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ABSTRACT

PPM1D (Wip1), a type PP2C phosphatase, is
expressed at low levels in most normal tissues but
is overexpressed in several types of cancers. In cells
containing wild-type p53, the levels of PPM1D
mRNA and protein increase following exposure to
genotoxic stress, but the mechanism of regulation
by p53 was unknown. PPM1D also has been identi-
fied as a CREB-regulated gene due to the presence
of a cyclic AMP response element (CRE) in the pro-
moter. Transient transfection and chromatin immu-
noprecipitation experiments in HCT116 cells were
used to characterize a conserved p53 response
element located in the 5 untranslated region
(UTR) of the PPM1D gene that is required for the
p53-dependent induction of transcription from
the human PPM1D promoter. CREB binding to the
CRE contributes to the regulation of basal expres-
sion of PPM1D and directs transcription initiation at
upstream sites. Following exposure to ultraviolet
(UV) or ionizing radiation, the abundance of tran-
scripts with short 5° UTRs increased in cells
containing wild-type p53, indicating increased utili-
zation of downstream transcription initiation sites.
In cells containing wild-type p53, exposure to UV
resulted in increased PPM1D protein levels even
when PPM1D mRNA levels remained constant, indi-
cating post-transcriptional regulation of PPM1D
protein levels.

INTRODUCTION

PPMI1D, a member of the PP2C family of serine/threonine
protein phosphatases, was first identified as a wild-type
p53-induced phosphatase (Wipl), the expression of
which was increased in human cells after ionizing radia-
tion (IR) or exposure to ultraviolet (UV) light (1). The
human PPMID and mouse Ppmld proteins are 83%
homologous and are similarly induced in response to
stress (2). PPMID transcription is induced following
exposure to many DNA damage-inducing agents, includ-
ing NO (3), H>O, (4) and MNNG (5). PPM 1D was iden-
tified as a component of a 16-gene signature characterizing
the p53-dependent DNA-damage response (6). The tran-
sient increase in PPM 1D mRNA levels following exposure
to IR is similar to that of the well-characterized, direct,
p53 target gene CDKNIA (p21"%"). Despite the robust-
ness of the p53 dependence of PPMID induction in
human and mouse cells and tissues, evidence for the
direct control of this induction by p53 has been lacking.
Basal expression of PPM 1D exhibits tissue and devel-
opmental stage-specific variation that normally is tightly
regulated (1,2). Cells derived from PpmId '™ mice exhibit a
slower doubling time, suggesting that Ppmld also func-
tions in the normal, regulated proliferation of cells (7).
Overexpression of PPM1D is frequently observed in sev-
eral types of cancer, including breast cancer (8), ovarian
adenocarcinoma (9), and neuroblastoma (10) and the
tumors in which PPM1D is overexpressed frequently con-
tain wild-type p53. PPM1D functions in a negative regu-
latory loop coordinating p38 MAPK activity and p53
function (11). PPM1D negatively regulates stress response
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signaling by specifically dephosphorylating the protein
kinase p38 MAPK (12). Since p53 is a target of p38
MAPK signaling, this activity also indirectly reduces p53
activity (13). More recently, Serl5 of p53 as well as
Ser1981 of ATM were found to be directly dephosphory-
lated by PPM1D (14,15).

PPMID was identified as a potential cyclic AMP
response element (CRE) binding protein (CREB) target
gene in a genome-wide comparison that examined the
sequence and positional conservation of CRE sites in
human and homologous mouse genes (16). CREB and
the activating transcription factors (ATF) constitute a
family of closely related proteins that bind to CRE
(5-TGACGTCA-3’) sequences present in the promoter
regions of many genes involved in the response to prolif-
eration signals (17). Subsequently, a genome-wide locali-
zation analysis detected highly significant association of
CREB with chromatin in the region of the PPM 1D pro-
moter in human kidney, hepatocyte and islet cells (18).
These results suggest that CREB contributes to the con-
trol of the basal expression of PPMID.

p53 and CREB directly associate through protein—
protein interactions involving the N-terminal activation
domain of p53 and the bZip domain of CREB, implying
that CREB and possibly other CREB/ATF family mem-
bers may influence the transactivation of p53 target genes
(19). Recently, a complex containing p53, CREB and
KLF4 was found to control the basal expression of
the bradykinin B2 receptor promoter in the developing
kidney (20).

PPM 1D induction after treatments that damage DNA
occurs with similar kinetics in human and mouse cells and
is similarly dependent on wild-type p53 (2,7). In the pres-
ent work, we report that the p53-dependent induction of
PPM 1D expression in human cells after exposure to IR or
UV is mediated through a conserved p53 response element
(p53RE) located within the 5 untranslated region (UTR),
150nt before the translation initiation codon. In the
absence of stress, the binding of CREB or a CREB/ATF
family transcription factor contributes to the basal tran-
scription of PPM1D. Increased expression of PPM 1D fol-
lowing DNA-damaging treatments requires the presence
of wild-type p53. Here we show that binding of p53 to the
p53 RE within the proximal promoter shifts the major site
of transcription initiation closer to the beginning of the
PPMI1D open reading frame, thereby producing mRNAs
with shorter 5 UTRs that may be more efficiently trans-
lated. Thus the location of the p53 RE within the 5 UTR
provides a mechanism for transcriptional and post-
transcriptional regulation of the PPM 1D gene by p53.

MATERIALS AND METHODS
Sequence analysis

Putative p53 binding sites were identified using the
p53MH algorithm (21) with the following parameters:
unweighted gap sizes from 0 to 13; core weighting
factor, 2; likelihood ratio scoring method; minimum
score, 21.5. Alignment of orthologous PPMID genes
and flanking regions used the multiz method (22).
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Phylogenetic analysis of aligned PPMID proximal pro-
moter regions used the program PHYLIP (23). The geno-
mic locations for ten vertebrate sequences aligned to the
human region [hgl8 chrl7: 56032232-56032681 (+)] are
given in the Supplementary Data.

