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Introduction: Aging is a normal, inevitable, irreversible, and progressive process which
is driven by internal and external factors. Oxidative stress, that is the imbalance
between prooxidant and antioxidant molecules favoring the first, plays a key role in the
pathophysiology of aging and comprises one of the molecular mechanisms underlying
age-related diseases. However, the oxidative stress theory of aging has not been
successfully proven in all animal models studying lifespan, meaning that altering oxidative
stress/antioxidant defense systems did not always lead to a prolonged lifespan, as
expected. On the other hand, animal models of age-related pathological phenotypes
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showed a well-correlated relationship with the levels of prooxidant molecules. Therefore,
it seems that oxidative stress plays a more complicated role than the one once believed
and this role might be affected by the environment of each organism. Environmental
factors such as UV radiation, air pollution, and an unbalanced diet, have also been
implicated in the pathophysiology of aging and seem to initiate this process more rapidly
and even at younger ages.
Aim: The purpose of this review is to elucidate the role of oxidative stress in the
physiology of aging and the effect of certain environmental factors in initiating and
sustaining this process. Understanding the pathophysiology of aging will contribute to
the development of strategies to postpone this phenomenon. In addition, recent studies
investigating ways to alter the antioxidant defense mechanisms in order to prevent aging
will be presented.
Conclusions: Careful exposure to harmful environmental factors and the use of
antioxidant supplements could potentially affect the biological processes driving aging
and slow down the development of age-related diseases. Maybe a prolonged lifespan
could not be achieved by this strategy alone, but a longer healthspan could also be a
favorable target.

Keywords: aging, oxidative stress, antioxidants, envionmental pollution, mitochondria, reactive oxygen species,
pathogenesis of aging

INTRODUCTION

Today, life expectancy for a generally healthy person has
increased to 80 years, but this is mainly due to scientific advances
in pharmaceutics and better living conditions, which improve
the quality of life (Brown, 2015). According to a recent study,
the aging population (over 65 years old) worldwide reached
576 million in 2010, while it is estimated that in 2050 this number
will increase to 1.5 billion (United Nations, 2019).

The aging process is a dynamic, time-dependent process
characterized by the gradual, ever-increasing cell damage, the
progressive reduction of cell functions, and the increased
susceptibility to morbidity (Valavanidis et al., 2012). Although
aging is a relatively well-preserved process among all organisms,
the underlying molecular mechanisms differ between species
and are still an active field of investigation (Xu and Tahara,
2013; Deschênes and Chabot, 2017; Magalhães et al., 2018;
Jazbec et al., 2019; Warraich et al., 2020). Both genetic and
environmental factors seem to variably contribute to the aging
process, with environmental factors being major contributors
(Kirkwood, 2005a).

The aging process is characterized by changes that occur at
the molecular level and include genomic instability, telomere
damage, epigenetic modifications, and loss of proteostasis,
among others (López-Otín et al., 2013). ‘‘Cellular (replicative)
senescence’’ is a term originally used to describe the irreversible
loss of the proliferative capacity of cells, which cease dividing
after serial passaging in culture, and was firstly proposed by
Hayflick (1965) back in the 1960s. Senescent cells undergo
alterations, including secretome changes, and have been
proposed to accumulate in aging tissues playing a key role in the
initiation and progression of aging (Jeyapalan et al., 2007; Wang

et al., 2009). Moreover, senescence-inducing stimuli have been
shown to increase with age (Baker et al., 2004; Faggioli et al.,
2012), and this further strengthens the causative relationship
between these two.

The theory that oxidative stress is a key component of the
phenomenon of aging was introduced in 1956 by the American
scientist Denham Harman (Harman, 1956) and further refined
in 1969 (McCord and Fridovich, 1969) with the discovery of the
enzyme superoxide dismutase (SOD), which is involved in the
in vivo conversion of superoxide anion radical (O2

•−) to oxygen
(O2), and is one of the main cellular antioxidant mechanisms.
It has been suggested that reactive oxygen species (ROS) formed
endogenously as by-products of normal metabolism, affect the
process of aging due to the increased oxidative damage to
biological molecules and the promotion of cellular senescence.
The researchers observed that species with higher metabolic rates
have lower life expectancy and age faster, as it was suggested that
energy consumption itself was responsible for aging through the
production of O2

•−and other ROS (‘‘rate of living’’ hypothesis): a
faster respiration rate, associated with greater production of ROS,
contributes to faster aging (Sohal, 1976).

Since then, several major modifications have been introduced
to better explain the link between oxidative stress and aging,
while other contributing factors have also emerged, such as
telomere shortening (Bodnar et al., 1998; Jiang et al., 2008), loss
of proteostasis (Tawo et al., 2017), and differential expression of
miRNAs (Dhahbi et al., 2011) among others, which continuously
shed more light on the underlying mechanisms of aging.
Nevertheless, there remains a controversy over the exact role
of oxidative stress in the aging process, since oxidative stress
alone cannot fully explain why some people age faster than
others and antioxidant therapies have not successfully decelerate
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aging in all animal models. Therefore, the main purpose of this
literature review is to elucidate the role of oxidative stress in
the pathophysiology of aging and how environmental factors
such as UV radiation, air pollution, and diet initiate and
sustain this process implicating ROS. A thorough presentation
of ROS production and oxidative stress will precede, in order to
enhance the understanding of the association between oxidative
stress and aging. Deciphering the pathophysiology of aging
will help to develop strategies in order to slow down this
phenomenon. Moreover, results of recent studies aiming to
develop antioxidant defense mechanisms or other interventions
in order to prevent/decelerate aging will also be presented.

Free Radicals and ROS: Production and
the Role of Mitochondria
Free radicals are molecules that are naturally produced in
organisms, and in low concentrations are essential for cellular
functions and defense systems (Phaniendra et al., 2015). A free
radical is defined as an atom or molecule with one or more
unpaired electrons in its valence shell. They are highly reactive
because they show a strong tendency to pair their unpaired
electron(s) by interacting with other radical or non-radical
molecules (Littler, 1978; Pham-Huy et al., 2008).

The chemical production of free radicals mainly occurs via
two mechanisms. The first mechanism involves redox reactions,
i.e., the gain of an electron from a molecule (reduction) or the
loss of an electron from a molecule (oxidation), while the second
mechanism involves the homolytic cleavage of a covalent bond,
in such a way that each fragment gets one of the shared electrons
of the bond. In biology, electron-gaining and electron-donating
agents are called prooxidants and antioxidants, respectively
(Pham-Huy et al., 2008; Simioni et al., 2018).

The vast majority of endogenous prooxidants contain oxygen
and are called reactive oxygen species (ROS), while other
prooxidants contain nitrogen (reactive nitrogen species, RNS) or
even halogens such as chlorine (reactive chlorine species, RCS).

Reactive prooxidant species can be classified into two
categories: (a) radical; and (b) non-radical species, according to
the existence of unpaired valence electrons in their molecules.
Radical species include molecules such as the superoxide
anion radical (O2

•−), hydroxyl radical (OH•), peroxy radical
(RO2

•), nitric oxide (NO•), nitrogen dioxide (NO2
•), and

nitrous oxide (N2O), as well as the hypochlorite anion (ClO-).
The most common non-radical prooxidant species are ozone
(O3), hydrogen peroxide (H2O2), hypochlorous acid (HOCl),
peroxynitrite anion (ONOO-), and aldehydes (Simioni et al.,
2018; Möller et al., 2019).

Endogenous production of ROS is mainly linked to
cellular metabolism. During cellular respiration, O2 is used by
mitochondria to produce the necessary energy in the form of
adenosine triphosphate (ATP), which is intertwined with the
formation of ROS, especially within the mitochondrial electron
transport chain (part of oxidative phosphorylation; Hirst et al.,
2008; Warraich et al., 2020).

Mitochondria are dynamic cellular organelles surrounded by
a double membrane and located in the cytoplasm of eukaryotic
cells. They are often referred to as ‘‘power plants’’, as their

primary function is to supply the cell with energy through
oxidative phosphorylation and the formation of ATP. Human
mitochondrial DNA (mtDNA) consists of 16,569 base pairs.
There are many copies of mtDNA within the mitochondria
of mammal cells (100–10,000 copies), which are packaged
with protein into spheroid bodies called nucleoids. There are
13 proteins, 22 tRNAs, and two rRNAs encoded by human
mtDNA and are essential for the structural and functional
maintenance of mitochondria (DiMauro and Schon, 2003;
Kaufman et al., 2007; Chinnery and Hudson, 2013; Srivastava,
2017). Various other metabolic pathways apart from oxidative
phosphorylation also occur in the mitochondria, including
β-oxidation of fatty acids, and the tricarboxylic acid cycle
(Nsiah-Sefaa and McKenzie, 2016; Martínez-Reyes and Chandel,
2020).

