurring
models

No external interventions and induction
required

Slow procession of disease Mimic primary TMJOA
Extremely long research period
High cost

Genetically modified
models

Develop disease naturally Only act on specific genes Study the function of a specific gene in TMJOA
pathogenesisLong research period

High cost

TABLE 2 | Intra-articular injection models of TMJOA animal models.

Drugs Species Changes of Condylar
Cartilage

Changes in other
parts of TMJ

Molecular Mechanisms

MIA Rat (Wang et al., 2012c)
Rabbit (Cledes et al., 2006;
Guler et al., 2011)

Cartilage matrix
degradation
Fibrillation
Chondrocyte apoptosis

Subchondral bone
degradation
Synovial hyperplasia
Disc perforation
Glenoid fossa
degradation

↑ Mmp-3, Mmp-13, Adamts-5, Tnf-α, Fas, Fasl, Bax, Caspase-8,
Pcna, α-SMA in whole condyle; MMP-3, CASPASE-3, α-SMA in
hypertrophic layer
↓ Aggrecan, Col1a1, Col2a1 and Timp2 in whole condyle

CFA Mouse (Rotpenpian et al.,
2021)
Rat (Xu et al., 2016; Xu et al.,
2017)

Cartilage defection
Cartilage matrix
degradation

Subchondral bone
degradation
Bone remodeling
Synovial hyperplasia

↑RANKL, OCN, MMP-13, COL X, ADAMTS-5 in whole condyle; IHH,
PTCH1 in hypertrophic layer; SMO, GLI1 in hypertrophic and
mineralized layer
↓ OPG in whole condyle

Collagenase Mouse (Li et al., 2021a)
Rat (Li et al., 2014a)
Rabbit (Wu et al., 2015)

Cartilage matrix
degradation
Endochondral
ossification
Increased chondrocyte
synthesis

Subchondral bone
degradation
Bone remodeling
Chondroid metaplasia
Articular capsule
hyperplasia

↑Cox-2, P65,Mmp-1, Mmp-13, SOX-9, ADAMTS-5, MMP-9, COL II
in whole condyle; CD44 in subchondral bone
↓ TIMP-3, Col2a1 in whole condyle

Papain Rabbit (Molinet et al., 2020) Cartilage matrix
degradation

Articular disc
degradation
Articular capsule
degradation
Decreased lower joint
space

—

VEGF Mouse (Shen et al., 2015) Cartilage matrix
degradation
Fibrillation
Chondrocyte apoptosis

Subchondral bone
degradation
Subchondral bone
sclerosis

↑ MMP-9 and MMP-13 in hypertrophic layer; VEGFR2 in all cartilage
layers; RANKL in subchondral bone
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demonstrated that the superior joint space of rats can hold
50–70 µl of injectable fluid (Hutchins et al., 2000). Therefore,
the current dose of drug injection is approximately 50 µl.
Kameoka et al. (2010) have tested three puncture techniques
which are commonly used in humans for TMJ cavity in rats, and
have found that the puncture success rate for anterosuperior
puncture technique (ASPT) was significantly higher than others.
Currently, different puncture techniques are in use (Cledes et al.,
2006; Wang X. D. et al., 2012; George et al., 2013). Further studies
are still needed to determine a standard procedure.

Intra-articular injection models are mainly used to investigate
the molecular mechanisms of osteoarthritic pain and screening of
preclinical therapies (Kim et al., 2019; Sannajust et al., 2019; Yi
et al., 2020; Rotpenpian et al., 2021). Xu et al. (2017) suggested
that IHH signaling facilitates TMJOA in CFA-induced rats by
driving formation of hypertrophic chondrocytes and expression
of catabolic enzymes, such as type X collagen, MMP-13, and
ADAMTS-5, which may lead to degenerative changes in the
articular cartilage. As an angiogenic factor, NETRIN-1 has been
found to be a possible regulator during bone degeneration and
pain in the process of TMJOA in MIA-induced mice (Xiao et al.,
2021). Moreover, intra-articular injection may be appropriate for
screening symptom-modifying OA drugs but not for disease-
modifying OA drugs, because its pathophysiology is distinct from
that of naturally occurring OA (Thote et al., 2013). Even so, intra-
articular injection models still have the virtue of detecting joint
pain-related mechanisms due to the rapid injuries occurring in
the cartilage.

Surgical Induction Models
Surgery is the most widely used approach for building OA
models. It can cause structural damage and abnormal articular
forces to induce OA-like lesions directly by using surgical and
mechanical devices. The common surgical methods include
discectomy (Hinton, 1992; Lan et al., 2017; Liu X. et al., 2020;
Saito et al., 2021), partial discectomy (Man et al., 2009; Xu et al.,
2009; Lei et al., 2022), disc perforation (Embree et al., 2015; Luo
et al., 2020; Ruscitto et al., 2020), anterior disc displacement
(Togni et al., 2018; Xu et al., 2018; Nguyen et al., 2020), injury of
the condylar surface (Ishimaru and Goss, 1992; Wang F. et al.,
2017), and postero-superior displacement of the mandible (Imai
et al., 2001; Liu et al., 2006) (Table 3). These six methods well
mimic advanced symptoms of joint injury in clinical patients, but
they are not starting factors in general TMJOA. Hence, surgical
induction models are not appropriate for the study of the
mechanisms of TMJOA, except in the conditions of direct
trauma to the mandible.

Each surgical approach has its unique effect on joint
mechanics and causes different changes in the biomechanical
environment in the TMJ cavity. Therefore, the OA-like lesions
they formed have different disease progression rates. When
selecting an appropriate surgical approach, the anatomy and
biomechanics of the selected animal TMJ, expected
progression of the disease, and severity of late-stage lesions of
animal models should be understood. This understanding allows
researchers gain control of the entire course of disease
development.

Mice, rats, rabbits, pigs, and sheep are widely used in vivo
preclinical studies as surgical induction models. Rabbits are the
most used models (Imai et al., 2001; Man et al., 2009; Embree
et al., 2015; Xu et al., 2018; Saito et al., 2021), because they are
quite large and strong enough to fight off infection. Therefore,
they tolerate surgeries; their joint tissues are large enough to
undergo surgery and wear mechanical devices. In addition,
rabbits are easier to operate and cheaper than large animals,
such as pigs and sheep.