Cell culture and treatments

The HCT116 p53™/* and HCT116 p537 cell lines (24),
kind gifts from B. Vogelstein, Johns Hopkins University,
USA, were propagated in McCoy’s 5a or DMEM contain-
ing 10% fetal bovine serum (FBS) at 37°C in an atmo-
sphere of 5% CO,/air. Cells were exposed to the indicated
doses of ionizing radiation from a '*’Cs Shepherd Mark II
irradiator or of UV (254nm, UVC) from a Stratalinker
1800 (Stratagene). Where indicated, cycloheximide
(Sigma) was added to a final concentration of 10 uM.

Northern and western analyses

HCT116 p53*/* or HCT116 p53 7 cells were untreated
or irradiated with 6 Gy IR and incubated 3 or 6h. RNA
was extracted using Trizol (Invitrogen) according to the
manufacturer’s instructions. The amount of purified RNA
was determined spectrophotometrically. RNA samples
were separated by electrophoresis in a formaldehyde-
agarose gel, transferred to a Nytran membrane
(Schleicher & Schuell) by capillary action and crosslinked
by UV irradiation. PPMID and GAPDH cDNA probes
were labeled with **P-dCTP using a random primer label-
ing kit (Stratagene). After washing of the blot, hybridizing
bands were visualized by autoradiography using Kodak
AR-5 X-ray film with exposures of 1-5 days. Proteins
from cell extracts were separated by gel electrophoresis
on NuPAGE 7% Tris—Acetate Gels (Invitrogen) and
transferred to nitrocellulose membranes (Invitrogen).
Primary antibodies used: PPMI1D, custom preparation
by BD Biosciences; p53, DO-1 (Santa Cruz Biotechnolo-
gies); B-actin, AC15 (Sigma); a-tubulin, Ab-1 (Calbio-
chem); secondary antibody: HRP-conjugated antimouse
IgG (Jackson Laboratories).

Plasmid construction

Reporter vectors were constructed by inserting the 849-bp
EcoRI to BamHI, the 545-bp Earl to BamHI or the
454-bp Sau3Al to BamHI fragment containing the
human PPM 1D promoter sequence into the pGL3-basic
vector (Promega). Mutations were introduced using the
Quickchange Mutagenesis Kit II (Stratagene). The
sequences of oligonucleotides used for mutagenesis are
given in the Supplementary Data. In the construct
m(123), central positions of the three p53 half-sites were
changed to yield the following sequence, 5-GGCaC
AaCTCTCGCGGAtAACTCCAGAtATCGCG-3' where
lower case letters indicate the sites of mutation. In con-
structs m(1) or m(3), only the first or third half-site was
mutated. In the construct mCRE, the 8-base CRE was
mutated to 5-aGAgGTCt-3'. The construct mm contained
all constituent mutations of the m(123) and mCRE con-
structs. All mutations were confirmed by sequencing. The
plasmid pGL3/PUMA 0.9kb, which contains a 0.9-kb
fragment of the human BBC3 promoter (PUMA) (25)
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was a kind gift from G. Zambetti. The plasmid pGL3
EIbTATA-p21 (26) was a kind gift from S. Benchimol.
Minimal promoter constructs containing the PPMID
pS3RE and the analogous m(1), m(3) and m(123) variants
were derived from pGL3 E1bTATA-p21 (26), as described
in the Supplementary Data.

Transfection and luciferase assays

Transient transfections of HCT116 p53 7/~ cells were per-
formed using Lipofectamine2000 (Invitrogen), 100ng of
pCAG3.1/p53 wild-type or pCAG3.1 (27), 200ng of the
Firefly luciferase reporter construct and 10ng pRL-TK
(Promega) per 3 x 10° cells. Twenty hours after transfec-
tion, cells were irradiated with 10Gy from a '*’Cs
Shepherd Mark II irradiator. After an additional 4h of
incubation, irradiated and nonirradiated cells were har-
vested and measured for Photinus pyralis (firefly) and
Renilla reniformis (sea pansy) luciferase activities using
the Dual Luciferase Assay System (Promega). In each
experiment, Renilla luciferase activities from cells expres-
sing wild-type p53 were corrected for the ~1.9-fold
increase in activity of pRL-TK in the presence of wild-
type p53 by the ratio given by: mean activity (with p53)/
mean activity (without p53). Well-to-well variation was on
the order of 10%. To correct for differences in transfection
efficiency, the reported relative luciferase activity of each
sample is taken as the ratio of the Firefly luciferase activity
to the corrected Renilla luciferase activity. Results repre-
sent the average+standard deviations of two or three
independent experiments.

Chromatin immunoprecipitation assay

Subconfluent HCT116 p53™/" or HCTI116 p537 cells
were exposed to 10 Gy IR or left untreated, using two
dishes of 3 x 10° cells per time point. Chromatin immuno-
precipitation (ChIP) experiments were performed using a
kit (Upstate) and following a modified version of the man-
ufacturer’s protocol. A detailed protocol is given in the
Supplementary Data. The following antibodies were
used: p53, DO-7 (Calbiochem OP140 or Neomarkers);
CREB (Upstate 06-863); acetyl histone H3 (Upstate
006-599), acetyl-histone H4 (Upstate 06-866). The presence
of PPM 1D promoter or distal p21 promoter fragments in
the immunoprecipitated material was detected by PCR;
details are given in the Supplementary Data.

Analysis of transcription initiation site usage by PCR

Total RNA was purified from treated or untreated
HCT116 p53*/* and HCT116 p537 cells, with inclusion
of treatment with DNasel to remove genomic DNA.
Reverse transcription was performed with SuperScript
reverse transcriptase II (Invitrogen) and an oligo dT
primer. Primers for the detection of PPMID transcripts
were designed using Light Cycler Probe Design Software
2.0 (Roche). Real-time PCR (RT-PCR) was performed
with Light Cycler FastStart DNA Master SYBR Green
I (Roche) and a LightCycler Real-Time PCR instrument
(Roche) using a common reverse primer 5-TGGGC
CTTTCCCCGAGA-3' located in exon 1 of PPMID
(+204 bases from the ATG) and either of two forward

primers: primer 1 (5-GGCGTCGTCGAAGATAAAC
AATA-3', 106 bases upstream of the ATG) or primer 2
(5-GGACGTTACTCAAATCGTTGT-3/, +66 bases
from the ATG). RT-PCR was performed in triplicate on
each sample, using a final concentration of magnesium
chloride of 3mM. RT-PCR curves were analyzed using
PCR Miner software (28) to determine the efficiency for
each primer pair and the initial transcript abundances for
each sample. Transcript abundances for PPMID tran-
scripts were normalized to B-actin (29) transcript levels.
The standard deviations of the means were estimated by
propagation of error calculations.

