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Abstract
In patients at high risk of respiratory complications, pulse oximetry may not adequately detect hypoventilation events. Previ-
ous studies have proposed using thermography, which relies on infrared imaging, to measure respiratory rate (RR). These 
systems lack support from real-world feasibility testing for widespread acceptance. This study enrolled 101 spontaneously 
ventilating patients in a post-anesthesia recovery unit. Patients were placed in a 45° reclined position while undergoing pulse 
oximetry and bioimpedance-based RR monitoring. A thermography camera was placed approximately 1 m from the patient 
and pointed at the patient’s face, recording continuously at 30 frames per second for 2 min. Simultaneously, RR was manually 
recorded. Offline imaging analysis identified the nares as a region of interest and then quantified nasal temperature changes 
frame by frame to estimate RR. The manually calculated RR was compared with both bioimpedance and thermographic 
estimates. The Pearson correlation coefficient between direct measurement and bioimpedance was 0.69  (R2 = 0.48), and 
that between direct measurement and thermography was 0.95  (R2 = 0.90). Limits of agreement analysis revealed a bias of 
1.3 and limits of agreement of 10.8 (95% confidence interval 9.07 to 12.5) and − 8.13 (− 6.41 to − 9.84) between direct 
measurements and bioimpedance, and a bias of −0.139 and limits of agreement of 2.65 (2.14 to 3.15) and − 2.92 (− 2.41 
to 3.42) between direct measurements and thermography. Thermography allowed tracking of the manually measured RR 
in the post-anesthesia recovery unit without requiring patient contact. Additional work is required for image acquisition 
automation and nostril identification.
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1 Introduction

Multiple components of general anesthesia affect respiratory 
function, including neuromuscular blockade [1], the use of 
volatile anesthetic agents [2, 3], and opioids [4]. Respiratory 
compromise is a major cause of morbidity in the post-anes-
thesia care unit (PACU) [5, 6], and prevention requires early 
detection of critical respiratory events for prompt treatment; 

it also requires risk-stratification to guide appropriate dispo-
sitions after the patient leaves the PACU (e.g., intensive care 
unit versus step-down). Bioimpedance is the current stand-
ard technique for measuring respiratory rate (RR) in clinical 
settings. It applies a voltage across the thorax and measures 
the current (and hence resistance) that passes through the 
thorax. Because air, muscle, bone, and blood all have dif-
ferent resistances, changes in the chest cavity dimensions 
affect changes in measured resistance, and these changes are 
used to estimate the RR. Bioimpedance-based measurements 
have several disadvantages: they do not actually measure 
gas exchange, they require patient contact, and they can be 
affected by electrode position-related errors, among other 
causes of error.

Previous authors have postulated that thermography 
may be used to measure RR in lieu of bioimpedance [7]. 
Thermographic RR measurements rely on the concept of 
temperature change in the air occupying breathing path-
ways. With each inspiration and expiration, gas at room air 
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temperature cools the nose and mouth to room temperature 
(or close to it), and warm air at body temperature heats the 
nose and mouth. Thermographic imaging devices capture 
these cyclical oscillations in temperature. Thermography has 
two advantages over bioimpedance-based measurements: it 
does not require patient contact, and it relies on actual gas 
exchange instead of chest wall movements. This study deter-
mined the accuracy of thermographic estimates of RR in a 
population of post-surgical patients, using direct visualiza-
tion as the gold standard.

2  Methods

2.1  Background

This observational study was conducted in accordance with 
the Declaration of Helsinki, and the study protocol was 
approved by the Ethics Committee of the University of Vir-
ginia, VA (IRB No. 21353). It was registered on ClinicalTri-
als.gov (NCT04005911). Data were collected in the PACU 
at the University of Virginia Hospital from April 18 to May 
14, 2019. Inclusion criteria were the ability to give consent, 
age over 18 years, and a planned postoperative stay in the 
PACU. We excluded patients using oxygen masks since ther-
mographic detection through a mask might be inadequate. 
Investigators obtained verbal consent from spontaneously 
ventilating patients who were using nasal cannulas or no 
supplemental oxygen and who were alert enough to under-
stand the risks and benefits of the study. One hundred seven 
patients receiving general anesthesia for non-emergent sur-
gery were enrolled in this study.

