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Abstract 

Background:  Although recent studies have indicated that imbalance in the respiratory microbiome composition 
is linked to several chronic respiratory diseases, the association between the lung microbiome and lung cancer has 
not been extensively studied. Conflicting reports of individual studies on respiratory microbiome alterations in lung 
cancer complicate the matter for specifying how the lung microbiome is linked to lung cancer. Consequently, as the 
first meta-analysis on this topic, we integrate publicly available 16S rRNA gene sequence data on lung tissue samples 
of lung cancer patients to identify bacterial taxa which differ consistently between case and control groups.

Results:  The findings of the current study suggest that the relative abundance of several bacterial taxa including Act-
inobacteria phylum, Corynebacteriaceae and Halomonadaceae families, and Corynebacterium, Lachnoanaerobaculum, 
and Halomonas genera is significantly decreased (p < 0.05) in lung tumor tissues of lung cancer patients in compari-
son with tumor-adjacent normal tissues.

Conclusions:  Despite the underlying need for scrutinizing the findings further, the present study lays the ground-
work for future research and adds to our limited understanding of the key role of the lung microbiome and its com-
plex interaction with lung cancer. More data on demographic factors and tumor tissue types would help establish a 
greater degree of accuracy in characterizing the lung microbial community which accords with subtypes and stages 
of the disease and fully capturing the changes of the lung microbiome in lung cancer.
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Background
With the advent of culture-independent DNA sequenc-
ing technologies and the development of Next Gen-
eration Sequencing (NGS) techniques, the previously 
unknown world of the human microbiome (the entire 
microorganisms inhabit a specific environment (e.g. the 
human body) including bacteria, archaea, eurkaryotes, 
and viruses along with their genomes and surrounding 

environmental conditions) [1] has been recognized and 
received considerable attention. Numerous studies have 
investigated the interplay between the microbiome and 
the host immune system during health and disease, arriv-
ing at a consensus that a dysbiotic microbiome may be 
correlated with disease onset and progression [2, 3]. Due 
to the initial assumption considering the lungs as sterile 
sites, the dynamic changes that may occur in the lower 
respiratory tract microbiome were previously completely 
neglected. However, new findings revealing the exist-
ence of a low-density yet diverse microbial ecosystem 
in healthy lungs, have confirmed its critical role dur-
ing respiratory diseases [4, 5]. It has been demonstrated 
that an impaired lung microbiome is associated with the 
development of chronic lung diseases such as chronic 
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obstructive pulmonary disease (COPD) [6–8], cystic 
fibrosis (CF) [9–11], asthma [12–14], and idiopathic pul-
monary fibrosis (IPF) [15–17]. In recent years, the spe-
cific impact of the microbiome on lung cancer has gained 
increasing interest. Lung cancer is one of the most seri-
ous lung diseases and common cancer in both men and 
women. With a high mortality rate (1.6 million annually), 
lung cancer is the leading cause of cancer death world-
wide [18]. The disease is initially asymptomatic and usu-
ally diagnosed in advanced stages. Late diagnosis and 
high mortality rate of lung cancer emphasize the impor-
tance of identifying microbial composition and potential 
signatures according to the stages of the disease. Doz-
ens of studies have relied mostly on 16S rRNA amplicon 
sequencing approach using different clinical samples 
including bronchoalveolar lavage (BAL) fluid, sputum, 
saliva, and lung biopsy to evaluate the contribution of 
the lung microbiome in relation to lung cancer [19–24]; 
as the application of shotgun sequencing in the respira-
tory microbiome is still in its infancy [5]. Although most 
of the prior investigations have found significant differ-
ences in the taxonomic composition of the lung microbi-
ome in the disease state, specifying the microbial profiles 
and patterns that may contribute to the pathogenesis of 
the disease is still a major challenge owing to inconsist-
encies in reported studies. Contradictory results may 
stem from the lack of a standard pipeline in preprocess-
ing the metagenomic data, differences in study designs, 
clinical sample types, and computational methods as 
well as other confounding factors and inter-study batch 
effects such as experimental procedures, targeted hyper-
variable regions of 16S rRNA gene for amplification and 
sequencing platforms [25]. These limitations hinder the 
generalizability of the results, necessitating the need for 
meta-analysis studies. To address this, meta-analyses are 
conducted with the aim of reducing the bias of individ-
ual studies, specifically the small sample size, and thus 
yielding more robust results; as the power of meta-anal-
ysis has been demonstrated by recent microbiome meta-
analyses which have identified some disease-associated 
microbial signatures [26–29]. In the present study, as the 

first meta-analysis of the lung microbiome in lung cancer 
(LC) patients, we reprocessed and integrated 16S rRNA 
gene sequence data on lung biopsy specimens with geo-
graphically different sample origins across five studies 
consisting of 356 tumor tissues and 493 tumor-adjacent 
normal tissues. We have aimed to identify the differences 
in the microbiome between the two groups and deter-
mine the possible associations between the taxonomic 
composition of the lung microbiome and lung cancer.