RESULTS

p53-dependent induction of PPM1D mRNA and protein
following exposure to IR

To investigate the mechanism of the p53-dependent induc-
tion of PPMID, we used the human colorectal cell line
HCTI116, which contains wild-type p53 protein and exhib-
its a normal p53 response following treatments with DNA
damage-inducing agents, and an HCT116 p537~ deriva-
tive that lacks p53. Northern blot analysis of PPMID
expression in HCTI116 p537/" cells showed that
PPMID mRNA levels increased after exposure to 10 Gy
IR in p53 "/ cells with the maximum induction occurring
3h post-irradiation (Figure 1A). Although the levels of
PPMID mRNA were comparable in HCT116 p53*/*
and p537 cells prior to irradiation, PPMID mRNA
levels decreased after IR in p53 ' cells. As shown in the
immunoblot depicted in Figure 1B, the levels of PPM1D
protein also increase markedly following exposure of cells
containing wild-type p53 to IR. These results are in accord

A P53 +/+ p53 —/—

(] 3 6 0 3 6 time, h
PPM1D
mRNA
GAPDH
mRNA

B P53 +/+ p53 /-
0 2 4 8 0 2 4 8  timeh
- P b= L) PPM1D
PRAVIR TR IR ae e,  ctuouin

Figure 1. (A) Northern blot analysis of PPMID expression in
HCTI116 p53*/" and p53 7 cells following exposure to 6-Gy IR.
(B) Immunoblot analysis of PPM1D protein levels in extracts from
HCTI116 p53"/* and p537 cells at the indicated times following expo-
sure to 10-Gy IR.



with previous work establishing that the induction of
PPMID mRNA and protein following IR in human or
mouse cells is dependent on wild-type p53 (1,2).

Identification of conserved p53 consensus sequences
in the human PPM 1D and mouse Ppmld promoters

Genes shown to be directly induced by p53 generally con-
tain a p53RE in the promoter or within the first few
introns. A pattern that has been used to identify potential
pS3REs consists of two repeats of the pattern
RRRCWWGYYY separated by a spacer of 0-13bp
(30), although p53 is known to bind to additional patterns
(31,32). A recent global analysis of sequences bound by
p53 suggested that spacers other than 0 or 1 are rare (33).
To locate potential p5S3REs regulating PPM 1D expres-
sion, we applied the p53 MH algorithm (21) to the
human PPMID and mouse Ppmld genomic sequences
from 5kb upstream of the translation start site through
the 3’ UTR. Using a cutoff of 21.5 but allowing non-zero
spacers, we identified eight potential pS3REs in the human
sequence and 18 in the mouse sequence. For both species,
two of these high-scoring sites are located in the proximal
promoter. Interestingly, both sites reside in regions of
high sequence conservation among mammals (34). The
sequences of these potential pS3REs and their location
relative to the respective translation initiation site are
given in Figure 2A. For the human gene, the upstream
site matches the consensus pattern at 17 of 20 positions.
The upstream site in the mouse gene is located at a similar
distance from the translation initiation site but does not
align exactly with the human p53 RE site. The down-
stream p53RE identified by the p53 MH algorithm con-
sists of two half-sites separated by a spacer of 4bp that
match the consensus at 18 of 20 positions. The human and
mouse sequences are identical over this 24-bp span.
A third half-site, which deviates from the consensus
pattern at three positions, immediately follows the
second half-site. Interestingly, the combination of the
second and third half-sites was identified as a conserved
p53-binding site through application of a position-weight
matrix method to aligned human, mouse and rat genomic
sequences (395).

Localization of p53-dependent induction to the PPM1D
promoter region

To locate the region of the PPMID promoter that is
responsible for p53-dependent expression following expo-
sure to IR, we cloned the 849-bp EcoRI to BamHI frag-
ment containing the proximal promoter region into the
pGL3-Luc vector upstream of the firefly luciferase gene.
Two additional constructs containing 5" truncations that
deleted the upstream site were prepared in the same
vector. A schematic of the promoter region of PPMID
and the derived reporter constructs is shown in
Figure 2B with the relative location of the two putative
p53 response elements indicated. Since most methods for
transiently introducing reporter vector DNA into mam-
malian cells also result in the activation of p53 (36,37),
we investigated the p53-dependence by co-transfecting
a wild-type p53 expression vector (pCAG3.1/pS3wt) or
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Figure 2. (A) Sequences of potential pS3REs in the human PPMID
and mouse Ppmld promoters. Distances in base pairs from the transla-
tion initiation codon are given. Bases that match the p53 consensus
pattern are written in upper case and decameric half-sites identified
by the P53MH algorithm are underlined. (B) Truncation analysis of
the PPMI1D promoter using reporter constructs. A schematic of the
PPM 1D promoter region and derived luciferase reporter constructs is
shown. The relative locations of the —0.7-kb and 5" UTR potential p53
response elements are indicated. The relative firefly luciferase activities
in extracts of HCT116 p537/ cells transiently transfected with a
reporter construct, pRL-TK and a wild-type p53 expression vector or
empty vector are shown. Cellular extracts were prepared 4 h after expo-
sure to 10-Gy IR. The PUMA construct served as a positive control.
The means and standard deviations of three independent transfections
are indicated.