2.2  Data acquisition

Investigators observed post-surgical patients monitored with 
a GE Healthcare patient monitor (Chicago, IL, USA) for 
continuous monitoring of vital signs in the PACU, as per 
University of Virginia institutional protocol. A FLIR T450sc 
(FLIR Systems, Sweden) infrared thermography (IRT) 
camera was positioned on a stand approximately 1 m from 
the patient’s face and directed towards the face (Fig. 1). A 
2-min IRT video (temperature scale is adjusted between 
28.2 and 38.2 °C) was recorded while the investigator manu-
ally recorded the RR displayed on the GE monitor and also 
measured the RR by direct visualization using over 1 min 
as the golden standard.

2.3  Data processing

Our approach was based on previous attempts to measure RR 
thermographically in rodents [8] and healthy volunteers [9]. 
Based on the description by Pereira et al. [10], we developed 

a temperature change algorithm and implemented it in Lab-
VIEW vision tools (Ver. 2018, National Instruments, Austin 
TX, USA). The collected data were analyzed offline, using 
a standardized protocol that consisted of the following steps 
(Fig. 2):

1 Manual identification of the nose.
2 Manual creation of a “region of interest” around the 

nose.
3 Playback of the video with extraction of the temperature 

in the region of interest.
4 Calculation of the oscillation rate of the temperature 

waveform. This formed the estimate of the RR (see 
Video, Supplemental Digital Content 1, which demon-
strates a representative scene of the actual application 
of thermographic respiratory measurement).

2.4  Statistical considerations

Because of the pilot nature of this study and the fact 
that there are no previously published confidence inter-
vals  (CIs) around limits of agreement plots to compare 
thermographic RR  measurement with  a gold standard 
(direct observation), we did not conduct a power analysis 
and instead elected to collect data on 100 patients, which is 
a sample size that is somewhat larger than previous stud-
ies. Continuous variables are described as mean ± standard 
deviation (SD) and categorical variables as frequencies 
(%), as appropriate. Student’s t test, the Mann–Whitney U 
test, the chi-square test, or Fisher’s exact test were used for 

Fig. 1  Representative picture of  the  thermal camera setting 
in the post-anesthetic care unit. The patients were closely monitored 
and placed      in a 45° reclined position. All patients laid in the bed 
with an elevated upper body wearing hospital clothing and no jew-
elry. All patients were alert after their surgical procedures. The infra-
red camera was mounted on a tripod, which was positioned at the foot 
of the bed
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between-group comparisons, as appropriate. We analyzed 
the performance of both bioimpedance-derived and ther-
mography-derived RR compared with direct observation 
using correlation and limits of agreement analyses, as has 
been previously recommended [11]. P values < 0.05 were 
considered statistically significant. Statistical analyses were 
conducted using R software, version 3.6.2 (R Foundation for 
Statistical Computing, Vienna, Austria) and SPSS Statistics 
for Windows, version 22 (IBM Corp., Armonk, NY, USA).

3  Results

In total, 107 patients (42 men and 59 women) consented 
to participate in this study. Data from six patients could 
not be analyzed and were excluded, either because the ROI 
(nostrils) was not visible, excessive patient movement, or 

interference with the video footage by the PACU care team, 
all of which interfered with data analysis. The mean age of 
the study sample was 58.5 years (SD 15.8) (Table 1).