The electron transport chain is located in the inner
mitochondrial membrane. As the reduced nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FADH2)
are oxidized, electrons flow sequentially into the respiratory
chain complexes. In the last step, in complex IV (cytochrome
c) electrons are transferred to molecular O2 leading to the
production of H2O (Figure 1A). However, before electrons
reach complex IV, there can be a ‘‘leakage’’ of O2 in complexes
I and III, leading to the formation of O2

•− instead of H2O
(Chance et al., 1979; Rinnerthaler et al., 2015). The O2

•− formed
in the membrane is rapidly converted by SOD, SOD2 in the
mitochondrial matrix and SOD1 in the transmembrane space, to
H2O2. Hydrogen peroxide produced by SOD can react further
to form HO• both in the mitochondria and in the cytoplasm
(Zsurka et al., 2018).

Another mitochondria-specific ROS production process is the
reverse electron transport (Figure 1B). It is known so far, that this
process mainly occurs when coenzyme Q gets over-reduced by
complex II (Chouchani et al., 2014). Other enzymes implicated
are glycerol-3-phosphate dehydrogenase, electron-transferring
flavoprotein, or dihydroorotate dehydrogenase, which along
with the inhibition of complexes III or IV can also induce
reverse electron transport and further increase ROS production
within mitochondria (Taylor and Moncada, 2010). Especially
under hypoxic conditions, the metabolic shift of cells leads
to the overuse of succinate, which can alter ROS production
from complex I in the mitochondria to the reverse direction
(Fernández-Agüera et al., 2015).

In addition to the mitochondrial respiratory chain and reverse
electron transport, NADPH oxidase (nicotinamide adenine
dinucleotide phosphate oxidase) is another important source
of intracellular ROS. NADPH oxidases, also known as NOX
enzymes, act by catalyzing the transfer of electrons from NADPH
to molecular O2 to generate O2

•− and other ROS. NOX
enzymes are located in the cytoplasmic membrane, endoplasmic
reticulum, and mitochondria (Nauseef, 2008; Rinnerthaler
et al., 2015). Moreover, other mitochondrial agents, such as
monoamine oxidase or α-ketoglutarate dehydrogenase complex,
contribute significantly to the total production of ROS in a
way that depends on the tissues they are found (Meo and
Venditti, 2001; Murphy, 2009; Zorov et al., 2014). Therefore, ROS
production is interchangeably linked to mitochondrial function
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FIGURE 1 | The electron transport chain and the reverse electron transport. (A) The conventional forward electron transport by the electron transport chain. (B) The
reverse electron transport which leads to the overproduction of O2

•− and occurs when coenzyme Q gets over-reduced by complex II or the succinate is overused
due to hypoxia.

and mitochondria are the main source of intracellular ROS and
even contribute to 90% of all ROS produced within the cell
(Birch-Machin and Swalwell, 2010; Naidoo and Birch-Machin,
2017; Srivastava, 2017). Figure 2 summarizes the main pathways
of intracellular ROS production and interconversion.

Oxygen and its compounds are thus, essential for aerobic
organisms in order to maintain the numerous functions of
cells, tissues, and organs through cellular respiration. Moreover,
ROS have other physiological roles, i.e., they are important
signaling molecules (Lee et al., 2002; Kim et al., 2008; Reczek
and Chandel, 2015) that contribute to a variety of functions
such as protein phosphorylation and activation or deactivation of

signaling pathways (Banan et al., 2001; Takada et al., 2003; Bleier
et al., 2015). For example, the production of ROS via the reverse
electron transport at complex I provokes the differentiation of
myoblasts (Lee et al., 2011), while sensing of oxygen levels by the
carotid body is again regulated by these ROS (Fernández-Agüera
et al., 2015). However, in addition to their concentration, the site
of ROS production is also significant for their physiological roles
(Scialò et al., 2016, 2017).

Endogenous ROS can be also produced during intense
physical activity (Meo and Venditti, 2001; Parker et al., 2014;
Simioni et al., 2018) and exposure to phagocytic-activating
microbes (Kraaij et al., 2010), but there are also a number of
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FIGURE 2 | Endogenous sources of reactive oxygen species (ROS) production. Intracellular ROS is mainly produced by subcellular organelles such as the
mitochondria, endoplasmic reticulum and peroxisomes. Another enzymatic system that produces ROS and is located on the cytoplasmic membrane is NADPH
oxidase (NOX), which primarily generates superoxide anion radical (O2

•−). In mitochondria, O2
•− is mainly produced by complexes I and III. Nitric oxide synthase

(NOS) catalyzes the formation of nitric oxide (NO•) from L-arginine and tetrahydrobiopterin (BH4), and subsequently NO• can yield peroxynitrite (ONOO-) by direct
reaction with O2

•−. Cytosolic O2
•− is then converted to hydrogen peroxide (H2O2) by endogenous superoxide dismutase (SOD). H2O2 can be further reduced to

water (H2O) by the antioxidant enzymes glutathione peroxidase (GPx), catalase (CAT) or peroxiredoxin (Prx), or react with metal cations in Fenton and Fenton-like
reactions to generate hydroxyl radical (•OH), which can cause immediate oxidative damage to biomolecules.

external factors that can lead to free radical and ROS production
within the body. Such exogenous sources of free radicals are
cigarette smoke, X-rays, UV radiation, various chemicals and
pharmaceuticals, as well as particles of air pollution (ozone,
nitroxides; Figure 3; Phaniendra et al., 2015).

Antioxidant Mechanisms
Apart from their physiological roles though, under certain
conditions, ROS can also become toxic (Fridovich, 1998).
Hence, for proper biological function, it is necessary to
maintain a balance between the formation and elimination of
ROS (redox balance). It is estimated that about 10,000 free
radicals ‘‘bombard’’ each cell per day (Poon et al., 2004), so
various antioxidant defense mechanisms have been developed
to maintain this redox balance (Pham-Huy et al., 2008). An
antioxidant is defined as any substance that is present in small
concentrations compared to the substrate that is oxidized, and
that significantly delays or prevents the oxidation of this substrate

(Brainina et al., 2019). Antioxidants work either by blocking the
formation of ROS or by stopping the propagation of free radicals
formed by radical chain reactions. Antioxidants can be classified
according to their origin and chemical composition. Thus, there
are endogenous and exogenous antioxidants, which we absorb
with nutrition (Kurutas, 2016).

Antioxidants include enzymatic and non-enzymatic
molecules. The most important antioxidant enzymes such
as SOD, glutathione peroxidase (GPx), catalase (CAT), and
various peroxiredoxins, protect intracellular mechanisms and
maintain cellular redox balance (Valavanidis et al., 2012). SOD
catalyzes the dismutation of O2

•− into O2 and H2O2. CAT
then converts H2O2 to H2O and O2, a reaction that occurs in
just a few seconds (Chelikani et al., 2004; Simioni et al., 2018).
Many studies have shown that SOD plays an important role in
protecting cells from oxidative stress during the development of
the aging process, as will be discussed below (Rizvi and Maurya,
2007; Das and Muniyappa, 2013).
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FIGURE 3 | Sources of reactive oxygen species (ROS) that lead to oxidative stress and promote aging. Several endogenous and exogenous factors contribute to
excess ROS formation. Any imbalance between the production of free radicals and ROS and their elimination by antioxidant systems can cause oxidative stress that
ultimately promotes accelerated aging phenotypes through oxidative macromolecular alterations, such as the exemplary alterations depicted in the bottom right part
of the figure.

Moreover, intracellular low molecular weight non-enzymatic
antioxidants, such as ascorbic acid (vitamin C), uric acid,
flavonoids, carotenoids, glutathione (GSH), and pyruvate, are
particularly effective against oxidizing agents (Valavanidis
et al., 2012; Kurutas, 2016). The main dietary antioxidants
are fat-soluble or water-soluble herbal compounds such as
tocopherols (vitamin E), β-carotene (precursor of vitamin A),
lycopene, vitamin C, lutein, and various polyphenols (flavonoids
and other related compounds; Simioni et al., 2018; the main
endogenous and exogenous antioxidants are summarized in
Figure 4).

Particular mention should be made to the plasma membrane
redox system (PMRS), an antioxidant system on the plasma
membrane. Analogous to the electron transport chain in
the inner mitochondrial membrane, PMRS comprises redox
enzymes involved in electron transport from intracellular
reducing agents to extracellular acceptors, and energy
metabolism. It is also important for the recycling of antioxidants
such as coenzyme Q and α-tocopherol (vitamin E), which
protects the plasma membrane from oxidative damages such as
lipid peroxidation. Cells neutralize extracellular ROS through
PMRS by transferring electrons from NAD(P)H and vitamin
C to extracellular free radicals and ROS. Thus, PMRS acts as
a protective antioxidant system for the cell, especially when
mitochondrial dysfunction is present and cellular energy
metabolism is compromised (de Grey, 2005; Hyun B.-H. et al.,
2006; Hyun D.-H. et al., 2006).