Results
To investigate the possible changes of the lung micro-
biome in lung cancer, raw sequence data from a total 
of five studies were processed into relative abundance 
data. Samples used in these studies were obtained from 
patients in different geographic regions, yet subjects 
were age-homogeneous. To distinguish between cases 
and controls in terms of taxonomic changes of the lung 
microbiome, differences between tumor tissues and 
tumor-adjacent normal tissues were determined using 
Generalized Additive Models for Location, Scale and 
Shape (GAMLSS) [30, 31] with a zero-inflated beta distri-
bution (BEZI) within each study. Regression coefficients 
from the GAMLSS-BEZI model were then retrieved 
as summary statistics and combined by employing a 
random-effects meta-analysis model to seek consistent 
associations between lung cancer and the lung microbi-
ome at various taxonomic levels. At phylum level, there 
was a significant difference (p = 0.016) in Actinobacteria 
between cases and controls (decreased relative abun-
dance in tumor tissues). As can be seen in Fig. 1, although 
one study with the smallest sample size showed non-sig-
nificant enrichment in Actinobacteria in tumor tissues, 
four other studies showed decreased relative abundance 
of Actinobacteria in cases vs. controls, with a significant 
decrease (p = 0.039) in study 4. The results obtained 
from the individual studies and the meta-analysis at the 
phylum level are presented in Table 1. The changes of all 
phyla across all studies can be compared in Fig. 2.

At family level, Corynebacteriaceae (p = 0.012 across 
four of the studies) and Halomonadaceae (p = 0.016 

Table 1  Results of GAMLSS-BEZI and Random Effects Meta-analysis across included studies at the phylum level

AF & EU: Africa & Europe; IL: Israel; IT: Italy; RU: Russia

Bacterial phylum Estimate SE Lower limit Upper limit p-value Study Population

0.40 0.76 -1.10 1.89 0.6130 Study 1 AF & EU

Actinobacteria -0.11 0.07 -0.25 0.03 0.1310 Study 2 IL

-0.37 0.23 -0.82 0.08 0.1108 Study 3 IT 1

-0.49 0.23 -0.95 -0.04 0.0386 Study 4 IT 2

-0.42 0.30 -1.00 0.16 0.1614 Study 5 RU

-0.21 0.09 -0.39 -0.04 0.0162 Meta_analysis Pooled
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across two of the studies) were significantly decreased 
in tumor tissues. As shown in Fig. 3, there was a consist-
ent decrease (significantly decreased in study 2) in the 
relative abundance of both Corynebacteriaceae and Halo-
monadaceae in tumor tissues. The results obtained from 
the individual studies and the meta-analysis at the family 
level are summarized in Table 2. The changes of all fami-
lies across all studies can be compared in Fig. 4.

At genus level, the relative abundance of three genera 
was found to be significantly decreased in tumor tissues 
as compared to controls; Corynebacterium (p = 0.012 
across four of the studies), Lachnoanaerobaculum (p = 
0.015 across two of the studies), and Halomonas (p = 
0.018 across two of the studies). As illustrated in Fig. 5, 
the direction of changes was consistent across studies. 
The relative abundance of Corynebacterium was consist-
ently decreased in cases relative to controls across the 

four studies (significantly decreased in study 2). Analo-
gous to that of Corynebacterium, the relative abundance 
of Lachnoanaerobaculum and Halomonas was also con-
sistently lower in cases across the two studies (studies 
2 and 5); with a significant result in study 2. The results 
obtained from the individual studies and the meta-anal-
ysis at the genus level are shown in Table 3. The changes 
of all genera across all studies can be compared in Fig. 6.

Taken together, these results suggest that there is an 
association between lung microbiome dysbiosis and lung 
cancer.