the empty expression vector (pCAG3.1) (27) along with
the pGL3-Luc derivative and pRL-TK (for normalization
of transfection efficiency) into HCT116 p53 7 cells. The
amount of the p53 expression vector was adjusted to pro-
duce a level of p53 similar to that produced in the related
HCT116 p53 ™/ cells after exposure to 10 Gy IR. Cellular
extracts were prepared 4 h after exposure to IR, and the
resulting relative, normalized firefly luciferase activities are
depicted in Figure 2B. The promoterless construct pGL3.4
produced a low level of activity either in the absence or
presence of wild-type p53. Insertion of the 848-bp EcoRI
to BamHI fragment of the PPMID promoter into the
pGL3-Luc vector resulted in substantial expression of fire-
fly luciferase, even in the absence of p53, consistent with
basal expression of PPM 1D in most cells and tissues (1).
The same construct resulted in 1.5-fold higher expression
in the presence of wild-type p53. Constructs containing
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Figure 3. Functional analysis of p53 binding to PPMID proximal promoter sequences. (A) Functional analysis of the PPMID pS3RE. HCTI116
p53 7 cells were transfected with E1b minimal promoter reporter constructs (left panel) or PPMID proximal promoter reporter constructs (right
panel), along with pRL-TK and an empty vector or a wild-type p53 expression vector. Cellular extracts were prepared 4 h after exposure to 10-Gy
IR. The means and standard deviations of three independent transfections are indicated. (B) Association of p53 or acetylated histones with PPMI1D
or p21 chromatin fragments following exposure to IR. HCT116 p53™/* or p53/ cells were untreated or exposed to 10-Gy IR and samples were
harvested after the indicated times. Chromatin fragments immunoprecipitated by the anti-p53 antibody DO-7, anti-acetyl histone H3, anti-acetyl
histone H4 or nonspecific IgG were detected by PCR using primers specific for the PPM 1D promoter or the distal (-2.3kb) p21 promoter region.

Fragments amplified from 0.5% of the input material are shown.

shorter PPM 1D promoter fragments similarly resulted in
substantial luciferase activity in the absence of p53 and
~1.6-fold higher levels in the presence of wild-type p53.
The pGL3 derivative containing the promoter region of
the human BBC3 (PUMA) gene produced only a low level
of luciferase activity in the absence of p53, but the activity
increased ~2.6-fold in the presence of p53, as expected
(25). These experiments show that the PPM D promoter
region exhibits substantial p53-independent transcription
initiation activity in HCT116 cells and that the increased
expression in the presence of wild-type p53 results from
components within the 470 bp upstream of the translation
start site. Under our conditions, the —0.7-kb site does not
contribute to the observed p53-dependent increased activ-
ity of the PPM 1D promoter. However, the presence of a
nearby conserved E2F-binding site (38) in the human
sequence and the identification of a potential p53 RE in
the mouse Ppmld promoter at similar distances from the
respective E2F site and translation initiation codon sug-
gests that the upstream p53-binding sites may be func-
tional in some circumstances.

The pS3RE located within the 5 UTR conferred
pS3-responsiveness to the PPM 1D promoter

The putative p53-binding site is situated downstream of
the transcription initiation site of the PPMID reference
mRNA (NM_003620) and is located 178 bp upstream of
the translation start site. The ability of the PPMID
pS3RE site to confer a p53-dependent increase in tran-
scription to a minimal promoter was tested by transient
transfection of HCT116 p53 7 cells with firefly luciferase
constructs, pRL-TK and a p53 expression vector or the
empty vector. As shown in Figure 3A, left panel, pGL3
derivatives containing the viral oncoprotein E1b minimal
promoter exhibited little promoter activity either in the
absence or presence of wild-type p53 (26). Insertion of
the p53 response element from the p2l promoter (26)
resulted in a low level of expression in the absence of
pS53 that was strongly increased in the presence of p53.
Insertion of the 36-bp sequence encompassing the
PPMI1D p53RE site or any of the mutated forms into
the pGL3/Elb TATA vector resulted in only slightly
increased expression in the absence of p53. Luciferase



activity resulting from expression from the construct
containing the PPMID p5S3RE sequence was strongly
increased in the presence of wild-type p53, exhibiting
about a 12-fold increase over that in the absence of p53.
In comparison with the wild-type p53RE sequence, muta-
tion of the first half-site reduced the expression level in the
presence of p53 by 35%. Mutation of the third half-site or
all three half-sites abolished p53-dependent expression.

To test the functioning of the PPM 1D pS53RE within
the context of the native PPMID promoter, we intro-
duced the same series of mutations into the pGL3-Luc
derivative containing the Earl to BamHI fragment of the
PPM 1D promoter region and examined the effect of p53
expression on PPMID promoter activity in the transient
transfection assay. In the absence of p53, the wild-type
promoter and the three mutant forms resulted in very
similar levels of luciferase activity (Figure 3A, right
panel). In the presence of p53, the wild-type promoter
and the m(1) mutant each resulted in ~1.6-fold higher
expression, while the m(3) and m(123) mutants resulted
in activities that were 64% and 49%, respectively, that
of the wild-type promoter. The lack of a measurable
effect of mutation of the first half-site within p53RE sug-
gests that the second and third half sites form the func-
tional p53 response element under these conditions. The
finding that the m(3) and m(123) mutants result in signifi-
cantly lower luciferase activity in the presence of p53
than in its absence is interesting and may result from a
general repressive effect of p53 on transcription (39,40)
or from the p53-dependent induction of a repressor.
The more robust p53-dependence exhibited by the mini-
mal promoter constructs suggests that the observed
p53-responsiveness of the intact promoter may reflect
the balance of positive and negative contributions.

To determine whether p53 bound to the PPMID pro-
moter region in vivo, we performed ChIP experiments. As
shown in Figure 3B, chromatin fragments containing the
PPM 1D promoter region were recovered by the anti-p53
antibody DO-7 from HCT116 p53 ™/ cells 2 h after expo-
sure to IR, but the amount recovered fell to background
levels by 4 h after exposure. The transient presence of p53
in the PPM 1D promoter region corresponds to the tran-
sient increase in PPM 1D mRNA (1). We also tested for
p53 association with the —0.7-kb site, but recovered only
background levels of chromatin fragments (data not
shown). The amounts of p21 upstream promoter frag-
ments that were recovered from material immunoprecipi-
tated by the anti-p53 antibody followed the expected
pattern (41). Furthermore, we examined changes in his-
tone acetylation patterns in the PPMID and p2l pro-
moter regions following exposure to IR. Acetylation of
histones H3 and H4 in PPMID promoter fragments
exhibited distinct changes following exposure to IR, but
the pattern was very similar in HCT116 p53™/" and
HCT116 p53 7 cells. In both cell lines, histone H3 acet-
ylation was detectable in untreated samples, increased by
2 h after exposure to IR and fell to background levels by
4h after exposure to IR. Histone H4 acetylation was not
detected in the untreated or 2-h samples but was apparent
4h following exposure to IR (Figure 3B). In contrast,
although histone H3 acetylation increased in p2l
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upstream promoter fra%ments following exposure to IR
in both HCT116 p53*/" and HCT116 p537 cells, the
strong increase in histone H4 acetylation 2h after expo-
sure to IR was observed only in cells containing wild-type
p53, as reported previously for the p2l1 and BBC3
(PUMA) promoters (42,43). These results suggest that
modulation of histone acetylation is less important in
the p53-dependent activation of the PPMID promoter
than for the p2l promoter. Transcription of the p2l
gene has been shown to be exceptionally sensitive to
manipulation of histone acetylation levels (44).