Oxidative Stress and Oxidative Damage
The redox balance is a key characteristic of cellular homeostasis
and should be carefully maintained in order to ensure optimal
cellular function. Reducing ROS levels below the normal
threshold for homeostasis can disrupt the signaling role of
oxidizing molecules. Similarly, an increase in ROS above
indicated levels can prove harmful and lead to cellular death or
a more rapid onset of certain related diseases.

The term ‘‘oxidative damage’’ or ‘‘oxidative stress’’ refers to
the accumulation of free radicals and ROS in the body, due to
an imbalance between the levels of these oxidizing agents and
antioxidant mechanisms (McCord, 2000). It was introduced in
1970 to describe many harmful processes. However, it was later
better clarified as the mechanism that occurs due to either the
increased production of free radicals or the reduced ability of
antioxidant mechanisms to eliminate them. In addition, oxidative
stress can be a result of increased production of free radicals
with a generally normal antioxidant function, or of the normal
production of free radicals with comparatively low antioxidant
capacity (Czerska et al., 2015; Weidinger and Kozlov, 2015).

Oxidative stress poses a risk to cellular homeostasis, as it
can cause random damage to key biomolecules by altering or
inactivating them (Figure 3; Valko et al., 2007; Simioni et al.,
2018). For example, it has been demonstrated that ONOO-, the
product of the reaction between O2

•− and NO, induces tyrosine
nitration and phosphorylation in proteins from synaptosomes
leading to neuronal degradation (di Stasi et al., 1999). Similarly,
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FIGURE 4 | Schematic diagram of endogenous and exogenous enzymatic and non-enzymatic antioxidants.

DNA bases are also susceptible to oxidative damage, as guanine for
example rapidly interacts with ONOO- to form 8-nitroguanine,
which can consequently be used as a biomarker for oxidative
DNA damage (Yermilov et al., 1995). In particular, mtDNA
is more sensitive to oxidative stress and 10 times more prone
to mutations compared to nuclear DNA (Goo et al., 2013;
Latimer et al., 2015). This is mainly due to the fact that: (a)
it is not protected from the solid organization and wrapping
around histones, as is the case for nuclear DNA (Taylor
and Turnbull, 2005), although the mitochondrial transcription
factor A (Tfam) has been shown to play a similar role to
histones for mtDNA (Kaufman et al., 2007) and even sometimes
protects it from oxidative damage (Hayashi et al., 2008; Xu
et al., 2009); (b) it is very close to the inner mitochondrial
membrane, one of the main sites of ROS formation (Markevich
et al., 2020); and (c) mitochondria have less effective DNA
repair mechanisms, for example, they can repair single-strand
breaks but not double-strand breaks (Bohr, 2002; Sykora et al.,
2012). Finally, ROS can also oxidize polyunsaturated fatty acids
triggering lipid peroxidation, a chain of oxidative degradation of
lipids, affecting cell membrane permeability (Figure 5; Simioni
et al., 2018; Yalcinkaya et al., 2019; Juan et al., 2021). Such
ROS-induced oxidative damage can eventually lead to cell death
(Ding et al., 2016; Redza-Dutordoir and Averill-Bates, 2016;
Zhao et al., 2016).

Based on the above damages, oxidative stress has been
associated with numerous degenerative and chronic disorders,

including autoimmune disorders (Ramani et al., 2020), chronic
inflammatory conditions (García-Sánchez et al., 2020), cancer
(Aboelella et al., 2021), arthritis (Fonseca et al., 2019),
neurodegenerative (Wang X. et al., 2020) and, and cardiovascular
diseases (de Almeida et al., 2020). For instance, increased
production of ROS may enhance the synthesis of inflammatory
cytokines (Chandel et al., 2000; Ichimura et al., 2003; Wang
et al., 2010). Inflammation, in turn, can accelerate the formation
of ROS, as proinflammatory cytokines such as TNF-α (tumor
necrosis factor α) and IFN-γ (interferon γ) have been shown to
increase ROS production by mitochondria and NOX (Yang et al.,
2007; Mittal et al., 2014), establishing a link between oxidative
stress and inflammation.

Additionally, oxidative stress-induced errors in
mitochondrial gene expression can lead to malfunctioning
mitochondrial subunits, and since mtDNA integrity is required
for proper mitochondrial function, several diseases have been
linked to mtDNA mutations (Bandy and Davison, 1990; Taylor
and Turnbull, 2005; Chapman et al., 2020). Mitochondria divide
separately from cellular division, so if damaged mitochondria
proliferate faster than intact normal ones, it is possible that
an increase in the rate of cell loss will occur due to their
accumulation within the cell (Ma et al., 2020). mtDNA
mutations create a vicious cycle in which malfunctioning
mitochondria contribute to the generation of ROS, which leads
to more ROS-mediated oxidative damage to the mitochondria
(Birch-Machin and Swalwell, 2010; Kandola et al., 2015).
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Furthermore, alterations in coenzyme Q synthesis can alter
the mitochondrial production of ROS, especially via the reverse
electron transport, and is thus, associated with mitochondrial
diseases (Fernández-Ayala et al., 2014). Mitochondrial
dysfunction has been specifically linked to the aging phenotype
and its more rapid evolvement (Kujoth et al., 2005; Hiona et al.,
2010; Lane et al., 2015; Payne and Chinnery, 2015; Sun et al.,
2016), and the pathogenesis of age-related diseases, such as
Alzheimer’s disease (Onyango et al., 2016). Many studies have
indeed shown that ATP production is affected by mutations in
mtDNA, which lead to premature aging and neurodegeneration
(Linnane et al., 1989; Münscher et al., 1993; Srivastava, 2017).
However, PMRS is a major mechanism that can compensate for
mitochondrial dysfunction as an alternative generator of ATP
and maintain redox homeostasis by lowering oxidative stress in
oxidative phosphorylation-deficient cells (de Grey, 2005; Hyun
B.-H. et al., 2006; Hyun D.-H. et al., 2006).

As such, the theory that ROS formed within mitochondria
contributes to the aging process has been developed. This
theory has been modified, extended, and challenged by many
researchers, but two basic principles remain generally accepted.
First, oxidatively damaged macromolecules accumulate during
the aging process due to an imbalance between prooxidant and
antioxidant agents, and second, the degenerative phenotype
of aging is linked to this accumulated oxidative damage
(Srivastava, 2017).

PATHOPHYSIOLOGICAL MECHANISMS
THAT LEAD TO AGING

More than 300 theories, either mechanistic or evolutionary,
have been proposed by the scientific community to explain
how and why living organisms age (Tosato et al., 2007).
However, no such theory is universally accepted. The prevailing
theories for the interpretation of the physiological phenomenon
of aging of multicellular organisms and humans fall into
two broad categories: (a) program-based theories; and (b)
damage-based theories. Program-based theories claim that
aging is the result of a genetically programmed process
(cellular senescence), which is a normal mechanism in order
to halt cell proliferation as a response to errors occurring
during replication, neuroendocrine and immunological changes.
Damage-based theories suggest that aging is due to the
accumulation of damages to key biomolecules such as proteins,
enzymes, membrane lipids, nuclear, and mtDNA, which
cannot be repaired and result in dysregulated metabolism
and contribute to cell degeneration and death (Kirkwood and
Austad, 2000; Kirkwood, 2005b; Longo et al., 2005; reviewed in
Valavanidis et al., 2015). Genetic inheritance seems to contribute
only 3% to aging, whereas epigenetic and post-translational
modifications are more important factors that contribute to
aging (Wood et al., 2015; Pal and Tyler, 2016).

As an example of damage-based theories, p66Shc is a
pro-apoptotic protein that is involved in the production of
ROS in mitochondria, leading to mitochondrial damage and
apoptosis under oxidative stress conditions (Galimov, 2010). As
explained above, aging could be associated with a dysregulated

FIGURE 5 | The process of lipid peroxidation of polyunsaturated fatty acids.
First a free radical or reactive oxygen species (ROS) remove an electron from
a methylene group between two double bonds of a polyunsaturated fatty acid
(LH) leading to the formation of a new free radical (unsaturated lipid radical).
The lipid radical formed is very unstable, resulting in its rapid rearrangement
and the formation of a similar unsaturated lipid radical. This radical reacts with
molecular oxygen towards a lipid peroxy radical. This peroxy radical can
extract a hydrogen atom from an adjacent polyunsaturated fatty acid, thereby
creating a new free radical and a lipid peroxide. These radical chain reactions
further propagate and their main degradation end-products are
malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), which are relatively
stable. Hence, MDA and HNE can be used as a means of quantifying the
levels of oxidative stress and lipid peroxidation within cells.
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mitochondrial function, for example when reduced oxidative
phosphorylation occurs, which results in increased ROS
production. Elevated ROS levels can activate p66Shc, thereby
inducing ROS production even further, leading to apoptosis and
maintaining a steady aging process. Thus, the p66shc protein
appears to be an important link between ROS and aging (Ray
et al., 2012). In addition, oxidative damage has been found to
lead to telomere damage and shortening, which contributes to
the aging process, and the development of age-related diseases
(von Zglinicki, 2002; Cattan et al., 2008; Jiang et al., 2008; Ludlow
et al., 2014; Blackburn et al., 2015; Pineda-Pampliega et al., 2020).