Discussion
Although prior studies have shown the major impact 
of microbiome dysbiosis on respiratory diseases such 
as COPD, cystic fibrosis, asthma, and idiopathic pul-
monary fibrosis, very little was found in the literature 

Fig. 1  Heat map of changes in the relative abundance of Actinobacteria phylum across all studies. Regression coefficients from GAMLSS-BEZI are 
log (odds ratio) (log(OR)) of changes in the relative abundance of a specific bacterial taxon between the case and control groups and pooled log 
(OR) estimate is from a random-effects meta-analysis. The case group is considered as the reference group and shown in the heat map. Log(OR) 
> 0 indicates an increase and log(OR) < 0 indicates a decrease in the relative abundance of Actinobacteria in tumor tissues as compared to 
tumor-adjacent normal tissues

Fig. 2  Phylum level meta-analysis between tumor tissues and tumor-adjacent normal tissues; heat map for representing changes of all phyla. 
Statistically significant differences between the two groups with p-values < 0.05 are denoted with * and those with p-values < 0.0001 are denoted 
with **. The white parts in the heat map represent the bacterial taxa that are not available in a particular study. S (1-5): Study; MA: Meta-analysis
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on microbiome alterations during lung cancer. Avail-
able reports on the microbiome composition specific to 
lung cancer have been highly inconsistent and therefore 
the question remains unanswered. In reviewing the lit-
erature, no meta-analysis was found on the association 
between the microbiome and lung cancer, mainly due 
to the fact that the lung microbiome is considered an 
emerging research area. Sterility of the lungs is still a 
matter of controversy. Although microbial culture of 
healthy individuals’ lower respiratory tract specimens is 
negative, metagenomics studies have convinced scientists 
of the existence of genomes of various microorganisms 
residing in the lungs most of which are not culturable. 

In this regard, there are some issues that cause studies to 
obtain different results; including type of clinical sample, 
different sampling methods, challenges of the process of 
metagenomic analysis, and the personalized nature of 
the human microbiome, and therefore identifying and 
determining the composition and abundance of the lung 
microbiome in healthy individuals is still a major chal-
lenge. Accordingly, as the first meta-analysis aiming to 
represent taxonomic changes of the lung microbiome in 
lung tumor tissues, the primary aim of this meta-analysis 
is to integrate the results of such conflicting studies for 
better understanding of the alterations in the microbi-
ome content.

Table 2  Results of GAMLSS-BEZI and Random Effects Meta-analysis across included studies at the family level

AF & EU: Africa & Europe; IL: Israel; IT: Italy; RU: Russia

Bacterial family Estimate SE Lower limit Upper limit p-value Study Population

Study 1 AF & EU

Corynebacteriaceae -0.17 0.08 -0.34 -0.01 0.0389 Study 2 IL

-0.35 0.35 -1.03 0.34 0.3182 Study 3 IT 1

-0.54 0.39 -1.32 0.23 0.1723 Study 4 IT 2

-0.13 0.37 -0.86 0.59 0.7210 Study 5 RU

-0.19 0.08 -0.35 -0.04 0.0124 Meta_analysis Pooled

Study 1 AF & EU

Halomonadaceae -0.25 0.11 -0.46 -0.04 0.0180 Study 2 IL

Study 3 IT 1

Study 4 IT 2

-0.14 0.29 -0.72 0.43 0.6279 Study 5 RU

-0.24 0.10 -0.44 -0.04 0.0165 Meta_analysis Pooled

Fig. 3  Heat map of changes in the relative abundance of Corynebacteriaceae and Halomonadaceae families across all studies. Regression 
coefficients from GAMLSS-BEZI are log (odds ratio) (log(OR)) of changes in the relative abundance of a specific bacterial taxon between the case 
and control groups and pooled log (OR) estimate is from a random-effects meta-analysis. The case group is considered as the reference group and 
shown in the heat map. Log(OR) < 0 indicates a decrease in the relative abundance of Corynebacteriaceae and Halomonadaceae in tumor tissues as 
compared to tumor-adjacent normal tissues. The white parts in the heat map represent the bacterial taxa that are not available in a particular study
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Fig. 4  Family level meta-analysis between tumor tissues and tumor-adjacent normal tissues; heat map for representing changes of all families. 
Statistically significant differences between the two groups with p-values < 0.05 are denoted with * and those with p-values < 0.0001 are denoted 
with **. The white parts in the heat map represent the bacterial taxa that are not available in a particular study. S (1-5): Study; MA: Meta-analysis
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Table 3  Results of GAMLSS-BEZI and Random Effects Meta-analysis across included studies at the genus level