The Pearson correlation coefficient between direct meas-
urement of RR and bioimpedance-based measurements 
was 0.69  (R2 = 0.48). The Pearson correlation coefficient 
between direct measurement of RR and thermography-based 
measurements was 0.95  (R2 = 0.90, Fig. 3). Limits of agree-
ment analysis revealed a bias of 1.3 and limits of agreement 
of 10.8 (95% CI 9.07 to 12.5) and − 8.13 (95% CI − 6.41 
to − 9.84) between direct measurements of RR and bioim-
pedance-based measurements. Limits of agreement analysis 
revealed a bias of − 0.139 and limits of agreement of 2.65 
(95% CI 2.14 to 3.15) and − 2.92 (95% CI − 2.41 to 3.42) 
between direct measurements of RR and thermographic esti-
mates of RR (Fig. 4). There were no difficulties in obtain-
ing data from patients with mustaches or nasal prongs. The 

Fig. 2  Representative picture of in-house respiratory monitoring software written in LabVIEW (National Instruments, Austin, TX, USA). Note 
that a transient respiratory pause (16 s) was successfully detected by this toolkit
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demographic characteristics of patients with mustaches 
are shown in Supplementary Table 1, and those of patients 
with nasal prongs are shown in Supplementary Table 2. 
Pearson correlation data are summarized in Supplemen-
tary Fig. 1. The correlation between direct measurement 
of RR and thermography-based measurements was weaker 
among patients with mustaches  (R2 = 0.61 vs.  R2 = 0.90) 
than among those without mustaches, but it was stronger 
than the correlation between direct RR measurements and 
bioimpedance-based measurements. 

4  Discussion

The results of this pilot study suggest that thermography 
has the potential to accurately measure RR in post-surgical 
patients. The accuracy is comparable to direct RR measure-
ments, and thermography may be superior to bioimpedance-
based measurements. There have been increasing demands 
for contactless, unobtrusive, feasible, and reliable tech-
niques for monitoring patient respiration. Infrared thermog-
raphy has emerged as a promising monitoring tool in various 
medical settings, such as fever screening [12], monitoring 
of thermoregulation in neonates [13], and in the PACU but 
only in small numbers (n = 28) [14]. The RR measurement 
algorithm using thermography is based on temperature fluc-
tuations at the region of interest (around the nostrils) during 
the respiratory cycle. Current study has merits in the testing 
the feasibility of thermography technique to applicate in the 
real PACU setting.

The thermographic technique has several disadvantages. 
It requires sophisticated hardware and software and requires 
an unobstructed view of the face. Accurate measurement in 
the setting of significant patient movement as well as with 
facemasks or non-invasive positive pressure devices who are 
higher risk of hypoxia, may not be possible. Unfortunately, 
in this study, some of the thermal videos (6/107, 5.6%) were 
excluded from the analysis for various reasons, such as 
patient movement or obscured nostril visualization. Dif-
ferences in accuracy between “mouth breathers” and “nose 
breathers” remain to be elucidated. Furthermore, additional 
techniques for enhancing RR determination in patients with 

Table 1  Patient demographic and clinical data

Data are presented as mean ± standard deviation or number (percent-
age, %)

Age (years) 58.5 ± 15.8
Sex (male, female) 42 (41.6%) /59 (58.4%)
Operation type
 General surgery 35 (34.7%)
 Orthopedic/neurosurgery 30 (29.7%)
 Urologic/gynecologic surgery 16 (15.8%)
 Dental/Head and neck/Plastic surgery 10 (9.9%)
 Other 10 (9.9%)

Vital signs
 Heart rate (bpm) 77.6 ± 14.1
 Systolic blood pressure (mmHg) 125.7 ± 21.1
 Diastolic blood pressure (mmHg) 66.2 ± 11.1
 SpO2 (%) 97.3 ± 10.5

Mustache 17 (16.8%)
Nasal prong 35 (34.7%)

Fig. 3  Correlation between respiratory rate with a direct measure-
ment vs. thermography  (R2 = 0.895), and with b direct measurement 
vs. bioimpedance  (R2 = 0.483). Note that for two cases, thoracic 

impedance outputs were labeled as “apneic” while the actual meas-
urement were 11 and 14 breaths per minute, respectively
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obstacles (such as mustaches or nasal prongs) to detecting 
the region of interest should be discussed.