However, it seems that the relationship between ROS
production and aging is non-linear, and various levels of
oxidative stress might have opposing effects. Low levels have
been proven to protect cellular structures by triggering defense
systems, whereas higher concentrations can cause oxidative
damage accelerating the aging phenotypes (Yun and Finkel,
2014). So, even though the exact underlying mechanisms of
cellular aging remain to be explored, research showed that not
only oxidative stress, but also mitochondrial dysfunction, DNA
damage, oncogene expression, and loss of tumor suppressor
genes such as PTEN (phosphatase and tensin homolog),
RB1 (gene of retinoblastoma protein), NF1 (neurofibromin
1 gene), and the type I inositol-3,4-bisphosphate 4-phosphatase
(INPP4A) gene, can induce cellular aging (Davalli et al., 2016).
On the other hand, mitochondrial dysfunction associated with
mtDNA mutations has been shown to induce aging phenotypes
also independent of ROS production (Trifunovic et al., 2005).

Therefore, the theory of oxidative stress, as initially proposed
to explain the aging process, was compromised in 2014
(Gladyshev, 2014). This was because a series of studies have
shown that the involvement of ROS in the aging process depends
on cellular metabolism, genotype, and function of defense
mechanisms. For example, in many works, the overexpression
of antioxidant enzymes or antioxidant supplementation did not
affect aging or increase lifespan. In several model organisms,
such as Saccharomyces cerevisiae (Koc et al., 2004), Drosophila
melanogaster (Mockett et al., 1999, 2003) or Caenorhabditis
elegans (Keaney and Gems, 2003; Keaney et al., 2004),
growing under completely anaerobic conditions, antioxidant
enzyme overexpression, supplementation with SOD mimetics,
or antioxidant supplementation did not result in an increased
lifespan. On the contrary, increased ROS production through
respiratory complex I reverse electron transport was shown to
extend D. melanogaster lifespan in another study (Scialò et al.,
2016). However, more recent data still underline a causative
relationship between the two (Deepashree et al., 2019).

Similarly, in vertebrates, there are a lot of gene manipulated
models where the knockout of antioxidant enzymes did not result
in a reduced lifespan. For example, CAT-/- knockout mice (Ho
et al., 2004), GPx1-/- knockout mice (Ho et al., 1997), GPx2-/-

knockout mice (Esworthy et al., 2001), or SOD3-/- knockout mice
(Sentman et al., 2006) were not reported to live shorter lives,
similar to CAT+/+ overexpressing mice which were not found to
live longer (Chen et al., 2004).

Thus, it looks like oxidative stress is not simply linearly
related to aging, and ROS, as by-products of cellular metabolism,

can simply cause cell damage that may drive aging phenotypes
(Carocho et al., 2018). Today, a slightly modified theory prevails,
that the damage caused by oxidation is associated with aging
and fragility (frailty) of the body (Viña, 2019). Frailty is a
clinical syndrome concerning the elderly and is due to the
cumulative deterioration of multiple physiological systems. It is
characterized by diminished energy levels, reduced resistance to
daily or acute stressors and causes vulnerability with a variety of
adverse outcomes (falls, confusion, disability, loss of autonomy)
and increased mortality (Clegg et al., 2013). Hence, oxidative
stress remains one of the leading causes of aging.

Cellular Senescence and Aging
Cellular senescence represents a stable and long-term loss of the
proliferative capacity of cells which, nevertheless, are still viable
and express metabolic activity (de Cecco et al., 2013). Some of
the main inducers of cellular senescence are DNA damage and
telomere erosion (Bautista-Niño et al., 2016). Oxidative stress
is highly associated with cellular senescence, because it drives
DNA lesions, accelerates telomere shortening, and activates
molecular pathways leading to growth arrest (Chen et al., 2001;
Nogueira et al., 2008; Barascu et al., 2012; Benkafadar et al.,
2019). The senescence growth arrest has been shown to follow
the activation of several signaling pathways, namely the chronic
activation of p53/p21 and p16INK4a/pRB signaling pathways
(McConnell et al., 1998; Takahashi et al., 2006; Popov and Gil,
2010), a persistent DNA damage response (DDR) signaling, and
the stress-responsive p38MAPK (phosphorylated p38 mitogen-
activated protein kinase) and protein kinase C signaling pathways
(Passos et al., 2010; Freund et al., 2011).

Cellular senescence is a key contributor to organism aging,
since senescent cells are robustly accumulated in aging tissues,
especially in aging skin (Ressler et al., 2006; Velarde et al., 2012).
Similarly, in aging primates or rodents, senescent cells have
been found significantly expressed (Herbig et al., 2006; Wang
et al., 2009; Salminen et al., 2011; Yousefzadeh et al., 2020;
Yu et al., 2020). In a recent study, the therapeutic targeting of
senescent cells in order to promote their apoptosis helped to
reverse tissue homeostasis in both fast aging and normal aged
mice, clearly implicating senescence with aging (Baar et al., 2017).
Despite that, cellular senescence can also occur as a programmed
event in order to promote tissue remodeling during embryonic
development, indicating its multilevel role in mammals (Muñoz-
Espín et al., 2013; Davaapil et al., 2017).

The Senescence-Associated Secretory
Phenotype (SASP)
Some of the basic characteristics of these cells are increased size,
upregulated enzyme activity of lysosomal β-galactosidase (SA-
β-GAL), high levels of p16, p21, histone variant macroH2A,
and p38MAPK, as well as the continuous development of the
SASP phenotype (senescence-associated secretory phenotype).
The SASP is a common characteristic of senescent cells that
undergo senesce mainly due to genomic damage or epigenetic
modifications, and differentiates them from other types of
non-proliferating cells. This phenotype represents the secretion
of soluble factors including interleukins (ILs), chemokines and
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growth factors, enzymes such as matrix metalloproteinases
(MMPs), and insoluble proteins such as extracellular matrix
(ECM) components. Nuclear factor-kappa B (NF-κB) also
plays an important role in the occurrence of the SASP
phenotype (Coppé et al., 2008; Birch and Passos, 2017; Song
et al., 2020). These factors sustain an immunomodulatory and
proinflammatory microenvironment (Coppé et al., 2008; Davalos
et al., 2010; Freund et al., 2010). This phenotype, although
highly conserved among senescent cells, can slightly vary among
different cell types and according to the senescence-inducing
stimuli. As such, stimuli including DNA damage, shortened
telomeres, epigenetic modifications or oxidative stress, can
provoke SASPs of different strengths and profiles of excreted
factors (Acosta et al., 2008; Wajapeyee et al., 2008; Coppé et al.,
2010; Novakova et al., 2010; Lesina et al., 2016).

Many SASP factors act as proinflammatory mediators either
directly or indirectly (Davalos et al., 2010). For example, an
early sign of senescent cells is the increased expression of IL-
1α, which via the activation of NF-κB upregulates the expression
of other proinflammatory interleukins, such as IL-6 and IL-8
(Bhaumik et al., 2009; Orjalo et al., 2009; Su et al., 2019).
This inflammatory microenvironment can sustain the continuous
growth arrest characterizing senescent cells (Kuilman et al., 2008;
Madani et al., 2021).

The SASP is of great significance to the role of cellular
senescence in aging and age-related diseases (Baker et al.,
2011; Salminen et al., 2011). It has been shown to drive
degenerative dysfunctions associated with increasing age and
escalate aging tissue deterioration (Krishnamurthy et al., 2006),
and additionally via a mechanism called paracrine senescence.
In this mechanism, senescent cells promote healthy neighboring
cells to senescence through the secretion of chemokines
(Hubackova et al., 2012; Nelson et al., 2012; Acosta et al., 2013;
Lagnado et al., 2021; Waters et al., 2021).

Oxidative Stress and Aging
Oxidative stress, apart from its link with cellular senescence
as discussed above, is also one of the direct mediators of
SASP (Coppé et al., 2010; Passos et al., 2010; McCarthy et al.,
2013), for example via the persistent DDR ROS can sustain
(Rodier et al., 2009). Both telomere-dependent and telomere-
independent DDR signaling were shown to drive ROS production
and mitochondrial damage, which created a vicious cycle
between ROS production, DNA damage, and continuous DDR
signaling, which promoted SASP (Passos et al., 2010). Moreover,
antioxidant supplementation and low oxygen tension prevented
the SASP-associated IL-1α, IL-6, and IL-8 expression (McCarthy
et al., 2013).