Surgical induction models are mainly used for tissue
engineering, stem cell transplantation, and local growth factor
treatment studies (Ying et al., 2013; Embree et al., 2016; Tarafder
et al., 2016; Wang KH. et al., 2017). Embree et al. (2016)
discovered that resident fibrocartilage stem cells (FCSCs)
localized within the fibrous layer possess potent chondrogenic
and osteogenic potential. Additionally, they suggested that
regulation of canonical Wnt signals can sustain FCSC pool
and maintain tissue homoeostasis, which provide new
concepts on the development of potential therapies for TMJ
regeneration. Before these regenerative strategies can be
applied to humans, future studies using preclinical animal
models are still required to include long-term cartilage and
bone structure recovery, as well as biomechanical analyses, to
verify that functional joint recovery is achieved. Therefore,
surgical induction models are more suitable for osteochondral
interface repair investigations, given the directly damaged TMJ
structure.

One problem with many invasive models, however, is that
they only operated on one side of the TMJ and use the other
side as controls (Shinoda et al., 2005; Embree et al., 2015;
Lemos et al., 2016). Unlike most other synovial joints, TMJ is
bilaterally linked, and mastication, mouth opening, and other
actions need to be completed together. Therefore, when using
unilateral intervention methods, the influence on the other
joint should be considered (Cohen et al., 2014). In recent
years, various methods have been improved to create models
while preserving as much tissue as possible in TMJ to prevent
the effect of the surgical procedure on animals (Gu et al., 2006;
Nguyen et al., 2020). In addition, different surgical
approaches used in the same model will cause different
pathological changes. Therefore, further studies on invasive
models are needed in the future to achieve better model
establishment.

Non-Invasive Models
Non-invasive models cause joint injury by applying external
mechanical force, high fat diet, or mental stimulation without
causing open trauma or articular capsule damage. In this way, the
model-building process is completely sterile, and the effect of the
invasive models on remaining joint tissues is eliminated. In
addition, no surgical procedures are required on animals
because such models mainly use mechanical devices to assist
modeling.

Mechanical Loading Models
Appropriate stress stimulation can promote chondrocyte
proliferation and extracellular matrix synthesis. However,
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when damage caused by mechanical loading exceeds the joint’s
ability to repair itself, the affected joint would suffer damage, and
even develops into OA (Tanaka et al., 2008; Liu et al., 2021). The
functional movement and biomechanical loading of TMJ are
closely related to occlusion. Abnormal dental occlusion is one of
the potential causes of TMJOA, which includes severe
malocclusion and skeletal jaw asymmetry. Thus, the TMJOA
models can be built by disordered occlusion, which is the TMJ-
specific model-building approach, including orthodontic tooth
movement (Wang Q. Y. et al., 2012; Zhang et al., 2013), unilateral
anterior crossbite (Wang Y. L. et al., 2014; Zhang et al., 2016; Liu
J. et al., 2020), unilateral bite-raise (Long et al., 2019; Ou et al.,
2021), mandibular movement restriction (Teramoto et al., 2003;
Li et al., 2013), mandibular advancement (Yang et al., 2020; Li Y.
et al., 2021), and mandibular lateral deviation (Zhao et al., 2010;
Zou et al., 2022). Injury to the TMJ can be caused by indirect force
to the mandible, which may lead to local pain, dislocation, or
fracture, even TMJOA. Thus, impact loading can be used to
establish the TMJOA model (Wang et al., 2008). Mastication
provides a crucial mechanical stimulus for jawbone remodeling.
Sufficient loading is important in maintaining the appropriate
proliferation of chondrocytes and matrix production in the
condyle. Thus, muscle overuse or underuse, such as forced-
jaw-opening (Fujisawa et al., 2003; Nicoll et al., 2010; Khurel-

Ochir et al., 2021) and soft diet (Ikeda et al., 2014; Robinson et al.,
2019), can be used to establish TMJOA models by affecting the
metabolism of the condyle. The above models simulated TMJOA
caused by occlusal factors in clinical patients (Table 4).

The most common animals used for mechanical loading
models are rats (Teramoto et al., 2003; Li et al., 2013; Long
et al., 2019; Yang et al., 2020; Li Y. et al., 2021; Zou et al., 2022),
because rats are common rodents and can tolerate the installation
of mechanical devices. However, due to the significant differences
in occlusal and TMJ structure between rats and human, OA-like
lesions induced by the mechanical loading method are not
completely equivalent to human TMJOA lesions (Wang et al.,
2015). Given the high similarity between mechanical loading
models and human TMJOA caused by occlusal factor, larger
animals with a more similar structure to human TMJ, such as pigs
and sheep, should be used in future studies on pathogenesis.

Currently, mechanical loading models are mainly applied to
study the mechanism of pathological changes in TMJOA (Jiao
et al., 2009; Jiao et al., 2011; Ma et al., 2020; Ou et al., 2021),
probably because this kind of model directly mimics the disease
process in TMJOA patients caused by disordered occlusion. The
pathogenic mechanism of TMJOA in mechanical loading models
has been widely discussed. Zhang et al. (2022) revealed that
elevated expression of SEMA4D in early-stage TMJOA might

TABLE 3 | Surgical induction models of TMJOA animal models.

Surgical Induction
Models

Species Changes of
Condylar Cartilage

Changes in other
parts of TMJ

Molecular Mechanisms

Discectomy Mouse (Liu et al., 2020b; Lan
et al., 2017)
Rat (Hinton, 1992)
Rabbit (Saito et al., 2021)

Cartilage defection
Cartilage matrix
degradation

Subchondral bone
degradation
Diffuse osteochondral
junction

↑ NOTCH1, HES5, TLR4, IL-1 β, TNF-α, ADAMTS-5,
MMP-13 in cartilage; JAGGED-1 in chondrocyte clusters;
NFκB P65, MyD88 in fibrous layer
↓ HES1 in whole condyle

Partial discectomy Mouse (Xu et al., 2009; Lei et
al., 2022)
Rabbit (Man et al., 2009)

Cartilage defection
Cartilage matrix
degradation
Fibrillation

Subchondral bone
degradation
Diffuse osteochondral
junction
Large marrow cavities

↑ DDR-2, MMP-13 in fibrous layer; IFN-γ, pSTAT4 in
condylar cartilage
↓ Aggrecan, Col2a1 in whole condyle

Disc perforation Rat (Luo et al., 2020)
Rabbit (Embree et al., 2015)
Pig (Ruscitto et al., 2020)

Cartilage defection
Cartilage matrix
degradation
Fibrillation
Increased thickness of
cartilage