AF & EU: Africa & Europe; IL: Israel; IT: Italy; RU: Russia

Bacterial genus Estimate SE Lower limit Upper limit p-value Study Population

Study 1 AF & EU

Corynebacterium -0.17 0.08 -0.34 -0.01 0.0389 Study 2 IL

-0.35 0.35 -1.03 0.34 0.3182 Study 3 IT 1

-0.54 0.39 -1.32 0.23 0.1723 Study 4 IT 2

-0.13 0.37 -0.86 0.59 0.7210 Study 5 RU

-0.19 0.08 -0.35 -0.04 0.0124 Meta_analysis Pooled

Study 1 AF & EU

Lachnoanaerobaculum -0.55 0.21 -0.97 -0.13 0.0106 Study 2 IL

Study 3 IT 1

Study 4 IT 2

-0.07 0.55 -1.15 1.00 0.8926 Study 5 RU

-0.49 0.20 -0.88 -0.10 0.0147 Meta_analysis Pooled

Study 1 AF & EU

Halomonas -0.25 0.11 -0.46 -0.04 0.0199 Study 2 IL

Study 3 IT 1

Study 4 IT 2

-0.14 0.29 -0.72 0.43 0.6279 Study 5 RU

-0.24 0.10 -0.43 -0.04 0.0181 Meta_analysis Pooled

Fig. 5  Heat map of changes in the relative abundance of Corynebacterium, Lachnoanaerobaculum, and Halomonas genera across all studies. 
Regression coefficients from GAMLSS-BEZI are log (odds ratio) (log(OR)) of changes in the relative abundance of a specific bacterial taxon between 
the case and control groups and pooled log (OR) estimate is from a random-effects meta-analysis. The case group is considered as the reference 
group and shown in the heat map. Log(OR) < 0 indicates a decrease in the relative abundance of Corynebacterium, Lachnoanaerobaculum, and 
Halomonas in tumor tissues as compared to tumor-adjacent normal tissues. The white parts in the heat map represent the bacterial taxa that are 
not available in a particular study
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  Similar to other meta-analyses on microbiome-dis-
ease state, we have used cross-sectional studies here. 
Although the microbiome may be dynamic and change 
over time as environmental conditions change, the most 
important part of each individual’s microbiome is stable, 
namely, the core microbiome (microbial taxa or genes 

that are stable over time and shared by all or most of the 
population and are particularly important for the host’s 
biological function). In fact, the core microbiome is con-
sidered as the microbiome’s fingerprint of each individual 
and most microbiome studies, both individual and meta-
analyses, try to identify a pattern of the core microbiome 

Fig. 6  Genus level meta-analysis between tumor tissues and tumor-adjacent normal tissues; heat map for representing changes of all genera. 
Statistically significant differences between the two groups with p-values < 0.05 are denoted with * and those with p-values < 0.0001 are denoted 
with **. The white parts in the heat map represent the bacterial taxa that are not available in a particular study. S (1-5): Study; MA: Meta-analysis
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in different people under different conditions. We 
showed some significant decreases in the relative abun-
dance of several bacterial phyla, families, and genera. 
Although the phylum Proteobacteria and especially the 
genus Streptococcus have been suggested as key bacteria 
in lung cancer [25], the findings of this study do not sup-
port the domination of Proteobacteria in tumor tissues. 
The results of this study showed a significant decrease in 
Halomonadaceae, a family of Proteobacteria, and Halo-
monas, a genus of Proteobacteria, in tumor tissues of LC 
patients. Another finding was that the relative abundance 
of the phylum Actinobacteria was significantly decreased 
in tumor tissues. This finding is consistent with that of 
Zhuang et  al. [32] who reported a decrease of Actino-
bacteria in fecal samples of LC patients. However, this 
result is contrary to that of Apopa et al. [23] who found 
an increased level of Actinobacteria in LC tissue sam-
ples. Apopa et al. also reported an increased abundance 
of Proteobacteria, Bacteroidetes, and Firmicutes, differ-
ing from the results found in our study. The results of 
this study did not show any significant decrease in Fir-
micutes, as suggested in a study by Greathouse et al. [22]. 
However, one of its genera, Lachnoanaerobaculum was 
found to be significantly lower in tumor tissues in this 
meta-analysis. It is interesting to note that in all except 
one study (Apopa et  al.) included in this meta-analysis, 
a decrease in Actinobacteria was observed in tumor tis-
sues of LC patients. This inconsistency may partly be 
explained by the small sample size of the Apopa et  al. 
study. Decreases in the family Corynebacteriaceae and 
the genus Corynebacterium of the phylum Actinobacteria 
were also statistically significant in this study. It has been 
demonstrated by previous studies that the relative abun-
dance of multiple genera is significantly different in LC 
patients relative to controls. Hosgood et al. found lower 
diversity in sputum samples of LC patients which was 
accompanied by an increase in the relative abundance of 
Granulicatella, Abiotrophia, and Streptococcus in com-
parison with healthy controls [20]. Similarly, a lower 
diversity and an increased abundance of Streptococ-
cus was also reported in a study of protected specimen 
brush (PSB) of malignant parts of the lungs compared to 
healthy controls [33]. Tsay et al. have reported that Strep-
tococcus and Veillonella were more abundant in lower 
airway samples of LC patients compared to patients with 
benign lung diseases and healthy controls [34]. Yan et al. 
also found an enriched abundance of the family Veil-
lonellaceae, and Veillonella, Capnocytophaga, and Sele-
nomonas genera in the saliva of LC patients [35]. An 
enriched abundance of Veillonella and Megasphaera gen-
era was also reported in a study of BAL fluid samples of 
LC patients compared to patients with benign mass like 
lesions [19]. Most of available studies have used sputum, 