Phylogenetic conservation of the pS3RE and the PPM1D
core promoter

The amino acid sequence of PPM1D is sufficiently well
conserved that its emergence as a distinct member of the
PP2C superfamily can be inferred to have occurred prior
to the divergence of the protostomes (45). Promoter and
regulatory elements often diverge more rapidly than pro-
tein sequences. A schematic diagram (Figure 4A) depicts
features of the PPMID core promoter aligned with a
graph indicating the degree of evolutionary conservation
among 17 vertebrate species (34). Much of the core pro-
moter, including the pS3RE and the CRE, is highly con-
served. To further investigate sequence conservation in the
PPM 1D core promoter, we applied a phylogenetic infer-
ence algorithm to a 450-bp sequence of the human
PPM 1D promoter and the aligned sequences of 10 other
species (23). An unrooted tree diagram indicating the
relatedness of PPMID core promoter sequences is
shown in Figure 4B. The aligned sequence from the
chicken genome is markedly divergent except for the
included portion of exon 1, which is well conserved.
Thus the PPM 1D core promoter sequence is highly con-
served among mammals, especially placental mammals.
An alignment of the sequences encompassing the
PPMID p53RE for 10 mammalian species (Figure 4C)
indicates that all three half-sites are highly conserved
among placental mammals. Although the opossum
sequence is the most divergent, the middle half-site
matches the p53 consensus pattern perfectly.

The CRE site is not necessary for the p53-dependent
induction of PPM 1D after IR

The presence of a conserved CRE within the promoter of
the PPMID gene (16), reported protein—protein interac-
tions between p53 and CREB (19) and reported coopera-
tion in the control of the Bradykinin B2 receptor gene by
p53 and CREB (20) suggested a possible involvement of
the CRE site and CREB/ATF family transcription factors
in the IR-responsiveness of the PPMID promoter. To
investigate whether the CRE site was necessary for the
p53-dependent induction of the PPMID promoter, we
transiently transfected expression vectors and luciferase
reporter constructs into HCT116 p537~ cells. In agree-
ment with results described above, the relative luciferase
activity resulting from the wild-type PPM 1D promoter
was robust in the absence of p53 and increased
~1.5-fold in the presence of p53; mutation of pS3RE
[m(123)] did not affect the promoter activity in the absence
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A 100 bp

opossum :
chicken
c (1) &) (3)
rat ccG---GcCcAGCTCtcgeGGACAAGTCCcGACATcaCgeg
mouse ccG---GcCcAGCTCtcgeGGACAAGTCCcGACATcaCgeg
horse ccG---GcCcAGCTCtcgecGGACAAGTCCcGACATcgCgeg
dog ccG---GcCcAGCTCtcgeGGACAAGTCCCcGACATcgCgeg
cat ccG---GcCcAGCTCtcgeGGACAAGTCCcGACATcgCgtg
chimp ccG---GcCcAGCTCtcgeGGACAAGTCCAGACATcgCgeg
human ccG---GcCcAGCTCtcgecGGACAAGTCCAGACATcgCgeg
rhesus c¢cG---GcCcAGCTCtcgeGGACAAGTCCAGACATcgCgeg

cow cgG---GcCcAGCTCtcgecGGACAAGTCCcGACATcgCgeg
opossum ctcaacGttcAGCTCccgtGGACAAGTCTcGACcccacgeyg

Figure 4. Sequence conservation of the PPMID core promoter and
pS3RE. (A) Schematic diagram depicting the genomic region around
the PPMID 5 UTR. The relative positions of the PPMID reference
mRNA and protein are indicated by thin and thick gray lines, respec-
tively, the positions of the CRE and p53RE are indicated by rectangles
and the lower plot displays the conservation score based on an align-
ment of 17 vertebrate species. The diagram is based on the UCSC
Genome Browser display (35). (B) Unrooted phylogenetic tree of the
PPMID core promoter for 10 mammalian species. The 450-bp
sequence of the human PPMID core promoter, 5 UTR and portion
of exon 1 and aligned sequences from nine additional mammalian spe-
cies, plus the chicken sequence, were analyzed by the PHYLIP program
(23). (C) Sequence conservation of the PPMID 5 UTR p53RE.
Alignment of a 38-bp region from 10 mammalian species is shown.
Numbered gray bars indicate the three half sites. Positions that con-
form to the consensus are indicated by upper case letters. The human
sequence is written in bold.

of p53 but reduced promoter activity in the presence of
pS3 to 44% (Figure SA). In the absence of p53, mutation
of the CRE reduced the promoter activity to 63% of the
wild-type promoter, but in the presence of p53, the CRE-
mutated promoter exhibited 1.7-fold increased expression.
The construct in which both the CRE and p53RE sites
(mm) were mutated produced an intermediate level of
expression in the absence of p53 and a reduced expression
in the presence of p53.