Articular disc
hyperplasia
Articular disc
calcification
Diffuse osteochondral
junction

↑ RUNX2, BSP in hypertrophic layer; CD31, α-SMA in
cartilage
↓ COL I, COL II in hypertrophic layer

Anterior disc displacement Rat (Togni et al., 2018;
Nguyen et al., 2020)
Rabbit (Xu et al., 2018)

Cartilage matrix
degradation
Cartilage hyperplasia
Cartilage hypoplasia
Osteophytes

Subchondral bone
degradation
Glenoid fossa
degradation
Articular disc deformity

↑ ADAMTS-5 in hypertrophic layer; CHOP, CASPASE-3,
GRP78, Caspase-12 in whole condyle

Injury of condylar surface Sheep (Ishimaru and Goss,
1992; Wang et al., 2017a)

Cartilage matrix
degradation
Endochondral
ossification
Osteophytes

Subchondral bone
degradation
Articular disc
perforation
Glenoid fossa
hyperplasia
Synovial hyperplasia

—

Postero-superior
displacement of mandible

Rabbit (Imai et al., 2001; Liu
et al., 2006)

Cartilage defection
Cartilage matrix
degradation
Osteophytes

Subchondral bone
degradation
Articular disc deformity
Articular eminence
hyperplasia
Fibrous adhesion

—
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decrease the bone formation activity of osteoblasts in the
subchondral bone by binding to PLEXIN-B1 expressed by
osteoblasts. HIF-1, which may repress OPG expression, was
activated in mature chondrocytes in mechanical loading
models, resulting in osteoclastogenesis and development of
TMJOA (Shirakura et al., 2010). He et al. (2018) discovered
several new genes that had never been reported to be associated
with TMJOA by RNA sequencing. These genes may be used as
potential therapeutic genes related to TMJOA. In the future,
attention should be paid to the development of therapeutic
strategies that take full advantage of this model.

High-Fat Diet Models
Obesity is found to be associated with OA. Overweight and
obesity do not only significantly increase the risk of incident

hip and knee OA, but also aggravate its radiographic changes
(Johnson and Hunter, 2014). Studies in experimental animals
have shown that obesity increases the incidence and severity of
OA (Issa and Griffin, 2012). According to the cross-sectional
studies, obesity is also associated with TMJ disease (Jordani et al.,
2017; Karaman and Sadry, 2021). In addition, several chewing
characteristics, such as chewing speed and duration, are
associated with obesity in young adolescents, and they might
affect the development of the TMJ. Therefore, further
investigation is needed to reveal the relationship among jaw
mastication, obesity, and TMJOA.

Griffin et al. (2010) first observed loss of proteoglycans in the
TMJ of C57BL/6J mice with a high-fat diet (45% kcal fat) for
45 weeks. Du et al. (2020) studied the effect of high-fat diet (60%
kcal fat) on TMJ of C57BL/6 mice. Less cartilage matrix, thinner

TABLE 4 | Mechanical loading models of TMJOA animal models.

Mechanical
loading models

Species Changes of Condylar Cartilage Changes in other
parts of TMJ

Molecular Mechanisms

Orthodontic tooth
movement

Rat (Wang et al.,
2012b; Zhang et al.,
2013)

Cartilage matrix degradation
Chondrocyte autophagy in
hypertrophic layer
Endochondral ossification
Osteophytes

Subchondral bone
degradation
Bone remodeling
Osteochondral
angiogenesis

↑ CTXs in serum; RUNX-2, VEGF, CTGF, MMP-9,
CHM-1, M-CSF, RANKL/OPG in hypertrophic layer;
BECLIN-1, LC3-II in whole condyle
↓ OPG, MAP4K3 in hypertrophic layer; p-MTOR, p-
P70S6 K in whole condyle

Unilateral anterior
crossbite

Mouse (Liu et al.,
2020a)
Rat (Wang et al.,
2014b; Zhang et al.,
2016)

Cartilage matrix degradation
Chondrocyte apoptosis in
hypertrophic layer
Mineral deposition

Subchondral bone
degradation
Neomineralization

↑ GRP78, CHOP, CASPASE-12, cleaved-CASPASE-
3, Tnap, Mmp-13 in cartilage
↓ PCNA, COL II, COL X in hypertrophic layer; CD73,
Npp1 in cartilage
ATF6, Derlin-3, MMP-9, TIMP-1, MGP first increase
and then decrease

Unilateral bite-raise Mouse (Ou et al., 2021)
Rat (Long et al., 2019)

Fibrillation
Cartilage matrix degradation
Inflammation

Subchondral bone
degradation

↑ IL-6, TH in hypertrophic layer; IHH, SMO, MMP-13,
CASPASE-3 in proliferative and hypertrophic layers;
GLI-1 in cartilage
↓ TH in fibrous and proliferative layers

Mandibular
movement
restriction

Rat (Teramoto et al.,
2003, Li et al., 2013)

Cartilage matrix degradation
Chondrocyte apoptosis in
hypertrophic layer

Subchondral bone
degradation
Local bone sclerosis
Bone remodeling

↑ BRDU in proliferative layer; Op, PDI, CRT, CHOP,
CASPASE-3, BIP, p-EIF2α in cartilage
↓ COL II, COL X, p-PIN1, TCTP, Runx2 in whole
condyle

Mandibular
advancement

Rat (Yang et al., 2020;
Li et al., 2021b)

Cartilage matrix degradation
Chondrocyte apoptosis

Subchondral bone
degradation
Bone remodeling

↑ MMP-13, CXCR4, SDF-1 in hypertrophic layer;
RUNX2 in cartilage; OSX, p-S6 in subchondral bone
↓ COL II in cartilage

Mandibular lateral
deviation

Rat (Zou et al., 2022)
Rabbit (Zhao et al.,
2010)

Cartilage defection
Cartilage matrix degradation

Subchondral bone
degradation
Myelofibrosis
Bone remodeling

↑ Mmp8, Ifit1, Ifit3, Itgb1, Itgb3, ITGB2, VEGF in
cartilage; nNOS in synovial membrane
↓ Sox9, Itgb4 in cartilage; SOD in synovial membrane

Impact loading Goat (Wang et al.,
2008)

Cartilage defection
Cartilage matrix degradation
Osteophytes

Exposure of
subchondral bone
Synovial hyperplasia
Fibrous adhesion
Articular disc defection