Based on the above, oxidative stress remains a key contributor
to the pathophysiology of aging, and in more detail, this can be
further underscored by the fact that increased levels of oxidative
stress induce various factors that are associated with cellular
aging, such as:

(a) the regulation of functions related to the mechanistic target of
rapamycin (mTOR; Xu et al., 2014),

(b) the production of IL-1α, which leads to the formation of
a pro-inflammatory environment by increasing the activity
of NF-κB and the epithelial-mesenchymal transition (EMT;
Laberge et al., 2015),

(c) the induction of the expression of MMPs (Dasgupta et al.,
2010),

(d) the inhibition of FOXO (Forkhead box) proteins, which are
involved in the protection against oxidative-stress-induced
by the insulin/insulin-like growth factor (IGF-1) signaling
pathway (Lin et al., 2018),

(e) the reduction of sarcoplasmic (SR) and endoplasmic
reticulum (ER) activity and of the calcium-dependent ATPase
(Ca++-ATPase) activity leading to cardiac aging (Babušíková
et al., 2012),

(f) the inhibition of sirtuin activity (proteins with mono-
ADP-ribosyltransferase or deacetylase activity involved in
functions such as stress resistance, transcription, apoptosis,
and inflammation; Guarente et al., 2018), that leads to: (1)
increased ROS formation by inhibiting SOD (Qiu et al., 2010);
(2) a pro-inflammatory state by preventing the inhibition of
TNF-α and NF-κB (Yang et al., 2012); and (3) an oncogenic
effect by preventing sirtuin’s inhibitory effect on oncogenes
c-Jun and c-Myc (Min et al., 2012; Lin et al., 2013),

(g) the regulation of the p16INK4a/pRB and p53/p21 pathways
leading to aging (Chen et al., 2006; Figure 6).

The Role of mTOR in Aging
One of the signaling pathways clearly linked to aging is the
mTOR pathway, the activation of which is associated with
overactivated cellular functions such as fibroblast hypersecretion,
that alters homeostasis leading to age-related diseases and
death (Leontieva et al., 2012). The activity of mTOR is more
elevated in male mice than in females, due to increased
levels of phosphorylated S6 (pS6) and phosphorylated AKT
(phosphorylated protein kinase B, pAKT, in Ser473) in the tissues
examined (heart and liver), which are indicators of the mTOR
activity (Leontieva et al., 2012).

TOR kinase forms two complexes, mTORC1 and mTORC2
(Bhaskar and Hay, 2007). mTORC1 is sensitive to rapamycin
and is a ‘‘sensor’’ of energy levels and the oxidative state of
the cell that controls protein synthesis and cell growth (Jacinto
et al., 2004). The activity of mTORC1 is critical for cell growth
and proliferation, while dysfunction in the mTORC1 signaling
pathway is associated with metabolic diseases, cancer, and aging
(Bhaskar and Hay, 2007).

The interplay between mTOR and oxidative stress is
complicated since in the lungs it was demonstrated that
senescent lung epithelial cells had upregulated mitochondrial
biogenesis driven by the mTOR pathway, which led to
increased mitochondrial ROS production. As a consequence,
mitochondrial-specific antioxidant therapy or reduced
ROS-initiated molecular damage inhibited mTORC1 activation
and cellular senescence in the lungs (Summer et al., 2019).
Moreover, in cancer stem-like cells, ROS produced by
NOX1 activated mTORC1 kinase (Ohata et al., 2019), similar
to another study that reported the activation of mTORC1 by
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FIGURE 6 | The interplay between oxidative stress, SASP factors and accelerated aging. Several senescence-associated secretory phenotype (SASP) factors that
contribute to accelerated aging are affected by the increased production of reactive oxygen species (ROS) and oxidative stress. SASP, senescence-associated
secretory phenotype; mTOR, mammalian target of rapamycin; IL-1α, interleukin-1α; MMPs, matrix metalloproteinases; FOXO, Forkhead box; Ca++-ATPase, calcium
ATPase; SIRT1, sirtuin 1; SIRT6, sirtuin 6.

mitochondrial-generated ROS, which led to cellular senescence
in human fibroblasts (Nacarelli et al., 2016). The study concluded
that a way of delaying the onset of senescence is by decreasing
mitochondrial ROS (Nacarelli et al., 2016). Older research
though indicated that long-term or high ROS exposure decreased
mTORC1 activity, whereas low doses of ROS could stimulate
mTORC1 in several cells (Li et al., 2010). Therefore, the exact
relationship between ROS and the mTOR pathway might be
cell-type specific and definitely needs further investigation.

The circadian clock, the internal biological clock, has also
been linked to the aging process, but the molecular mechanisms
that regulate it remain mostly unknown (Khapre et al.,
2014). BMAL1 molecule is a transcription factor comprising
the regulatory unit of the circadian clock. Transgenic mice
models lacking the BMAL1 gene have been associated with
premature aging and reduced lifespan. A study using this
transgenic model showed that there was increased activity of
the mTORC1 complex, a finding that was associated with more

rapid aging. In addition, administration of an inhibitor of
mTORC1 increased lifespan by 50%. The findings of this study
led to the conclusion that the circadian clock controls the activity
of the mTOR pathway through mechanisms that depend on the
factor BMAL1, and that this regulation is particularly important
for the control of aging and metabolism (Khapre et al., 2014).

Several experimental studies have shown that the
administration of mTOR inhibitors to mice extended life
expectancy by 9%–14%, even when the administration started
relatively late (Harrison et al., 2009; Anisimov et al., 2011; Miller
et al., 2011; Johnson et al., 2013). In addition, the administration
of an mTOR inhibitor has improved many age-related conditions
in older animals, including tendon stiffness, heart failure,
reduced cognitive function, and reduced mobility (Wilkinson
et al., 2012; Johnson et al., 2013). For example, in a relevant
study rapamycin, a known mTOR inhibitor, could improve
age-related phenotypes, such as frailty, long-term memory, and
tissue and muscle performance, in a genetically enhanced NF-κB
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mouse model. Although no extension in lifespan was recorded,
rapamycin alleviated age-related phenotypes and improved
mice healthspan independent of its activity as a suppressor of
inflammation (Correia-Melo et al., 2019). Therefore, rapamycin
is currently being investigated as an anti-aging drug (Selvarani
et al., 2021; Zhang et al., 2021).

Another study in elderly volunteers investigated whether the
administration of mTOR inhibitors had any beneficial effect
on aging and age-related conditions. In particular, they used
the inhibitor of mTOR RAD001, and tested whether there was
any effect on the aging of the immune system of the elderly,
assessing the response of volunteers to vaccination against the
influenza virus. The inhibitor RAD001 improved the response
of the elderly to the vaccine by 20% at doses that were relatively
well-tolerated (0.5 mg daily or 5 mg weekly for 6 weeks).
Furthermore, it decreased the percentage of CD4 and CD8
T-lymphocytes expressing the receptor of the programmed cell
death protein-1 (PD-1), which inhibits T-cell signaling and is
found to be increasing with age. Hence, administration of the
mTOR inhibitor RAD001 could improve the immune response
of the elderly (Mannick et al., 2014).

The Role of Inflammatory Response in Aging
A recent study elucidated the mechanism by which IL-1α, a
cytokine that modulates immune responses, is activated during
cellular aging. Mature IL-1α is produced after activation of the
inflammasome and during cellular aging (Wiggins et al., 2019).
The inflammasome is activated by increased ROS in a variety
of cell types (Liang et al., 2017; Qiu et al., 2019; Xu T. et al.,
2019). The researchers showed that IL-1α was activated by a
cleavage catalyzed by the noncanonical inflammatory caspases
5 or 11 in a conserved region. Caspase 5 plays an important role
in the release of IL-1α in human macrophages, while in mice
macrophages caspase 11 appears to play this role. However, there
is also a beneficial effect of this IL-1α signaling, since it was found
necessary for the subsequent activation of macrophages for the
removal of senescent cells (Wiggins et al., 2019).

The active contribution of mitochondria to the
pro-inflammatory phenotype and cellular senescence was
deciphered in another study, where it was found that the
absence of mitochondria diminished several SASP factors,
although the production of ATP was not severely altered
due to enhanced glycolysis. In detail, the ROS-dependent
AKT/mTOR pathway activation led to mitochondrial biogenesis,
which contributed to the ROS-induced activation of DDR
and the cell cycle arrest observed in senescent cells. As proof
of concept, the reduction of cellular mitochondria prevented
senescence in the liver of aged mice (Correia-Melo et al., 2016).
Furthermore, even cell-free mtDNA was well correlated with
the expression of pro-inflammatory cytokines via a number
of inflammatory pathways (Pinti et al., 2014; White et al.,
2014). Indeed, the interplay between mitochondria and the
pro-inflammatory phenotype characterizing senescent cells
seems to be more complicated than previously described
(reviewed in Chapman et al., 2019).