Since the process of transfection results in partially acti-
vated p53, all reporter experiments were performed with
extracts from irradiated cells in order to fully activate p53.
These experiments thus provide information about pro-
moter activity after irradiation in the absence or presence
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Figure 5. Involvement of the CRE and CREB in the control of
PPMID transcription following exposure to IR. (A) The CRE and
pS3RE sites independently regulate PPMID promoter activity.
HCT116 p537 cells were transfected with constructs containing a
600-bp PPM 1D promoter fragment or with mutations in the pS3RE
site, the CRE site or both sites, along with pRL-TK and the empty
vector or wild-type pS53 expression vector. Cellular extracts were pre-
pared 4h after exposure to 10 Gy IR. (B) CREB dissociates from the
PPM 1D promoter region following exposure to IR. Chromatin frag-
ments immunoprecipitated by anti-CREB antibody or nonspecific 1gG
from HCT116 p53™/" or HCT116 p537 cell extracts at the indicated
times following exposure to 5-Gy IR were detected by PCR using
primers specific for the PPMI1D promoter. Fragments amplified by
PCR from 0.62% of the input material are shown.

of activated wild-type p53. The data are consistent with a
model in which transcription factors binding to the CRE
and pS3RE sites independently affect the level of tran-
scription after exposure to IR. In either the absence or
presence of p53 and with either the wild-type promoter
or the pS3RE mutated promoter, mutation of the CRE
reduced the promoter activity to ~70% of the activity
of the corresponding construct with the intact CRE
(Figure 5A). Mutation of the p5S3RE had little effect
on the promoter activity in the absence of p53, but in
the presence of p53, mutation of the p53RE reduced
the promoter activity to ~30% that of the wild-type
pS3RE promoter. Consistent with sequence-specific,
DNA-binding-dependent transcriptional activation by
p53, constructs with an intact pS3RE exhibited increased
expression in the presence of p53, with 1.5- and 1.7-fold
increases observed for the wild-type and mCRE
constructs, respectively. Conversely, constructs with a
mutated p53RE exhibit a reduced activity in the presence
of p53, with relative activities of 0.44 and 0.38 observed
for the m(123) and mm constructs, respectively, compared
to the activity in the absence of p53. The reduced activity
of PPM 1D promoter constructs that lack an intact pS3RE
may be the result of a p53-dependent induction of a tran-
scriptional repressor that functions on the PPMID



promoter or may result from a generalized repressive
effect of p53 on transcription from TATA-less promoters
(40). Thus, in the context of a transiently transfected
reporter plasmid, we observed no obvious co-operativity
between CRE-based and pS53RE-based transcriptional
activation.

Ionizing radiation-induced changes in CREB binding
to the PPM 1D promoter in chromatin

To investigate the binding of CREB to the PPM D pro-
moter in native chromatin, we performed ChIP experi-
ments. As shown in Figure 5B, PPMID promoter
fragments were associated with CREB in unirradiated
HCT116 p53"/" cells, and the amount increased at 2h
after exposure to IR before declining to background
levels by 4h after exposure to IR. In HCTI116 p537~
cells, the association of PPMID promoter fragments
with CREB was detected in untreated samples while
only background levels were recovered from samples
taken 2 or 4 h after exposure to IR. The presence of detect-
able CREB binding to the PPM 1D promoter region at
2h after exposure to IR in HCT116 p53*/* but not in
HCT116 p537/ cells may reflect a direct interaction
between p53 and CREB in the context of the chromatin
of the PPM 1D promoter or it may result from an indirect
effect of the p53-dependent response to IR. Since the total
amount of CREB in HCT116 p53*/* or HCT116 p53 7/~
cells increased only moderately following exposure to IR
(data not shown) and the affinity of CREB/ATF family
transcription factors for their cognate recognition
sequence is not thought to be affected by their phosphor-
ylation status (46), the observed absence of CREB asso-
ciated with the PPMID promoter at 4h following
exposure to IR may be due to its displacement by a
factor with higher affinity for the CRE.

p53-dependent shift in the use of transcription initiation
sites following IR

The PPM 1D promoter is GC-rich, TATA-less and lacks
an initiator element. Some promoters with these charac-
teristics exhibit a distributed pattern of transcription start
sites (TSS) (47). Based on a database of TSS (48), the 38
PPMI1D mRNAs initiated at 14 different positions, which
formed two clusters, 230 to 200 bp and 95 to 65 bp before
the ATG. The two most prevalent sites, which produce
transcripts with 222 or 65 base 5 UTRs, account for
60% of the transcripts. The CRE is located 60 bp before
the most upstream of the mRNA start sites, within the
typical range for functional CREs (46). The p53RE is
located about 60bp upstream of the second cluster of
TSS. A schematic diagram, depicting the proximal pro-
moter of PPMID, the CRE and p53RE sites, and the
two most prevalent transcripts, is shown in Figure 6A.
We used a quantitative PCR-based method (28) to
examine whether p53 affected the pattern of transcriptional
initiation of the PPM1D gene in HCT116 cells, either in
untreated cells or in cells exposed to10 Gy IR. One primer
pair detects only transcripts initiating within the first
cluster of initiation sites, whereas the second primer
pair detects all transcripts. As shown in Figure 6B,
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Figure 6. Patterns in the transcription start sites in the PPM 1D pro-
moter. (A) Schematic of transcription start sites for PPMID. The top
line depicts genomic DNA in the vicinity of the PPMID 5 UTR. The
second and third lines represent the most prevalent transcripts in the
two clusters of transcription start sites. The locations of the two for-
ward and common reverse primers used for real-time PCR are indi-
cated (B) p53-dependent shift in the pattern of transcription initiation
in the PPMID promoter in HCT116 p53™/"or p53~/cells following
exposure to 10 Gy IR. A quantitative PCR-based method was used to
determine the relative abundances of PPMID mRNAs with long 5
UTRs compared to all PPM D transcripts.

the abundance of long transcripts was not affected by the
presence of wild-type p53 or by IR treatment. In contrast,
the total abundance of PPMID transcripts greatly
increased in the HCT116 cells containing wild-type p53
after exposure to IR. These results demonstrate that the
pS3-dependent increase in transcription that occurs after
exposure to IR results from transcripts that initiate down-
stream of the p5S3RE site. Additional evidence in support
of these observations may be found in a genome-wide
study of transcripts using a paired-end tagged sequencing
method (49). Among the thousands of transcripts mapped
in their study, 47 out of 59 PPM 1D transcripts from expo-
nentially growing MCF7 cells originated upstream of the
p5S3RE site in the PPM 1D promoter whereas in HCT116
p537/* cells following treatment with 5-fluorouracil, 11
out of 16 PPMID transcripts originated downstream of
the p53RE site.