↑MMP-3 in cartilage; TIMP-1 in hypertrophic layer and
synovial membrane
MMP-13 first increase and then decrease

Forced-jaw-opening Mouse (Khurel-Ochir et
al., 2021)
Rat (Nicoll et al., 2010)
Rabbit (Fujisawa et al.,
2003)

Fibrillation
Cartilage matrix degradation
Chondrocyte apoptosis
Increased blood vessel and
multinucleated osteoclasts in
hypertrophic layer

Exposure of
subchondral bone
Bone remodeling
Increased mechanical
sensitivity
Articular disc
degradation

↑ MMP-1, MMP-3, MMP-9, MMP-13, IL-1β,
Caspase-3, VEGF in proliferative and hypertrophic
layers
↓ ACAN in cartilage

Soft diet Mouse (Robinson et al.,
2019)
Rat (Zhang et al.,
2021a)

Cartilage matrix degradation
Chondrocyte apoptosis

Subchondral bone
degradation
Decreased bite force

↑MMP-3, MMP-13 in whole condyle; Prg4 in cartilage
↓ COL 2, Pthrp, Ihh, Col Ⅹ in cartilage
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condylar cartilage, and vertical clefts were observed in overweight
mice after 12 weeks of high-fat feeding. Additionally, they found
that the expression of IL-1β, MMP-3 and leptin were upregulated
in condylar cartilage of high-fat-fed mice. Patients with knee OA
have increased level of serum leptin and the abnormal leptin level
in synovial fluid. Leptins are one of the increased
proinflammatory factors in individuals with obesity (Conde
et al., 2013). This research team also confirmed that statins
had anti-inflammatory effects in TMJOA-like changes and a
protective effect on the damaged TMJ cartilage.

Not only does diet induce obesity-increased OA joint
pathology in mice but also induces anxiety and hyperalgesia,
and reduces muscle function and locomotor activity (Griffin et al.,
2010). Currently, studies only focus on the establishment of high-
fat TMJOAmodel, and more investigations will be required in the
future to reveal the mechanisms involved in obesity-induced
TMJOA.

Sleep Deprivation Models
Osteoarthritis is one of the characteristics of premature aging in
organisms. It is affected by circadian disturbances (Berenbaum
and Meng, 2016). Many studies have shown that psychological
factors, such as sleep disorders, mental stress, and depression,
may be related to TMJ dysfunction (LeResche et al., 2007; Slade
et al., 2007). Therefore, establishment of sleep deprivation models
could be helpful for related studies. This model mainly applies the
modified multiple platform method (MMPM) proposed by
Suchecki and Tufik (2000). The principle of this technique is
to take advantage of the rat’s fear of water and inability to sleep in
water. A certain number of platforms with small diameters
(≤6.5 cm in diameter) are placed in a tank filled with water.
The rats can stand on the platform and jump between the
platforms. When the rats are about to sleep, their muscles
relax and their faces would touch the water, which could
awake them to achieve the goal of sleep deprivation in rats.

Chen et al. (2013) first showed that the surface of fibrous layer
was cracked and exfoliated in sleep-deprived rats, compared with
control rats, suggesting that sleep deprivation may lead to
histopathological changes in the TMJ of rats. Chen et al.
(2020) then successfully built a TMJOA model by using a
similar model and demonstrated that sleep deprivation could
induce OA-like lesions in TMJ of rats, and the OA-like lesions
may be reversible in the early stage. Additionally, they found that
rhythmic gene expression dysregulation in sleep deprivation
models, which further leads to MAPK/ERK signaling pathway
activation and then aggravates TMJOA. Chen Y. et al. (2019)
indicated that hypoxia played an important role in TMJOA and
accelerated angiogenesis of condylar cartilage through the HIF-1-
VEGF-Notch signaling pathway. These studies may provide new
insights into the clock gene mechanism of endochondral
homeostasis and the complex pathophysiological mechanism
of TMJOA.

Currently, this model only applies to rats, and the therapeutic
effect of low intensity pulsed ultrasound (LIPUS) on this model
has been studied. Liang et al. have found that LIPUS had a good
treatment effect on early TMJ injury by regulating the MMP-3/
TIMP-1 and RANKL/OPG expression ratios in cartilage tissues,

and have demonstrated that LIPUS treatment at an intensity of
45 mW/cm2 for at least 2 weeks is the optimal regimen for
TMJOA in rats (Liang et al., 2019; Liang et al., 2020). Given
the difficulty of using humans as participants to advance this
study, the establishment of an experimental animal model of
TMJOA is necessary to further study the pathogenesis of TMJOA
under psychological stress, especially in studies for testing clinical
treatment and exploring better medications.

Naturally Occurring Models
Some animals develop OA-like lesions with slow progression,
which is very similar to the disease progression of primary OA in
humans. Therefore, such models are often referred to as naturally
occurring models. Studies have shown that STR/Ort (Kumagai
et al., 2015; Yamashita-Futani et al., 2021), STR/IN (Dreessen and
Halata, 1990), SAMP8 (Ishizuka et al., 2014), C57BL/6S (Fukuoka
et al., 1993), C57BL/6J (Cui et al., 2020), C57BL/6NCrSlc (Ukita
et al., 2020), ICR (Silbermann and Livne, 1979; Livne and
Silbermann, 1986) mice, Dunkin-Hartley guinea pigs (Wu
et al., 2016), and horses (Smyth et al., 2019) all manifest OA-
like lesions with increasing age, among which multiple subtypes
of SAM mice can develop OA-like lesions in TMJ (Chen et al.,
1989) (Table 5). Yamashita-Futani et al. (2021) found in STR/Ort
mice that the production of elastin-digested peptides was related
to the upregulation of pro-inflammatory mediators, such as IL-6
and MMP-12. IL-6 induced the expression of ADAMTS-4 and
ADAMTS-5 in chondrocytes, following cartilage degradation.
OA lesions also appeared in articular cartilage of C57B/6S
mice and were correlated to increased levels of collagen-like
peptidase and prolyl endopeptidase in the serum, which
indicated collagen degradation (Fukuoka et al., 1993). Ishizuka
et al. revealed that a downregulation of IHH signaling
accompanies the early onset TMJ degeneration changes in
senescence-accelerated mice (Ishizuka et al., 2014). Naturally
occurring models are ideal for studying cartilage degradation
and bone remodeling in TMJOA and can provide evidence for the
study of pathogenesis of TMJOA at different ages. The induced
model-building methods can also be used to cause diseases in
such animals, which can naturally result in TMJOA to study the
effect of external stimulus during the disease course of primary
TMJOA.