PSB, saliva, and BAL fluid specimens to study the micro-
biome of LC patients rather than a lung biopsy, mainly 
due to the difficulty of its sampling procedure. But, the 
high risk of contamination by the upper respiratory tract 
normal flora associated with the aforementioned sample 
types should not be ignored, particularly in the case of 
sputum. In fact, the family Veillonellaceae and the gen-
era Veillonella and Streptococcus are members of the 
microbial community of the oral cavity and the reports 
of these genera as differentially abundant taxa between 
LC patients and controls may be an indication of cross 
contamination. In this regard, the clinical sample with 
the lowest risk of contamination by the upper respiratory 
tract flora is lung biopsy in which samples of lung tissue 
are isolated from the respiratory tract making it an ideal 
sample for the lower respiratory system. It is interesting 
to note that the relative abundance of Streptococcus and 
Veillonella was not significantly different between cases 
and controls in this meta-analysis that may be explained 
by the fact that all studies included in this meta-analysis 
used lung biopsy specimens. In a study by Peters et  al. 
lung tumor tissue microbiome has been reported to be 
less diverse than paired normal tissue [36]. The results 
of this study showed a significant decrease in the relative 
abundance of Halomonas in tumor tissues. This finding 
is consistent with that of D’Alessandro-Gabazza et  al. 
who also detected the presence of this genus in the lung 
tissue of patients with lung cancer as well as idiopathic 
pulmonary fibrosis [37]. This finding was also reported 
by Li et al. who showed a difference in the genus Halo-
monas between lung cancer and control groups [38]. All 
these observations emphasize the need for further inves-
tigation of the role of this genus in lung cancer, which 
may serve as an indicator for prognosis of the disease. 
Investigating the respiratory microbiome for clinical 
diagnosis and treatment of respiratory diseases is still in 
its early stage. In this study, we tried to collectively find 
a pattern or biomarker based on the composition of the 
lung microbiome to help differentiate between normal 
and cancerous conditions. Regarding the poor prognosis 
of lung cancer and high morbidity and mortality of the 
disease, development of diagnostic, therapeutic, and pro-
phylactic approaches (especially, probiotics and prebiot-
ics administration) based on microbiome composition is 
of crucial importance in the field of lung cancer.