pS53-dependent shift in the use of transcription initiation
sites following UV is associated with increased PPM1D
protein levels

The results described above demonstrated that the total
amount of PPMI1D mRNA, the fraction of PPMID tran-
scripts with short 5 UTRs and PPMI1D protein levels
all increase following exposure to IR in cells with
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Figure 7. Effects of UV exposure on the PPMID gene expression.
(A) Effects of UV exposure on PPMID mRNA levels. HCTI116
p3537/" or p537 cells were untreated (NT) or exposed to the indicated
doses of UV and total RNA was extracted 4 h later. The relative levels
of PPM 1D mRNAs were determined by quantitative RT-PCR, normal-
ized to B-actin mRNA levels and expressed as a ratio of the level in
untreated p53*/* cells. (B) Effects of UV exposure on PPMID and
p53 protein levels. HCT116 p53™*/" or p537 cells were untreated (NT)
or exposed to the indicated doses of UV, cellular proteins were
extracted 6 h later and specific proteins were detected by immunoblot.
(C) Patterns of transcription initiation in the PPM 1D promoter follow-
ing exposure to UV. Total RNA was isolated from untreated cells or
4h after exposure to 20J/m> UV. A quantitative PCR-based method
was used to determine the relative abundances of PPMID mRNAs
with long 5 UTRs compared to all PPMID transcripts. The amount
of PPMID transcripts with short 5 UTRs was determined by
difference.

wild-type p53. To discriminate between the effects of the
total PPM 1D mRNA level and the abundance of tran-
scripts with short 5 UTRs, we examined the effects of
exposure to UV on PPMID mRNA and protein levels.
The increased expression of PPMID mRNA has been
shown to be dependent on both p53 and p38 MAPK
(12). However, due to the formation of transcription-
blocking photoproducts within the 60-kb PPM 1D gene,
the production of full-length transcripts is constrained at
higher levels of UV (50). As shown in Figure 7A, PPM 1D
mRNA levels increased in HCT116 p53 ™/ cells following
exposure to 10 or 20J/m? UV but was essentially

unchanged following exposure to 30J/m>. The PPMID
mRNA level was slightly higher in untreated HT116
p537 cells than in p53 /" cells, as observed above
(Figure 5B), and decreased with increasing UV dose.
This pattern is consistent with a p53-dependent increase
in transcription of the PPM 1D gene following exposure to
UV combined with a UV dose-dependent inhibition of
production of full length transcripts (50).

PPMI1D protein levels increased markedly following
exposure to 10, 20 or 30J/m> UV in p53*/" cells, with
the greatest increase in cells exposed to 20J/m? UV as
shown in Figure 7B. Most importantly, PPM1D protein
levels increased following exposure to 30J/m? although
the PPMI1D mRNA level was the same as in untreated
cells. In p537 cells, PPM1D protein levels in UV-treated
cells exhibited a small increase compared to the level in
untreated cells. We also observed that p53 protein levels
exhibited a dose-dependent increase in HCT116 p53*/*
cells following exposure to UV, as expected. The observed
increase in PPM1D protein levels following exposure to
UV may be due to an increase in the rate of protein
synthesis, an increase in protein stability or a combination
of the two effects. To determine the effects of UV exposure
on PPM1D stability, we examined PPM1D protein levels
following addition of the protein synthesis inhibitor cyclo-
heximide by immunoblot (data not shown). PPM1D pro-
tein levels remained approximately constant in untreated
HCT116 p53"/" and p537 cells for up to 6h following
addition of cycloheximide. In contrast, in both p53™/"
and p537 cells that had been exposed to 30J/m* UV 6h
previously, PPMI1D protein levels decreased with an
apparent half-life of about 3 h following addition of cyclo-
heximide. These results suggest that PPMI1D exhibits
higher turnover following exposure to UV and, conse-
quently, that the increased protein levels observed in
p537/" cells result from a combination of increased
PPMID mRNA levels and an increased utilization of
the mRNA for protein synthesis.

We used the same PCR-based method to examine
UV-induced changes in the utilization of transcription
start sites in the PPMID promoter. As shown in
Figure 7C, the increased transcription of the PPMID
gene that occurred following exposure to UV in
HCT116 p53™/" cells resulted from increased production
of transcripts with short 5 UTRs and decreased produc-
tion of transcripts with long 5 UTRs. In p537" cells, how-
ever, exposure to UV resulted only in the decreased
production of transcripts with a long 5 UTR with no
change in the number of transcripts with a short 5
UTR, leading to a decrease in the total level of PPM 1D
transcripts. Thus the increase in PPM1D protein levels
observed in p53*/* cells correlated with the increase in
production of transcripts with short 5UTRs.

DISCUSSION

Implications of pS3REs located near transcription

initiation sites

In response to DNA damage and other stress signaling,
wild-type p53 positively or negatively affects the



transcription of a large number of genes, possibly hun-
dreds (6,51). Typically, transcriptional activation of a
particular gene by p53 involves the stabilization and
activation of p53 by post-translational modifications
(52), the binding of p53 to a response element located
usually either within 1kb upstream of the promoter or
within the first few introns (21), the recruitment of tran-
scriptional co-activators that acetylate the tails of nearby
histones (42,53) that result in increased transcription.
Several distinct mechanisms have been found to operate
in the p53-dependent repression of specific genes, includ-
ing recruitment of histone deacetylases (54,55) and
displacement of essential activating transcription factors
(56,57). The phosphatase PPM1D has been shown to be
induced after exposure to ionizing radiation with the rapid
kinetics characteristic of primary targets of p53 (1), but
the mechanism was not known. In the present work, we
identified a functional pS3RE in the proximal promoter
region of the PPMID gene that lies within the 5 UTR.
Further experiments showed that after exposure to IR or
UV, transcription initiation increased at sites closer to the
initiation codon in cells with wild-type p53. Following
exposure to UV, the increased abundance of transcripts
with shorter 5 UTRs correlated with an increased rate of
PPMI1D synthesis. The length of the 5 UTR may affect
the rate of nuclear export of the mRNA or the rate of
initiation of protein synthesis (58,59). Thus, the location
of the p53 RE within the 5 UTR and the resulting shift in
transcription initiation site usage provides a mechanism
for post-transcriptional as well as transcriptional regula-
tion of PPM 1D expression by p53.