The naturally occurring models have slow disease progression.
Like the spontaneous OA-like lesions in human TMJ, naturally
occurring models do not require invasive procedures to generate
the arthritis, thus eliminating many potential side effects. They
are thought to be closely related to the natural progression of
TMJOA in humans, which are inapplicable for simulating the
development of post-traumatic TMJOA. Since obtaining the
articular cartilage samples of TMJOA in humans is difficult,
naturally occurring models have gradually served as important
models for the study of pathogenesis of OA. The underlying
mechanisms that drive the onset and progression of spontaneous
TMJOA in these animals are not well defined and may reflect
specific subtypes of idiopathic human TMJOA. Currently, few
studies have been conducted on this type of model. Due to the
extremely long study period and high cost, most of these studies
focus on the etiological mechanism.
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Genetically Modified Models
The use of genetically modified mice has greatly improved our
understanding of the precise molecular pathophysiology and
therapies of many human diseases (Little and Hunter, 2013).
In the field of TMJOA, specific genetic modifications are made to
the mice to reveal the role of different genes in TMJ development
or disease processes. Unlike invasive animal models, genetically
modified models can provide biological information for a
population that is prone to developing TMJOA. Since genetic
and environmental factors can be precisely controlled, this kind
of model has the potential to reveal molecular pathways involved
in the progressive degeneration of TMJ.

Preclinical studies of genetically modified mice have increased
over the past two decades, making them the best candidate
models for the study of the molecular pathway involved in
TMJOA (Table 6). The genes involved in this review can be
divided into three main categories. The first group mainly
maintained chondrocyte homeostasis; they include
transcription factors or signaling regulators (β-catenin, Hif-1α,
Opg, Smad3, Runx2, Osx, Bmp2, Tgf-β1, Axin1, Shox2), enzymes
[1α(OH)ase, Dnmt3b], and receptors (Fgfr3, Bmpr1α, Ddr1,
Ddr2). Genes that participate in joint inflammation are the
second group, including cytokine (Il-1β), receptor (Il-1βra)
and enzyme (Adamts5). The third group includes genes
encoding for extracellular matrix components (Col2a1, Col9a1,

Col11a1, Prg4, Bgn, Fmod, Dmp1). The genes and gene products
identified in genetically modified models as decreasing or
increasing the severity of TMJOA-associated cartilage erosion
can all be considered potential therapeutic targets. Appropriate
inhibitors of these proteins and activators or recombinant
versions may lead to the development of new therapies, which
need to be further investigated.

Xu et al. found increased expression of DDR2 and increased
level of proteoglycans in early TMJOA in both Col9a1−/− and
Col11a1−/− mice (Lam et al., 2007). Over time, the chondrocytes
synthesize and release matrix-degrading enzymes that degrade
proteoglycans. One of the consequences of proteoglycan
degradation is to enhance the exposure of chondrocytes to
type II collagen fibrils, which may result in the activation of
DDR2. The activation of DDR2 induces the expression of MMP-
13, which then cleaves type II collagen. This eventually leads to
the irreversible destruction of the articular cartilage. Therefore,
chondrocyte clusters and increased proteoglycan production in
the pericellular matrix have also been identified as early OA
indicators.

Although the mouse models cannot simulate the
biomechanical function of human joints, it is a major option
for molecular studies. This is due to the advances in mouse
genetics, and the easy availability of genetically modified mice,
allowing the evaluation of time-dependent changes in TMJOA

TABLE 5 | Naturally occurring models of TMJOA animal models.

Strain of animals Age of
Onset

Changes of Condylar
Cartilage

Changes in other parts of TMJ Molecular Mechanisms

STR/Ort mice (Kumagai et al., 2015;
Yamashita-Futani et al., 2021)

40-
week-old

Cartilage defection
Cartilage matrix
degradation

Subchondral bone degradation
Subchondral bone resorption
Intramembranous ossification

↑ MMP-12 in cartilage; IL-6, ADAMTS-4,
ADAMTS-5 in subchondral bone

STR/IN mice (Dreessen and Halata,
1990)

36-
week-old

Cartilage defection
Cartilage matrix
degradation
Increased lysosomes in
chondrocytes

Glenoid fossa degradation
Synovial metaplasia
Decreased lower joint cavity
No inflammation in synovial
membrane

—

SAMP8 mice (Ishizuka et al., 2014) 16-
week-old

Cartilage matrix
degradation
Increased thickness of
cartilage

— ↓ Col1a1, Col2a1 in cartilage; Col10a1, Ihh, Gli1,
Gli2, Ptch1, Hip in whole condyle

C57BL/6S mice (Fukuoka et al., 1993) 12-
week-old

Cartilage defection
Cartilage matrix
degradation
Osteophytes

Subchondral bone degradation
Synovial hyperplasia

↑ CL-peptidase, PEP in serum

C57BL/6J mice (Cui et al., 2020) 45-
week-old

Cartilage defection
Cartilage matrix
degradation

Subchondral bone degradation
Bone remodeling

↑ MMP-13, COL Ⅹ in cartilage; P16ink4a,
pSMAD3, CTSK in subchondral bone
↓ COL I, RUNX2, OSX in subchondral bone

C57BL/6NCrSlc mice (Ukita et al., 2020) 80-
week-old

Cartilage defection
Cartilage matrix
degradation

Subchondral bone degradation ↓ H3K9Me1, H3K9Me2, H3K9Me3 in
hypertrophic layer

ICR mice (Silbermann and Livne, 1979;
Livne and Silbermann, 1986)

28-
week-old

Cartilage defection
Cartilage matrix
degradation

Subchondral bone degradation
Focal ankylosis between condyle
and articular disc

—

Dunkin-Hartley guinea pigs (Wu et al.,
2016)

12-
week-old

Cartilage matrix
degradation

Large marrow cavities
Bone remodeling
Glenoid fossa remodeling

↑ CAD-11, MMP-3 in proliferative and
hypertrophic layer of cartilage
↓ COL II in proliferative and hypertrophic layer of
cartilage

Horses (Smyth et al., 2019) — Cartilage matrix
degradation

Articular disc degradation
Articular disc metaplasia

—
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TABLE 6 | List of genes of genetically modified models.