Finally, even the telomere dysfunction characterizing
senescent cells was also correlated with chronic, progressive

low-grade inflammation, as this type of inflammation induced
premature aging and cellular senescence in NF-κB subunit
1 knockout mice via a ROS-mediated telomere dysfunction
pathway (Jurk et al., 2014).

The administration of rapamycin was able to alleviate the
pro-inflammatory phenotype of aging cells. In particular, it
reduced the secretion of inflammatory cytokines by aging
cells. Rapamycin decreased IL-6 and the mRNA levels of
other cytokines, but selectively suppressed the translation of
membrane-bound IL-1α. Decreased IL-1α downregulated the
transcriptional activity of NF-κB, which controls the SASP
phenotype. Exogenous administration of IL-1α restored IL-6
secretion in rapamycin-treated cells. Moreover, rapamycin
suppressed the ability of aging cell fibroblasts to induce the
development of prostate cancer in mice. Based on the above, it
was observed that the two pathways, involving mTOR and IL-1α,
are interconnected (Laberge et al., 2015).

The Role of Matrix Metalloproteinases in Aging
MMPs and their endogenous inhibitors, the tissue inhibitors of
metalloproteinases (TIMPs), regulate the deposition of structural
proteins of the ECM (accumulation) and their degradation
(turnover). The expression of MMPs and TIMPs, as well as their
relative balance, seem to change during the aging process (Liu
and Khalil, 2017).

Indeed, aging and various other pathologies are related to
changes in the composition, structure, and mechanical integrity
of the connective tissue. Collagen is ECM’s most abundant
protein and contributes to the hardness and durability of tissues.
Changes in the structure of collagen, as well as the susceptibility
to degradation, are associated with age-related and chronic
diseases such as cancer, Alzheimer’s disease, atherosclerosis,
osteoarthritis, and emphysema. MMPs significantly contribute
to tissue remodeling and collagen degradation (Cabral-Pacheco
et al., 2020; Raeeszadeh-Sarmazdeh et al., 2020).

During aging and under the influence of oxidative stress, the
accumulation of advanced glycosylation end products (which
cause fibroblast apoptosis via ROS production and activation
of the inflammasome; Dai et al., 2019) and the depletion of
glycosaminoglycans caused the MMP-mediated degradation of
collagen. Digestion with MMPs led to a disruption in the
structural and mechanical integrity of collagen fibrils, which may
exacerbate ECM pathology (Ruiz et al., 1999; Panwar et al., 2018).

Involvement of FOXO Proteins in Aging
FOXO factors regulate cell growth and proliferation and
ultimately contribute to longevity (Davalli et al., 2016). Studies
from the last two decades show that the conserved transcription
factor DAF-16/FOXO is one of the main cellular components
acting as stress sensors. It induces the activation of genes that
promote resistance to stress, slow down cellular processes, and
support longevity, resulting in better survival of organisms (Sun
et al., 2017). The transcription factor DAF-16/FOXO is involved
in the insulin/IGF-1 signaling pathway (ISS). Under normal
conditions, ISS is active and leads to the phosphorylation of DAF-
1/FOXO by AKT and SGK (serine/threonine-protein kinases),
resulting in its binding with the 14-3-3 proteins in the cytoplasm,
away from its target genes. However, under stress conditions
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such as mild oxidative stress, this transcription factor is released
from the 14-3-3 proteins and enters the nucleus in order to
regulate the expression of stress-resistance genes and other target
genes that promote longevity (Mueller et al., 2014).

A recent study on Caenorhabditis elegans showed that the
transcription factor HLH-30/TFEB, through complementary
functions, acted synergistically with DAF-16/FOXO. The
transcription factor TFEB is one of the major regulators of
lysosome biogenesis and autophagy, which are important
processes for metabolism and aging. The study showed that the
transcription factors DAF-16/FOXO and HLH-30/TFEB formed
a complex and worked together to regulate many target genes
(Lin et al., 2018).

Changes in Ca++-ATPase Function Are Associated
With Cardiac Aging
Heart aging is associated with many molecular, structural
and ionic biophysical and biochemical changes, including
the reduction in heart contractility. Phenomena such as left
ventricular hypertrophy, atrial fibrillation, and heart failure
are very common in aging (Dai et al., 2012). Several studies
have shown an association between time-dependent damage
to the rate of ventricular relaxation and a decrease in the
ability of SR to bind calcium ions (Schmidt et al., 2000). The
change in SR function is linked to reduced levels of SERCA
2a (sarco/endoplasmic reticulum Ca++-ATPase) or a decrease
in the ratio of SERCA 2a to phospholamban. In addition, it
may be associated with post-translational protein modifications
(Slack et al., 2001). Proteins undergo several modifications under
the influence of oxidative stress, as discussed previously. In
particular, proteins with sulfur-containing amino acids (cysteine
and methionine) and those containing aromatic amino acids,
such as tyrosine, phenylalanine, and tryptophan, are more prone
to oxidative damage. Aging causes an increase in reversible and
irreversible oxidative modifications, such as the formation of
protein carbonyls, and conversions of tyrosine to dityrosine or
3-nitrotyrosine (Sharov et al., 2006).

A study in rats showed that aging reduced Ca++-ATPase
activity in the heart, a finding attributed to oxidative damage on
proteins caused by oxidative stress, and not to changes in SERCA
and phospholamban protein levels, since their expression and
phosphorylation were similar in rats of 2, 6, 15, and 26 months
of age (Babušíková et al., 2012).

The Role of Sirtuins in Aging
Sirtuins (SIRT1-SIRT7) are histone deacetylaces that regulate
energy metabolism and mitochondrial function. They act as
metabolic sensors, using intracellular metabolites such as NAD+

and acetyl-coenzyme A to regulate mitochondrial function
depending on nutrient supply, so their activity depends on the
cellular metabolic status. They also coordinate the stress response
and damage repair mechanisms. Although there is currently no
conclusive data that sirtuins can successfully decelerate human
aging, there are certain studies that found a link between sirtuins
and the aging process or neurodegenerative age-related diseases
(Wang and Wei, 2020; Zhao et al., 2020). Thus, the activation

of sirtuin proteins could be considered as a means to increase
longevity (Grabowska et al., 2017).

Sirtuin 1 (SIRT1) has been found to regulate secretory
proteins associated with SASP, silencing their genes in the
promoter region, by provoking epigenetic modifications
(Ventura et al., 2002; Chen et al., 2013). It also seemed
to play an important role in modifying stress response by
deacetylating p53, thus acting against aging and the onset of
age-related diseases. High levels of ROS activate p53, which
in turn activates p53-mediated apoptosis and cellular aging
(Ota et al., 2006, 2007). Furthermore, SIRT1 has the ability
to regulate ROS-dependent FOXO factors. ROS were able to
reduce the activity of SIRT1, which resulted in cells acquiring
an aging phenotype (Furukawa et al., 2007; Cencioni et al.,
2013). Similarly, in mouse oocytes, the same relationship
between the oxidative stress-protective activity of SIRT1 and
its downregulation during aging was found (Di Emidio et al.,
2014). SIRT1 was also found decreased in prematurely senescent
ARPE-19 cells (retinal pigment endothelial cells-ECs), an
activity orchestrated by miR-34α, which conferred increased
susceptibility to oxidative stress (Tong et al., 2019).

Sirtuin 6 (SIRT6) is one of the few genes known to be involved
in both longevity and progeria (Hutchinson-Gilford syndrome),
a genetic disease that resembles accelerated aging (premature
aging; Liao and Kennedy, 2016). In particular, overexpression
of SIRT6 led to longevity, a finding attributed to low serum
levels of IGF1, though this phenomenon occurred only in
male mice and not in females (Kanfi et al., 2012). On the
other hand, mice lacking the SIRT6 gene showed characteristics
of progeria in their phenotype (Mostoslavsky et al., 2006).
Functionally, SIRT6 protein plays an important role in DNA
repair, telomerase functionality, genome stability, and cellular
aging (Tennen and Chua, 2011). More recent studies have
shown that SIRT6 is associated with oxidative stress (Liao and
Kennedy, 2016; Pan et al., 2016). In particular, SIRT6 deacetylase
activity was associated with redox homeostasis/oxidative stress
in human mesenchymal stem cells, suggesting that this activity
may regulate longevity and progeria. Moreover, SIRT6 was able
to act as a cofactor of Nrf-2, as it was found in a protein complex
with nuclear factor Nrf-2 and RNA polymerase II, both necessary
for the activation of genes with antioxidant activity such as heme
oxygenase-1 (Pan et al., 2016).

The role of SIRTs in EC senescence was also explored in
human retinal microvascular ECs (HRECs), where again it
was shown that glucose-induced oxidative stress downregulated
SIRTs (SIRT3, 4, 5) in vitro and in vivo, increased SIRT-targeting
miRNAs and led to early HREC senescence, endothelial-to-
mesenchymal transition, and oxidative damage contributing to
aging (Liu et al., 2020). However, not all SIRTs share the
same role, for example SIRT2 was shown to have opposite
effects to SIRT1 in the stress response pathway, age-related
diseases, and aging (Outeiro et al., 2007; Wang Y. et al., 2020;
Kaitsuka et al., 2021).