Although the p53-binding site identified by the pS3 MH
algorithm contained a spacer of 4bp, our analysis
(Figure 3) indicated that the functional site consists of
the downstream decameric half-site plus the adjacent
10-bp sequence. This site matches the consensus sequence
at 10/10 and 7/10 positions, with no spacer between the
two decamers. Recent work suggests that most functional
p53-binding sites have no spacer between the decameric
half-sites (33). A survey of functional p53 REs (60,61),
revealed that many sites deviate substantially from the
consensus sequence. Moreover, of the two p53 REs in
the p21 promoter region, the distal site has a better
match to the consensus sequence and higher binding of
p53, but it is the occupancy of the proximal site that cor-
relates with increased histone acetylation and increased
transcription (42).

The location of a p53-binding site within the 5 UTR
is unusual but not unprecedented. Two other well-
characterized p53-responsive genes contain p53REs
within their 5 UTRs. The gene for LRDD, also known
as PIDD, is a pro-apoptotic gene induced by p53 follow-
ing DNA damage, and it contains a conserved pS3RE
located 26nt before the translational initiation codon
(62). In contrast, DNMTI, which encodes a CpG-specific
methyltransferase, is repressed by wild-type p53 in the
absence of DNA damage, but after treatment with DNA
damage-inducing agents, the amount of bound p53
decreases and transcription of DNMTI increases (63).
The identified p53RE is located 129 nt upstream of the
translational initiation codon ATG but after the point of
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transcription initiation, a location that can be rationalized
with repression of DNMT1I transcription by bound p53.
For PPM1D, the p53-dependent shift in the site of tran-
scription initiation after IR means that the pS3RE is close
to but still upstream from the TSS, consistent with the
activation of PPM 1D transcription by p53. Furthermore,
although the recruitment of histone acetyltransferases is
generally considered to be the main mechanism through
which p53 activates transcription of target genes (64), p53
has been shown to interact with other components of the
transcription machinery (65-67). The direct interaction of
p53 with transcription complexes may be more important
in the transcriptional activation of genes that have a func-
tional p53 response element located near the transcrip-
tional start site.

Although the function of p53 as a modulator of tran-
scription is, perhaps, the best understood of its many
activities, the regulation of transcription and of transla-
tion are interrelated. The expression of p53, itself, is regu-
lated at many levels, including translation (68) and an
alteration in the transcriptional start sites of p53 was
found to occur in tumor cells (69). The p53-dependent
production of alternate transcripts of the p2l gene has
been reported recently (70). Interestingly, a pS3-dependent
change in promoter usage was shown to produce a 5 UTR
with a different sequence for the human MDM2 mRNA
and, by consequence, change the AUG used for the initia-
tion of protein synthesis (71,72). In the case of PPM D,
the location of a p53-binding site so close to the transla-
tional start codon suggests that the level of PPM1D pro-
tein also may be subject to post-transcriptional regulation.
The increased utilization of PPMID transcripts in the
production of PPM 1D protein may be critically important
in determining the cellular response to transcription-
impairing DNA damage. McKay et al. (50) have shown
that, following exposure to UV, the mRNA levels of
smaller, generally pro-apoptotic p53 target genes
increased whereas the mRNA levels of larger pS53 target
genes, including MDM2 and PPM1D, did not change or
decreased. Thus, since PPM1D phosphatase activity has
been shown to reduce p38 MAPK and p53 activities
in response to UV (12), the p53-dependent increase in
PPMID transcripts with short 5 UTRs may allow
PPMI1D to function as a tissue-specific survival factor.

Control of PPM1D transcription by p53 and CREB/ATF
family transcription factors

Transcription of the PPMID gene is regulated by both
pS53 and CREB. We have provided evidence that CREB
contributes to basal transcription of PPMID and, in
response to IR, that p53 is required for induced PPM 1D
expression. Although CREB and p53 each affect the tran-
scription of hundreds of genes (18,73), the transcriptional
programs regulated by the two factors are largely distinct.
CREB is implicated in the response to growth and differ-
entiation signals (17,46,74), whereas the genes regulated
by p53 function in cell cycle arrest, apoptosis and DNA
repair pathways (75). The deregulation of key genes that
are controlled by both pathways may contribute to tumor
progression. CREB and p53 have opposed effects on the
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transcription of the genes for Cyclin A and BRCAI
(76-78). That CREB and p53 act in the same direction
in their regulation of PPM 1D expression may be rational-
ized by the negative regulation of p53 by PPM 1D through
dephosphorylation of p38 MAPK and ATM (11,15).
Functional linkage between the p53 and CREB/ATF
pathways also was suggested by the induction of p53 in
cells transfected with CRE-decoy oligonucleotides (79)
and by the characterization of protein—protein interac-
tions between p53 and CREB (19).

The complex promoter of the PPMID gene contains
identifiable binding sites for many transcription factors
that may control its transcription in particular cellular
or functional contexts. The regulation of PPM 1D expres-
sion by E2F1 recently was reported (38). The presence of a
conserved CRE in the promoter of PPM 1D together with
data presented here suggest that basal transcription of the
PPMID gene is regulated, in part, by CREB or related
family members. Although CREB activates transcription
through CBP-mediated histone acetylation, the localiza-
tion of functional CREs within 50 to 150 bp of the TSS
(46) suggests that the direct interaction between bound
CREB and transcription complexes is an important
aspect of the regulation of transcription by CREB. CBP
also interacts with transcription complexes and may func-
tion as a bridge between CREB and other factors (80).
ATM-dependent phosphorylation of CREB at Serlll
and Serl2l following exposure to IR inhibits the inter-
action between CREB and CBP (81), thus reducing its
capacity as a transcriptional activator. In contrast,
ATM-dependent signaling to wild-type p53 in response
to IR results in its stabilization and activation (82).
Binding of p53 to pS3RE within the PPM 1D promoter
increases transcription and shifts the position of transcrip-
tion initiation. Ultimately, the increased levels of PPM1D
reduce stress-induced phosphorylation of target proteins,
allowing for the recovery of normal function.
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