Protein Mice model Changes of Condylar
Cartilage

Changes in other parts
of TMJ

Molecular Mechanisms

Genes encoding regulators of chondrocyte homeostasis

Beta cadherin associated
protein

β-catenin(ex3)Col2ER (Wang
et al., 2014a)

Cartilage defection
Cartilage defection

Subchondral bone sclerosis
Decreased joint space

↑ COL X in hypertrophic layer; RUNX2,
Mmp-13, Adamts-4, Adamts-5 in cartilage
↓ COL II in hypertrophic layer

β-catenin(ex3)Agc1CreER

(Hui et al., 2018)
Cartilage matrix
degradation
Endochondral ossification
Chondrocyte apoptosis

Subchondral bone sclerosis ↑ MMP-13 in fibrous, hypertrophic layer
and articular disc; COL X in cartilage;
ADAMTS-4, ADAMTS-5 in fibrous layer
↓ PCNA in cartilage; KI67 in proliferative
layer

Hypoxia-inducible transcription
factor 1α

Hif-1α+/- (Mino-Oka et al.,
2017)

Cartilage matrix
degradation
Cartilage matrix
degradation

— ↑ MMP-9, cleaved-CASPASE-3 in
hypertrophic layer
↓ ACAN, VEGF, Vegf in condyle

Hif-1αfl/fl; ctsk cre+ (Tang
et al., 2020)

Cartilage defection
Cartilage defection

Decreased osteogenesis and
angiogenesis in subchondral
bone

↑ CASPASE-3 in cartilage; OCN in
subchondral bone
↓ COL II, COL X in hypertrophic layer;
VEGF, CD31, TRAF5, Ctsk in cartilage;
MMP-9 in subchondral bone

Osteoprotegerin Opg-/- (Chen et al., 2019a) Cartilage matrix
degradation
Increased chondrocyte
apoptosis
Decreased chondrocyte
proliferation

Subchondral bone
degradation
Diffuse osteochondral junction

↑ COL X in cartilage

Mothers against
decapentaplegic homolog 3

Smad3-/- (Mori et al., 2015) Fibrillation
Cartilage matrix
degradation
Chondrocyte apoptosis

Subchondral bone
degradation

↑ MMP-9, MMP-13, CASPASE-3,
CASPASE-9 in cartilage
↓ p-SMAD3 in fibrous layer; COL II, ACAN,
SPHK1, S1P3 in cartilage

Runt-related transcription
factor-2

Runx2fl/fl; Agc1-CreER
(Liao et al., 2019)

Cartilage defection
Cartilage matrix
degradation

— ↓ COL X, PCNA, IHH in hypertrophic layer;
Mmp-13, Col2a1, Acan in cartilage

Osterix Osxfl/fl; Agc1-CreER (Jing
et al., 2014a)

Cartilage defection
Increased cartilage matrix
Decreased proliferation and
apoptosis

Subchondral bone
degradation
Diffuse osteochondral junction
Intramembranous ossification

↑ COL II, COL X, ACAN, SOX9 in
hypertrophic layer
↓ VEGF, DMP1 in subchondral bone

Bone morphogenetic protein 2 Bmp2fl/fl;Agc1-CreERT2

(O’Brien et al., 2021)
Cartilage matrix
degradation

Decreased mineralization
Decreased bone remodeling

↑ AMADTS-4, MMP-13 in cartilage

Transforming growth factor β1 Tgf-β1 mutant (Jiao et al.,
2014)

Cartilage defection
Cartilage matrix
degradation

Subchondral bone
degradation
Local sclerosis in subchondral
bone
Subchondral bone resorption

↑ VEGF, MMP-9, MMP-13, CASPASE-3 in
hypertrophic

Axis inhibition protein 1 Axin1Agc1ER (Zhou et al.,
2019b)

Cartilage defection
Cartilage matrix
degradation
Increased chondrocyte
apoptosis
Decreased chondrocyte
proliferation

Subchondral bone sclerosis ↑ MMP-13, ADAMTS-5 in superficial layer;
CATNB, Col10a1, Fgfr1, Fgfr2, Fgfr3,
pERK1/2 in cartilage
↓ COL X in cartilage; Prg4, PCNA in
superficial layer

Short stature homeobox 2 Wnt1-Cre; pMes-stop
Shox2 (Li et al., 2014b)

Cartilage dysplasia Glenoid fossa dysplasia
Chondrocyte apoptosis in
glenoid fossa

↑ MMP-9, MMP-13 in cartilage
↓ COL I in glenoid fossa; COL II, IHH, GLI2
in condyle

Shox2SHOX-KI/KI (Li et al.,
2014c; Liang et al., 2016)

— Chondrocyte apoptosis in
articular disc

↑ MMP-9, MMP-13 in articular disc; COL I,
MMP-9, MMP-13 in condyle
↓ COL I, ACAN in articular disc; IHH, COL II
in condyle

1α-hydroxylase 1α(OH)ase-/- (Shen et al.,
2013)

Cartilage defection
Cartilage matrix
degradation
Chondrocyte apoptosis

Subchondral bone
degradation
Subchondral bone resorption

↑ 8-OHDG, γH2AX, β-GAL, p16INK4A, Il-1α,
Il-1β, Il-6, Mmp-3, Mmp-13, Adamts-5,
Ctsk, IL-1α, IL-1β, IL-6, MMP-3, MMP-13 in
cartilage
↓ COL II in cartilage

—

(Continued on following page)

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 85951711

Zhao et al. Animal Models of Temporomandibular Joint Osteoarthritis

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


TABLE 6 | (Continued) List of genes of genetically modified models.