It is important to point out that our analysis relied 
on the manual identification of important facial structures 
(nares) and that analyses were performed offline and not in 
real time. However, other authors have demonstrated that 
automated identification and classification of facial struc-
tures is possible [7, 15], opening up the possibility of con-
tinuous, automated, and accurate RR monitoring in patients 
at risk of respiratory depression (including but not limited 
to post-surgical patients) without requiring patient contact. 
Autonomic detection can be achieved using Harr feature-
based cascade classifiers, which are already trained to 
detect facial structures in visual images. In brief, the image 
is learned as the sums of black and subtraction white pixels 
(Harr features). Then, instead of evaluating entire pixels, 
the prevalences of certain critical features are first investi-
gated to focus on the feature of interest. Selected features 
are grouped and evaluated in a staged fashion, with features 
discarded at any failed stage. This method allows for faster 
and more effective detection of the object of interest, but it 
is was trained with visual image, not thermal images [10, 
16]. Therefore, the classifier must be trained again using cur-
rent data. A recent study [17] showed that adding automated 
thermal detection algorithms to contact methods improved 
RR detection compared with the contact method alone. 
However, the feasibility of the automated thermal model 
alone was not clarified.

Despite these shortcomings, thermography-based 
RR monitoring has great potential. First, by measuring 

temperature changes due to airflow, thermographic changes 
are dependent on the cyclic ventilation that occurs dur-
ing respiration. Second, thermography requires no patient 
contact, no disposables, and may be capable of measuring 
groups of patients with one image set. Third, thermographic 
respiratory monitoring may have uses outside the realm of 
perioperative care—potential uses include obstructive sleep 
apnea in adults [15], detection of apnea in infants [10], use 
in extubated but critically ill patients [18], mass casualty 
triage, and even veterinary uses. Additionally , our proto-
col did not rely on the ability of the camera to accurately 
measure the absolute temperature. The main factors affecting 
the performance of our protocol were the thermal sensitiv-
ity of the camera and the resolution of the focal plane array 
[10]. A future aim might be to integrate a motion artifact 
detection algorithm capable of automatic motion analysis in 
the thermal videos. This technique is also ideal for COVID-
19 screening or long-term patient monitoring purposes.

An unanticipated finding of this study was the question-
able accuracy of the bioimpedance-based RR measurements 
in the PACU compared with direct observation by a phy-
sician. Analysis of Figs. 3 and 4 reveals nine subjects in 
whom the bioimpedance-based estimate of RR effectively 
doubled the RR (e.g., impedance-based RR was 20, and 
direct measurement was 10). In a PACU environment, under 
direct observation by a critical care nurse, this may not be 
problematic, but in a ward setting with 1:6 supervision, such 
overestimations could be critical.

While it is clearly not yet ready for clinical use, ther-
mography deserves serious investigation as an alternative 

Fig. 4  Bland–Altman plots comparing the respiratory rates obtained 
with direct measurement and the corresponding respiratory rates 
measured with a the infrared thermography and b thoracic bioim-
pedance. The Y axis represents the difference between two measure-

ments, and the X axis represents the mean between two measure-
ments. Thermography vs. direct measurement: Bias 0.1, Precision 
− 2.7 to 2.9. Bioimpedance vs. direct measurement: Bias − 1.3, preci-
sion − 11.0 to 8.3
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to bioimpedance for measuring RR in a variety of patient 
populations. Surely to be dismissed as inferior and niche, 
thermography shares several features of other “disrup-
tive” technologies that have eventually come to replace 
their predecessors [19]. In the field of anesthesiology and 
critical care medicine, there have been many trials to esti-
mate various kinds of vital signs using non-invasive meas-
urement techniques, such as electrocardiography [20], 
pulse transit time [21], and phonocardiography [22–25]. 
Although we acknowledged that these techniques are still 
under development, we believe that all of these studies, 
including the present study, will improve patient safety 
and well-being in the near future.

Our study was among the largest studies to compare 
thermography to both bioimpedance and direct measure-
ment of RR, and the findings suggest that thermography 
may potentially be used to estimate RR in a variety of set-
tings without the need for any direct patient contact. The 
capacity of this technique to integrate an automatic anal-
ysis algorithm and to detect motion artifacts should be 
explored.
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