To investigate the host-microbiome interactions during 
disease states, several meta-analyses to date have taken 
full advantage of NGS technology to discover microbial 
patterns which are linked to specific diseases, includ-
ing inflammatory bowel disease (IBD), obesity, COPD, 
and colorectal cancer. Walters et al. [39] focusing on 16S 
rRNA gene sequencing studies found a consistent pat-
tern in taxonomic alterations in the gut microbiome of 
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IBD patients. Using supervised learning, they could dif-
ferentiate IBD from non-IBD individuals. In general, 
their observations on taxonomic changes were akin to 
individual studies, including a decrease in Firmicutes and 
Bacteroides and an increase in Proteobacteria and Act-
inobacteria, though different in several respects. Unlike 
prior studies, which had reported decreased Bacteroi-
detes, their meta-analysis did not show any statistically 
significant difference in Bacteroidetes phylum between 
IBD subjects and healthy controls. In addition, consid-
ering inconsistencies in the findings of previous micro-
biome studies regarding the interaction between airway 
microbiome and host in COPD, Wang et al. [28] analyzed 
COPD sputum sample microbiome using a total of 15 
metagenomic datasets adopting a multi-omic meta-anal-
ysis approach. To identify taxonomic alterations in the 
airway microbiome in COPD versus controls, they lim-
ited their meta-analysis by combining the results across 
two 16S rRNA gene datasets due to the availability of 
two datasets with the case-control design. Using ran-
dom-effects meta-analysis, a total of 12 genus-level taxa 
were identified to be statistically significant between the 
two groups. Moreover, by training a random forest clas-
sifier on COPD datasets, these 12 genera demonstrated 
to have the potential to distinguish COPD patients from 
controls. Using an independent multi-omic cohort, 
they validated their findings indicating that these gen-
era could be considered as the taxonomic signature of 
airway microbiome in COPD. In fact, these results indi-
cate that some significant associations reported in indi-
vidual studies may result from insufficient sample sizes 
and therefore with more statistical power provided with 
meta-analyses, the consistency and significance of these 
associations can be assessed more accurately. There are 
some points concerning performing a meta-analysis on 
microbiome studies. High heterogeneity of the data gen-
erated by high-throughput sequencing of 16S rRNA gene 
amplicons poses a challenge for inter-study comparisons. 
To take this matter into account, microbiome data are 
often standardized to relative abundance data where all 
microbial taxa range from zero to one. We adopted this 
standardization approach while combining microbiome 
data across different studies in the present meta-analysis 
as it provides greater statistical power in order to identify 
a core set of microorganisms (core microbiome). A meta-
analysis can be conducted adopting different approaches, 
including aggregate data meta-analyses (AD-MAs) and 
individual participant data meta-analyses (IPD-MAs). Of 
the two approaches, combining effect sizes, p-values, and 
ranks are examples of the former which aggregates sum-
mary statistics from individual studies. In the latter case, 
individual datasets of all included studies are merged 
into a single dataset. In some respects, a meta-analysis of 

microbiome data is considered more challenging due to a 
great deal of variation among microbiome studies. Inher-
ently heterogeneous data place limitations on merging 
individual datasets into a single dataset. For this reason, 
although we reprocessed all raw sequence data through 
a similar pipeline, in this meta-analysis, in an effort to 
minimize the bias and heterogeneity of data from various 
sources, we chose to take the first approach rather than 
directly merging individual datasets as it is more robust 
to between-study heterogeneity [40]. Specifically, we 
preferred to combine effect sizes by applying a random-
effects model as it has been suggested as a more statis-
tically conservative approach compared to the p-value 
combination [41, 42]. There are some methodological 
limitations in this study: (1) it was not possible to deter-
mine the relationship between demographic factors (such 
as age, gender, and smoking history) and taxonomic rela-
tive abundance of bacteria due to insufficient metadata. 
Consequently, we were not able to include them as covar-
iates in the statistical model. To determine how exactly 
these variables might affect changes in the relative abun-
dance of bacterial taxa, further research with more focus 
on covariate adjustment is suggested; (2) due to the lack 
of sufficient data on tumor tissue types, it was not fea-
sible to differentiate lung adenocarcinoma (AC) specific 
microbiome composition from lung squamous cell carci-
noma (SCC) in our analysis; (3) the reported taxa were 
not significant after adjustment for multiple comparisons 
mostly due to a considerable number of non-significant 
associations in this study which can diminish the poten-
tial significance of the observed associations. On the one 
hand, as it has been written about in the literature [43–
45], imposing a strict adjustment for multiple compari-
sons is not always necessary and is less critical in the case 
of our study since it is not feasible to compare this study’s 
statistical significance with findings obtained by other 
studies as there is no large-scale study on the lung micro-
biome in lung cancer. On the other hand, we acknowl-
edge the need for further investigation to confirm the 
observed associations in this study; (4) in general, studies 
identifying the microbial communities at different body 
sites and determining their relationship with various 
human diseases belong to an emerging area of research. 
Initially, the focus of the mentioned studies was mostly 
on taxonomic profiling of the microbial community. 
However, research has shown that due to the resilience 
property of the microbiome (members of the microbiome 
of a region have some function overlaps and thus differ-
ent microbiome compositions can have similar overall 
functions), functional profiling should also be analyzed 
along with taxonomic profiling. Functional analysis is 
performed through meta-transcriptomics and metabo-
lomics studies, which is still in its infancy in the case of 
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the respiratory tract microbiome and its association with 
lung cancer. Therefore, considering the taxonomic com-
position through 16S rRNA approach is not enough and 
should be completed by functional analyses in future 
investigations. Despite the limitations, the present results 
could have important implications for identifying micro-
bial biomarkers which are linked to the pathogenesis of 
the disease and facilitate future research. There are still 
many unanswered questions toward understanding the 
myriad roles of the lung microbiome and airway host-
microbiome interactions with lung cancer. To develop 
a deeper understanding, further studies, which take the 
mentioned limitations into account, will be needed. In 
future investigations, drawing a distinction between dif-
ferent subtypes of Non-Small Cell Lung Cancer (NSCLC) 
as well as considering the stage of lung cancer could be 
more informative in characterizing the lung microbial 
community in LC patients.