Protein Mice model Changes of Condylar
Cartilage

Changes in other parts
of TMJ

Molecular Mechanisms

DNA (cytosine 5)-
methyltransferase 3 beta

Dnmt3bfl/fl; Agc1-CreERT2

(Zhou et al., 2019a)
Cartilage defection
Fibrillation
Cartilage matrix
degradation

↑ KI67, COL X, CATNB in cartilage
↓ COL II in cartilage

Fibroblast growth factor
receptor 3

Fgfr3P244R (Yasuda et al.,
2012)

Cartilage defection
Cartilage matrix
degradation

Subchondral bone resorption
Articular disc fusion to the
temporal bone

↓ Ihh, Ptch1, H4C, Col2a1, Col10a1 in
cartilage; Col1a1, Mmp-13 in subchondral
bone; Ihh, Col1a1, Op in secondary
cartilage

Fgfr3fl/fl; Col2a1-CreERT2

(Zhou et al., 2016)
Cartilage defection
Cartilage matrix
degradation
Chondrocyte apoptosis

Subchondral bone sclerosis
No change in bone remodeling

↑ COL X, MMP-13, ADAMTS-5 in fibrous
layer; IHH, RUNX2 in cartilage
↓ PRG4 in fibrous layer

Bone morphogenetic protein
receptor-1A

Bmpr1afl/fl; Agc1-CreER

(Jing et al., 2014b)
Cartilage disappear and
then appear
Decreased chondrocyte
proliferation

Subchondral bone sclerosis ↓ COL II, COL X, SOX9, in cartilage; OSX in
subchondral bone

Discoidin domain receptor 1 Ddr1-/- (Schminke et al.,
2014)

Cartilage defection
Fibrillation
Cartilage matrix
degradation

Subchondral bone
degradation

↑ COL I, COL IX, Col10a1, Runx2 in
cartilage
↓ COL II, NID-2, Col3a1, Acan, Sox-9 in
cartilage

Discoidin domain receptor 2 Ddr2slie/slie (Ge et al., 2018) Cartilage defection
Cartilage matrix
degradation

Subchondral bone
degradation
Delayed mineralization in
glenoid fossa and subchondral
bone

—

Genes encoding inflammation mediators

Interleukin-1β Col1-Il-1βXAT (Lai et al.,
2006; Huang et al., 2013)

Cartilage defection
Fibrillation
Cartilage matrix
degradation

Presence of pain ↑ COL II, MMP-9, IL-6, COX-2, TGF-β in
hypertrophic layer; NGF, TRKAR in
cartilage

Il-1βra-/- (Tabeian et al.,
2019)

Cartilage matrix in fibrous
layer first increase and then
decrease

Subchondral bone
degradation

—

A disintegrin and
metalloproteinase with
thrombospondin motifs 5

Adamts5-/- (Rogers et al.,
2018; Rogers-DeCotes et
al., 2021)

Cartilage matrix
degradation
Chondrocyte apoptosis in
hypertrophic layer

Subchondral bone
degradation
Bone marrow infiltration

↑ ACAN in cartilage
↓COL II, COL X in hypertrophic layer; Sox9,
MMP-13 in cartilage; BGLAP in
subchondral bone

Genes encoding components of the extracellular matrix

Type II collagen Dmm/+
(Ricks et al., 2013; Long et
al., 2016)

Cartilage defection
Cartilage matrix
degradation

Diffuse osteochondral junction ↑ TGF-β1, p-SMAD2, HTRA1 in
chondrocytes; MMP-13, DDR2 in cartilage

Del1 mice (Rintala et al.,
1997)

Cartilage defection
Cartilage matrix
degradation

Subchondral cysts
Fibrous adhesion
Diffuse osteochondral junction

—

Type IX collagen Col9a1-/- (Lam et al., 2007;
Polur et al., 2010)

Cartilage defection
Fibrillation
Cartilage matrix
degradation

— ↑HTRA1, MMP-13 in fibrous layer; DDR2 in
cartilage; MMP-derived type II collagen
fragments in fibrous layer

Type XI collagen Col11a1+/- (Lam et al.,
2007; Polur et al., 2010;
Long et al., 2016)

Cartilage defection
Fibrillation
Cartilage matrix
degradation

— ↑HTRA1 in fibrous layer; DDR2, MMP-13 in
cartilage; TGF-β1, p-SMAD2, HTRA1 in
chondrocytes; MMP-derived type II
collagen fragments in superficial layer

Proteoglycan-4 Prg4-/- (Hill et al., 2014;
Koyama et al., 2014)

Cartilage defection
Cartilage matrix
degradation
Fibrillation

Subchondral bone resorption
Articular disc hyperplasia
Synovial hyperplasia
Synovial infiltration

↑COL II, COL X in hypertrophic layer; CTSK
in subchondral bone; SOX-9 in cartilage;
HAS-2 in cartilage, glenoid fossa, and
synovial membrane

Biglycan Fibromodulin Bgn-/-; Fmod-/- (Wadhwa
et al., 2005; Embree et al.,
2010)

Cartilage defection
Chondrocyte apoptosis
Osteophytes

Articular disc disruption
Osteophytes in glenoid fossa

↑ COL I, COL II in fibrous layer
↓ ACAN in cartilage
PCNA first decrease and then increase

Dentin matrix protein 1 S89G-DMP1 mice (Weng
et al., 2017)

Subchondral bone
degradation

↑ MMP-13, CASPASE-9 in cartilage
↓COL I, COL II, ACAN, DCN, SOX9, PCNA,

(Continued on following page)
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after specific genetic modifications. Moreover, genetically
modified models have the virtue of eliminating other
interferences to allow researchers directly observe how
individual genes influence the process of TMJOA at the
genetic level. Consequently, this kind of model facilitates the
study and establishment of the molecular basis for TMJOA
development. However, multiple genes are generally implicated
in the pathogenesis of human TMJOA (Pitsillides and Beier,
2011), whereas genetically modified models mainly act on specific
genes. Therefore, this model cannot comprehensively simulate
the situation of TMJOA induced by multi-gene interaction. As
with naturally occurring models, researchers need consider the
lengthy experimental time and the cost of housing these animals.

CURRENT ANIMALS USED IN
TEMPOROMANDIBULAR JOINT
OSTEOARTHRITIS RESEARCH
Animal models are the primary means of testing potential
therapeutic agents to determine their potential efficacy in
TMJOA. However, existing animal models are inadequate to
simulate complex clinical conditions. On the one hand, most
animal models of TMJOA are single-factor models, which only
simulate one specific pathogenic factor of clinical patients. On the
other hand, most animal models are characterized by histological
phenotypes and a few key molecular markers of TMJOA. Many
models mimic the phenotype, but the similarity to the underlying
molecular components of human TMJOA is typically not known.