The Role of P53 Family of Proteins in Aging
Oxidative stress is an important inducer of tumor suppressor
protein p53, which is a nuclear phosphoprotein that determines
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cell cycle evolution. During the process of cellular aging and
in the presence of DNA damage, the p53 gene is activated and
regulates the transition of the cell from phase G1 to phase S
of the cell cycle (Gambino et al., 2013). Yet an alternative way
of inducing cellular aging is through the activation of proto-
oncogenes. A typical example is the proto-oncogene p16INK4a,
which was considered essential for the progression of cellular
aging, due to its ability to activate the tumor suppressor protein
pRB (LaPak and Burd, 2014). Furthermore, the Ras proto-
oncogene was also involved through the overexpression of
Cdc6 and the inhibition of nucleotide metabolism (Aird et al.,
2013). Therefore, stress is considered as an inducer of cellular
aging and is also responsible for epigenetic modifications. More
specifically, changes in chromatin levels due to exposure to
histone deacetylase inhibitors led to cellular aging via p21, a
cyclin-dependent kinase inhibitor which is one of the targets
of p53 activity and associates DNA damage to cell cycle arrest
(Waldman et al., 1995; Bunz et al., 1998; van Deursen, 2014).

Resistance to oxidative stress was associated with the slowing
of aging in mammals and the absence of accelerated oncogenesis,
indicating the inactivation of downstream targets of the
p53 pathway. The regulation of p53 was studied in mice lacking
the p66 gene, a mutation that slowed aging and provided cellular
and systemic resistance to oxidative stress (Gambino et al., 2013).
A transcriptional network consisting of approximately 200 genes
was identified, which are suppressed by p53 and encode critical
factors for cell growth through mitosis or suppression of aging.
These genes underwent selective downregulation, both in vitro in
fibroblast cultures after oxidative stress stimulation, and in vivo
in tissues during the normal aging process. This selectivity was
due to the non-expression of p66 and the activation of p44/p53
(also called Delta40p53), an isoform of p53 that contributes
to premature aging and prevents mitosis after protein damage.
Lack of p66 slowed aging and increased p44/p53 transgenic mice
longevity (Gambino et al., 2013).

TAp73 (a tumor suppressor protein derived by the p73 gene
locus) belongs to the p53 family, and has a protective effect
against aging, regulating mitochondrial activity and preventing
the accumulation of ROS (Budanov, 2014). Transgenic mice
models lacking the TAp73 gene had an increased oxidative
load and showed an aging phenotype. TAp73 deficiency
reduced cellular levels of ATP, oxygen consumption, and
the activity of mitochondrial complex IV, which resulted in
increased ROS production and sensitivity to oxidative stress.
The Cox4i1 subunit of mitochondrial complex IV is a direct
target of TAp73. In conclusion, TAp73 protein affected the
mechanism of mitochondrial respiration and redox homeostasis,
thus regulating the aging process (Rufini et al., 2012).

Recently, another signaling pathway has been described that
involves miRNAs in the cellular process of aging. In particular,
a study of the profile of miRNAs and mRNAs of aged mice
revealed both their relative expression and the ability of miR-
124 to induce cellular aging by targeting the Ccna2 protein.
Activation of p53 has been shown to induce the expression
of many miRNAs, including miR-124 and miR-29a/b/c, which
target Ccna2, the antagonist of p21, resulting in cellular aging
(Xu S. et al., 2019).

The Role of miRNAs in Aging
Further to the contribution of miRNAs in aging, miRNAs
have been shown to share a role in the regulation of lifespan
(Boehm and Slack, 2005; Ibáñez-Ventoso et al., 2006; Lehrbach
et al., 2012), and that alterations in cellular miRNA expression
can affect mammalian aging (Bates et al., 2010; Inukai et al.,
2012; Smith-Vikos et al., 2016; Cosín-Tomás et al., 2018), and
age-related diseases such as age-related macular degeneration
(Mrowicka et al., 2021; Tisi et al., 2021). On the other hand,
aging was also related to altered miRNA expression (Hackl
et al., 2010). In the following studies, the link between oxidative
stress, miRNA expression, and aging becomes even more
profound.

Mesenchymal stem cells (MSC)-derived exosomes were found
to significantly decrease aging-related CD4

+ T cell senescence
by reducing oxidative damage, SASP expression, aging-related
proteins such as p53, and other aging markers. This activity was
linked to miR-21, which downregulated PTEN and increased
PI3K and AKT activation, thus leading to Nrf2-induced
antioxidant gene expression (Xiong et al., 2021).

Similarly, MSC small extracellular vesicles were found to
decrease biomarkers of senescence and SASP in oxidative stress-
induced senescent ECs, while miR-146a was shown to be the
mediator of this activity by downregulating Src activation and
other downstream targets. In vivo, senescent ECs in natural
aging and type-2 diabetes mouse wound-healing models were
restored and this led to accelerated wound closure and rescued
angiogenesis (Xiao et al., 2021).

Another study proving the link between miRNAs and aging
observed that the restoration of cellular NAD+ levels, which
are reduced during aging, can restore vessel functions in aged
mice, thus rescuing age-related dysregulations. Treatment with
nicotinamide mononucleotide (NMN), to increase cellular
NAD+, restored several miRNAs, whose expression was
dysregulated in aged mice, and these changes are expected
to promote anti-atheromatic effects and vascular epigenetic
rejuvenation, by exerting vasoprotective and antioxidant activity.
Therefore, the restoration of aging-related NAD+ depletion
helped to abrogate oxidative stress and save from age-related
vascular dysfunctions through a miRNA-dependent mechanism
(Kiss et al., 2019).

Oxidative stress, miRNAs, and aging were also found
interconnected in human fibroblasts, where the silencing of DNA
methyltransferase 2 (DNMT2) led to increased susceptibility to
oxidative damage, inhibition of cell proliferation, and induced
cellular senescence via altering miRNA expression. Several
miRNAs were found upregulated, for example, miR-28-3p, miR-
30b-5p, and miR-200c-3p, which are related to proliferation.
DNMT2 was also found upregulated in senescent cells, meaning
that the miRNA-related modifications induced by DNMT2 can
determine longevity in human fibroblasts (Lewinska et al., 2018).

Additionally, the roles of miR-24 and miR-424 were
elucidated in oxidative stress-induced premature senescent
fibroblasts, where it was shown that miR-24 upregulated p53 and
induced senescence, whereas miR-424 acted in the opposite
manner. The downstream target of miR-24 was identified to
be DNA topoisomerase 1, whose expression was induced by
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oxidative stress, and when downregulated due to miR-24, cellular
senescence was accelerated (Bu et al., 2016).

Finally, the effect of ROS on miRNA expression in ECs revealed
that the miR-200 family is upregulated under oxidative stress,
which leads to EC growth arrest, apoptosis, and senescence. This
activity was found related to ZEB1 downregulation by miR-200c,
which involved p53 and retinoblastoma proteins in vitro. In vivo,
again oxidative stress induced the expression of the miR-200
family leading to EC senescence, thus providing a causative
relationship between oxidative stress, altered miRNA expression,
and aging (Magenta et al., 2011).

The Role of Environmental Factors in
Oxidative Stress and Aging
Life expectancy is constantly increasing and today a person can
live up to 120 years. Nevertheless, many environmental factors
contribute to the initiation of aging (‘‘exogenous aging’’; Naidoo
and Birch-Machin, 2017). This could be partly due to the fact
that these factors are modifiable. Environmental factors that
accelerate aging are those that lead to macromolecular damage or
interfere with cellular repair mechanisms. They include chronic
infections, certain heavy metals, UV radiation, and various other
conditions that increase oxidative stress, such as smoking (Karol,
2009). Thus, if indeed the phenomenon of aging is affected
by oxidative stress, then environmental, pharmacological, and
nutritional strategies could possibly slow down the phenomenon
(Maurya et al., 2016). According to Harman’s theory, scientists
believed that by removing harmful oxidative molecules from the
body, they could mitigate cell damage and slow down the aging
process. However, this theory applies only to the skin aging
process, according to the data we have so far. We know that
skin has a higher oxidative load than other tissues and organs,
and that environmental factors such as exposure to UV radiation
contribute up to 80% to skin aging. Therefore, by reducing
exposure to UV radiation we can slow down the skin aging
process (Amaro-Ortiz et al., 2014; Gu et al., 2020).