Conclusions
As the first meta-analysis of the lung microbiome in rela-
tion to lung cancer, the present research was undertaken 
to assess how the composition of the lung microbiome 
differs between lung tumor tissues and normal tissues. 
The results of this investigation show that some bacteria 
differ significantly between the two groups. Despite the 
fact that some of the findings of this study have not previ-
ously been described, the results of this research support 
the idea that the microbiome may be a key factor in can-
cer development. An important question raised by this 
study is whether or not these bacterial taxa are specific to 
lung cancer. To be considered specific indications of lung 
cancer, the results of this study need to be validated by 
further research. The insights gained from this study may 
be of assistance to microbial biomarker discovery and 
consequently the early diagnosis of lung cancer.

Methods
Search Strategy, Inclusion Criteria, and Study Selection
  A systematic literature review was conducted in Pub-
Med, SRA (Sequence Read Archive), and EBI (Euro-
pean Bioinformatics Institute) and was last updated 
on January 8, 2021. The literature search was based 
on studies that evaluated the relationship between the 
microbiome and lung cancer. There was no restriction 
on the publication date. Published studies were identi-
fied using the following keywords: (“lung cancer“[Title/
Abstract] OR “lung neoplasm“[Title/Abstract] OR “pul-
monary neoplasm“[Title/Abstract] OR “pulmonary 
cancer“[Title/Abstract]) AND (“microbiome“[Title/
Abstract] OR “Metagenom*“[Title/Abstract]). Eligibility 
criteria required studies to be case-control studies using 
16S rRNA gene sequencing for taxonomy quantification 

of the lung microbial community in LC patients with 
publicly available raw sequence data. Fifty-eight initially 
identified articles were reviewed on the basis of titles 
and abstracts and review articles and meta-analyses 
were excluded. Full-text of the remaining articles were 
then assessed and articles with no metadata or accession 
number along with articles including patients who had 
received treatment were also excluded. A total of 12 eli-
gible articles meeting our inclusion criteria were selected 
for further assessment from which 4 studies were chosen 
for meta-analysis. Eligible studies encompassed a variety 
of sample types including feces, saliva, BAL fluid, spu-
tum, PSB, and lung biopsy; although due to an insuffi-
cient number of studies to perform a meta-analysis, we 
restricted the sample type to lung biopsy since a total of 5 
datasets on lung biopsy specimens were available, one of 
which (study 4) was unpublished yet obtained from the 
same population of study 3, as they both had some identi-
cal samples. Therefore, due to the small number of avail-
able studies on lung biopsy samples of LC patients, we 
identified the identical samples by subject ID provided in 
metadata and excluded those samples from study 4 and 
then considered study 4 as a separate study with its own 
unique samples. Risk of bias in included studies was also 
assessed by means of Newcastle-Ottawa Scale (NOS) [46] 
the results of which are summarized in Table 4. All iden-
tified articles were independently assessed by two review-
ers. In the case of any discrepancy in study inclusion, a 
third reviewer was involved and the issue was resolved by 
discussion. Figure 7 presents an overview of the system-
atic literature review and Table 5 provides the character-
istics of all included studies in this meta-analysis.

Data Acquisition
Raw sequence data were gathered from NCBI SRA 
database and corresponding metadata indicating case 
or control status for each sample were acquired either 
by search in SRA using the accession number or by per-
sonal communication with the authors.