As mentioned earlier, rodents are the most frequently used
animals for TMJOA modeling. The primary disadvantages of
these models are related to differences in anatomical structure
and joint mechanics between these species and humans. The
mandibular condyles of rodents extend antero-posteriorly,
whereas in humans, the direction is lateromedial (Bermejo
et al., 1993). The anterior-posterior axial length of the condyle
is about 5 mm in rats and about 10 mm in rabbits, both of which
were much smaller than that in humans (Orset et al., 2014;
Monteiro et al., 2021). Moreover, the condyle axis is sagittal in
rodents for propulsion movement, whereas it is transversal in
humans for tridimensional motions, including opening,
deduction, and propulsion (Orset et al., 2014). Some
differences in disease expression between animal and human
remain inexplicable. Unlike in humans, the incidence and severity
of TMJOA is higher in male mice than in female mice (Silberberg
and Silberberg, 1963). Even so, the advantages of small animal
models include relatively low cost, ease of handling, more rapid
disease progression, and availability of housing. As a result, they

have been particularly popular for evaluating new therapeutic
interventions and investigating the pathological process of
TMJOA.

The advantage of large animal models is that they are
anatomically similar to humans, particularly in joint size and
cartilage thickness. Pigs have been regarded as the most suitable
experimental model for human TMJ due to their similar condyles,
articular disc, and mechanical properties to those of humans
(Herring et al., 2002; Sun et al., 2002). However, disadvantages of
large animal models are primarily related to the high costs, long
maturation periods, and slow disease progression. Due to the
rapid progress of TMJOA in small animals, the TMJ in small
animals can be used for screening of potential therapeutics. The
efficacy of drugs in small animals may not accurately reflect the
efficacy observed in human TMJOA. Therefore, the TMJs from
large animals, such as pigs and sheep, are still needed for
preclinical studies to evaluate the clinical processes and their
treatment in TMJOA. Despite various problems, animal models
are still irreplaceable at least in the study of the pathology and
progression of TMJOA rather than the etiology of TMJOA.

DISCUSSION

Animal models of TMJOA are important tools for studying the
pathogenesis of TMJOA and evaluating potential therapeutic
interventions. The value of these models mainly depends on
how well they correspond with human disease. Various methods
are used to build disease models of TMJOA, but each kind of
model has its limitations. For each new study, considering the
application of each model may help guide model selection.
Different animal models could induce different TMJOA
lesions. For example, chemical models can be used for the
study of pain mechanisms; surgical models may be optimal for
therapeutic study. Mechanical models may be appropriate for the
study of pathogenesis; naturally occurring models would provide
best models for studying aging phenotype; and genetically
modified models are required for research of specific genes.

Animal models of OA can be classified into five categories:
naturally occurring, genetically modified, surgically induced,
chemically induced, and non-invasive animal models
(Lampropoulou-Adamidou et al., 2014; McCoy, 2015). Some
laboratory animals, such as certain strains of Syrian hamsters,
dogs and cynomolgus macaques can develop OA spontaneously.
These animals have not been used in studies of TMJOA yet.
Since the anatomical structure and physiological composition of
other synovial joints are different from those of the TMJ, most
surgically induced models and non-invasive models cannot be

TABLE 6 | (Continued) List of genes of genetically modified models.

Protein Mice model Changes of Condylar
Cartilage

Changes in other parts
of TMJ

Molecular Mechanisms

Cartilage defection
Cartilage matrix
degradation

Chondrocyte apoptosis in
subchondral bone

Tgfb1, Alk1, Alk5, Smad1, Smad2, Smad3,
Smad5, Smad9 in cartilage
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applied to the modeling of TMJOA. Among them, impact
loading has been applied to TMJ and successfully induced
OA-like lesions in TMJ (Wang et al., 2008). In addition to
the five drugs used for intra-articular injection models,
quinolone and carrageenan are commonly used in other
synovial joints to induce OA (McCoy, 2015). These drugs
can be used to induce TMJOA in the future.

Age is one of the strongest risk factors for OA. The incidence and
severity of TMJOA increase with age (Haskin et al., 1995). In
contrast, most preclinical studies are conducted in young animals.
For example, in the most widely used rat model of TMJOA, namely
unilateral anterior crossbite (UAC), mechanical loading is usually
performed on 6-8-week-old rats. However, comparison of 6-week-
old and 28-week-old rats revealed that age affects the basal pattern of
gene expression in joint tissues. When UAC is performed on 28-
week-old rats, the ensuing TMJOA is more severe than in young rats
(Zhang Y. et al., 2021). Since OA-like lesions occurr spontaneously
with age in naturally occurring models, various induction methods
can be used on these animals to study how other stimulus and aging
synergistically affect TMJ.

Reports on the prevalence of TMJOA have shown significant
gender differences (Zhao et al., 2011; Li et al., 2020). Its
preponderance in women and early onset during
reproductive years according to epidemiological research are
totally different from the epidemiological characteristics of
other joints, such as in knee OA, which primarily happens to
postmenopausal women (Zhao et al., 2019; Dai et al., 2020).
Severe TMJOA has been reported in young females whose blood
oestrogen levels were medically low (Gunson et al., 2009), thus
the relationship between TMJOA and oestrogen has attracted
much attention. Studies have shown that oestrogen has an
important effect on bone and cartilage metabolism.
Oestrogen can regulate the secretion of cytokines and affect
some key metabolic pathways to regulate bone and cartilage
metabolism (Wang Q. P. et al., 2012). Several animal studies
have confirmed that oestrogen deficiency leads to cartilage
degeneration in the condyle, and results in more severe
TMJOA-like lesions in the presence of mechanical stress
stimulation (Nogami et al., 2020; Zhang J. et al., 2021). More
studies are needed to further explore the role of oestrogen in the
pathogenesis of TMJOA and related molecular mechanisms.

Notably, TMJOA involves not only cartilage but all the joint
tissues; therefore, analysis of cartilage and periarticular tissues is
recommended in vivo studies. Most of the studies evaluated
cartilage degeneration and bone reconstruction by histology,
histomorphometry, and immunohistochemistry. Only few
studies analyzed the changes in articular disc, synovial
membrane, and temporal surface. Therefore, the pathological
changes in the whole joint should be studied to understand the
etiological mechanism of TMJOA from a comprehensive
perspective.

Over the past 40 years, TMJOA animal models have
undoubtedly improved our understanding of the
pathophysiology of the disease and contributed to the
development of disease-modifying therapies. This review
presents an overview of animal models used to study
TMJOA, as well as the usefulness, histopathological changes,
and scope of application of each model and current animals
used in TMJOA research. Although many methods are used to
build disease models, no single ideal animal model has been
established for the comprehensive study TMJOA. This is
because current models are mostly single-factor models,
which cannot fully reflect the etiology and progression of
TMJOA. In the future, the modeling approach should be
improved, and more multi-factor models should be
established to provide more suitable animal models for
further study of TMJOA.
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