Table 4  Quality assessment of the included studies in meta-
analysis

Study Risk of bias assessment

Selection
(0-4)

Comparability
(0-2)

Exposure
(0-3)

Quality score

Apopa et al. 3 2 3 8

Nejman et al. 3 1 3 7

Yu et al. 3 1 3 7

Kovaleva et al. 3 2 3 8



Page 11 of 15Najafi et al. BMC Microbiology          (2021) 21:315 	

Data Pre‑processing and Taxonomic Profiling
All 16S rRNA marker gene sequencing data were pro-
cessed through a standardized pipeline in QIIME 2 

(version 2020.6) [49]. The first step in this process 
was to assess the quality of the sequence reads (using 
FastQC [50]). Paired-end demultiplexed sequences in 
FASTQ files were quality filtered to identify and remove 

Table 5  Characteristics of the included datasets in meta-analysis

CCN: Case-Control Number; Cases: either AC (lung adenocarcinoma) or SCC (lung squamous cell carcinoma); Controls: tumor-adjacent normal tissues; y/o: years old; AF & EU: 
Africa & Europe; IL: Israel; IT: Italy; RU: Russia; NA: Not Available; * Five regions of the 16S rRNA gene were amplified and sequenced on Illumina HiSeq, MiSeq or NextSeq

Study Population Accession number 16S region Sequencing platform CCN Cases Controls Age (y/o)

Study 1
Apopa et al. [23]

AF & EU PRJNA472758 27 F & 519R Illumina MiSeq 14 9 5 50–80

Study 2
Nejman et al. [47]

IL PRJNA624822 * * 476 245 231 NA

Study 3
Yu et al. [24]

IT 1 PRJNA303190 V3–V4 Illumina MiSeq 257 50 207 40–80

Study 4
-

IT 2 PRJNA327258 NA Illumina MiSeq 53 27 26 40–80

Study 5
Kovaleva et al. [48]

RU PRJNA647170 V3–V4 Illumina MiSeq 49 25 24 62±10

Total 849 356 493

Fig. 7  Thesystematic literature review flow diagram
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Fig. 8  The method workflow for downstream analysis including data pre-processing step, feature table construction, and statistical analyses
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low-quality reads. Non-biological sequences such as 
adapters and primers were also separated and trimmed. 
Running the DADA2 [51] denoising method, paired-end 
reads were joined. Once QC filtering and the denoising 
step were completed, denoised data were summarized 
and an ASV (Amplicon Sequence Variant) table was 
generated. In the final stage of the process and for the 
purpose of assigning taxonomy, a Naive Bayes classifier 
was trained on Greengenes (GG v13.8) ribosomal refer-
ence database [52], and taxonomy classification was con-
ducted. This process was carried out independently for 
all runs of each study. All the parameters used for quality 
filtering are available in Additional file 1.

Statistical Analyses
The overall workflow is shown in Fig. 8. The analysis was 
based on the conceptual framework proposed by Ho 
et al. [53]. Prior to statistical analyses, relative abundance 
data were obtained by dividing the count value of each 
taxon by the total counts per sample. Taxonomic relative 
abundance data were then filtered to remove taxa with 
the average relative abundance less than 5× 10−5 as well 
as taxa which were present in fewer than 5 % of samples 
within each study. The remaining taxa were retained for 
statistical modeling. All statistical analyses were per-
formed from phylum to genus level within each dataset 
individually. To compare the relative abundance of the 
lung bacterial taxa between case and control groups, 
a GAMLSS-BEZI regression model was fitted in each 
study; this approach was adopted since it both accurately 
captures the actual distribution of relative abundance 
data and specifically addresses zero inflation in micro-
biome data. The resulting regression coefficient esti-
mate of each taxon from each study ( βtk ) was obtained 
from GAMLSS-BEZI and considered as effect size and 
together with its corresponding standard error were 
retrieved for meta-analysis. If each study contains T 
taxa, βtk denotes the effect size for taxon t in study k 
( 1 ≤ t ≤ T  and 1 ≤ k ≤ K  ). To account for inherent het-
erogeneity among microbiome studies, a random-effects 
meta-analysis model with inverse variance weighting was 
then applied to combine calculated effect sizes and their 
standard errors across all included studies. The following 
assumption is made by a random-effects model (REM) to 
combine effect sizes in K studies:

βtk
∣∣θtk , σ tk

∼ N

(
θtk , σ

2
tk

)

θtk |µ, τ ∼ N (µ, τ 2)

Then the pooled effect size for βtk is calculated as 
follows:

Where,

And wtk denotes the weight assigned to study k. τ 2 is 
the between-study variance which was estimated based 
on the DerSimonian and Laird (DL) method.

All taxa available in at least 2 datasets were retained 
for meta-analysis. Significance levels were set at the 5 % 
level and all statistical analyses were carried out using R 
version 4.0.2.
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