Heavy Metals
Heavy metals have a prooxidant effect and have been found to
exacerbate age-related oxidative stress (Karol, 2009). Likewise,
they also comprise risk factors for age-related neurodegenerative
diseases, where they initiate and propagate oxidative damage
in the brain (Wadhwa et al., 2018; Kothapalli, 2021; Raj et al.,
2021). Interestingly, there was no clear correlation found between
increasing age and the concentration of certain heavy metals
in the blood of patients with no documented heavy metal
exposure. However, bone concentrations of chromium, cobalt,
and thallium decreased with increasing age, and there was a close
association between cobalt bone concentration and osteopenia,
a common disorder in the elderly (Chang et al., 2018). Inversely,
the accumulation of heavy metals led to stem cell dysfunctions via
oxidative damage, eventually affecting the body’ s regenerative
ability, the occurrence of age-related diseases, and the premature
aging phenotype. This was particularly evident in cadmium-
treated pluripotent and adult stem cells (Hussein and Hasan,
2010), as well as in prostate stem progenitor cells (Jiang
et al., 2011). Similar pro-oxidant toxicity and dysfunctions were

found for mercury-exposed rat neural stem cells (Tamm et al.,
2006), and for lead- and arsenic-treated mesenchymal stem cells
(Ahmad and Shakoori, 2013).

Ultraviolet Radiation
UV radiation can increase oxidative stress by either stimulating
the production of ROS or causing immediate DNA damage.
This increase in oxidative stress can impair cellular functions,
leading to, for example, exogenous skin aging (Rinnerthaler et al.,
2015; Naidoo and Birch-Machin, 2017). UV radiation also affects
mtDNA. In particular, it causes a deficiency of 4,977 bases in
mtDNA, a process that contributes to elevated ROS production in
mitochondria and therefore, to the promotion of mitochondrial
damage (Berneburg et al., 1997; Rinnerthaler et al., 2015).

Both intrinsic and exogenous aging contribute to skin aging.
Exogenous skin aging is caused by chronic overexposure
to UV radiation. Accumulated damage caused by UV
radiation, especially UVB and UVA, leads to local premature
aging of the skin, known as photoaging. Photoaging is
characterized by damages in the structure of the epidermis
and dermis, hyperpigmentation, sagging, and the formation
of wrinkles. The underlying mechanism of photoaging has
not been fully understood (Krutmann and Schroeder, 2009;
D’Orazio et al., 2013).

In skin cells under the influence of UVB radiation,
RNA-dependent protein kinase R (PKR) was found to
be phosphorylated by MAPKs kinases. The uncontrolled
activity of PKR led to an increase in the expression of
pro-inflammatory cytokines, such as MMP-9, collagenase type
IV, and cyclooxygenase-2 (COX-2), which together accelerated
the inflammatory process and skin aging (Lee et al., 2019).

In another relevant study, it was observed that melanocytes
could senescence under UVA and UVB radiation, expressing
SASP factors such as p16INK4a and dysfunctional telomeres.
These senescent melanocytes impaired keratinocyte proliferation
in a ROS-dependent manner leading to skin age-related
phenotypes. Both clearance of senescent cells with the drug
ABT737 and treatment with the mitochondrial-specific
antioxidant MitoQ abrogated this aging effect, further promoting
the association between ROS, senescence, and aging in the skin
(Victorelli et al., 2019).

Air Pollution
Environmental pollution is constantly increasing worldwide
and the impact of pollutants on human health is a matter of
particular concern. The majority of air pollutants come from
anthropogenic sources, such as emissions from motor vehicles,
fossil fuel combustion, forest fires, and industrial plants. This
variety of sources produces a complex mixture of toxic pollutants,
including particulate matter (particle pollution) and gases such as
NO2 and O3 (Krutmann et al., 2014). Particles with a diameter
of less than 0.1 µm are emitted from the vehicle exhaust gas.
These particles are particularly harmful because of their ability to
penetrate tissues more easily and translocate in the mitochondria.
Once absorbed, these particles cause oxidative stress and damage
to mitochondria. Ozone, an important component of smog,
is an extremely active environmental pollutant that can cause
oxidative stress, either directly by oxidizing biomolecules to
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generate ROS or by producing cytotoxic non-radical molecules
(Valacchi et al., 2005).

Further to this process, air pollution has also been linked to
oxidative stress-induced placental alterations early in the life of
embryos, which leads to telomeres shortening (Martens et al.,
2017), decrease in mtDNA content (Janssen et al., 2012) and p53-
and miRNA-regulated aging phenotype followed by later-life
diseases (Zhou et al., 2016; Saenen et al., 2019). Air pollution
exposure can provoke nitrosative stress, epigenetic alterations,
and increased aging markers. Since small particles can penetrate
the placental barrier, oxidative damage can be induced, as shown
in the study of Pavel et al. (2011) who showed increased 8-OHdG
in the mitochondria of the placenta after air pollution exposure
during the first 4 months of pregnancy. Thus, these processes
lead to potential implications for the aging phenotype (Martens
and Nawrot, 2018).

Smoking
Smoking is an environmental factor that puts a lot of pressure
on the health system, as it contributes to the development of
diseases such as cancer (most likely lung cancer), cardiovascular
and respiratory diseases, and premature aging. It is also
strongly linked to oxidative stress (Nicita-Mauro et al., 2008a,b;
Daskalopoulou et al., 2018; Padmavathi et al., 2018). Indeed,
several studies have shown that smoking is associated with
a more rapid onset of aging characteristics, such as fragility
and mortality risk (Zuo et al., 2014; Liguori et al., 2018). The
analysis of DNA methylation was the predominant method for
predicting biological age (Bell et al., 2019). Recently, it has
been suggested that hematological markers identified in routine
testing, such as fasting blood glucose and red cell distribution
width, may serve as predictive markers (Mamoshina et al.,
2019). Using these markers and predictive aging models, it
was observed that smokers had higher aging rates compared to
non-smokers, regardless of cholesterol and blood glucose levels.
Female smokers were estimated to be twice their biological age
compared to their chronological age, whereas male smokers were
one and a half times their biological age compared to their actual
age compared to non-smokers (Mamoshina et al., 2019).

Furthermore, epidemiological studies have proposed that
smoking leads to a fast decline in lung function, suggesting that
it increases the age of the lungs. This hypothesis was supported
by the analysis of leukocyte telomere length, which showed that
smoking was associated with shorter telomeres (Walters et al.,
2014). Indeed, another study also associated cellular senescence
with lung aging, chronic obstructive pulmonary disease (COPD),
and smoke exposure. Patients with COPD had small airway
epithelial cells with high telomere-associated DNA damage,
similar to aged murine lungs, which was further accelerated
by cigarette smoke exposure. Smoking was found to in vitro
accelerate telomere dysfunction via the production of ROS and
was also linked to proinflammatory cytokine secretion. Thus,
telomere dysfunction could drive lung deterioration found in
aging and COPD and was negatively associated with smoke
exposure (Birch et al., 2015). In addition, cellular senescence
biomarkers, such as p16Ink4a, were increased in idiopathic
pulmonary fibrosis lung tissue, whereas the removal of senescent

cells via the co-administration of dasatinib and quercetin
helped with the improvement of lung function (Schafer et al.,
2017).

Finally, in elderly smokers, serum cotinine levels and the
degree of DNA methylation were associated with oxidative
stress markers, such as 8-isoprostane (8-iso) and 8-hydroxy-2’-
deoxyguanosine (8-oxodG), which were determined in the urine.
‘‘Current’’ smoking, cumulative exposure to smoking (how many
packs of cigarettes were used during smoking years), and serum
cotinine levels were correlated with urinary 8-iso levels but not
with 8-oxodG levels. In addition, 71 cytosine and guanine-rich
regions (CpG islands) were found to be associated with smoking
and correlated with 8-iso levels. Thus, CpG islands, that are
methylation sites, could potentially be an epigenetic marker of
the smoking-induced oxidative stress (Gao et al., 2017).

FACTORS THAT PROLONG THE ONSET OF
THE AGING PROCESS

Once the theory that oxidative stress is involved in the
aging process has been proposed, it has been concluded
that antioxidants could play a protective role in aging. The
antioxidant strategy includes reducing the levels of oxidative
stress and/or strengthening the antioxidant defense mechanisms.
Thus, given the hypothesis that the harmful effects of oxidative
stress can be eliminated by antioxidants, many studies have been
conducted over the past three decades with the aim to explore
the effects of antioxidant strategies on age- and oxidative stress-
related diseases. However, no absolute positive correlation has
been observed between taking supplements, herbs, and natural
products and the deceleration of aging, as previously discussed
(Pérez et al., 2009; Ghezzi et al., 2017; Tan et al., 2018). One
additional example is the well-known antioxidant vitamin E, for
which animal studies have shown that it is a potent antioxidant
with good protective activity, but clinical studies have not shown
a protective effect in age-related diseases (Devaraj and Jialal,
2005; Banks et al., 2010; Wang et al., 2014; Luo et al., 2020).

At the same time, reducing calorie intake and increasing the
activity of SIRT1 could reduce the oxidative load (Grabowska
et al., 2017). Moreover, the role of exercise in preventing
premature aging has been investigated. Chronic muscular
exercise has been found to help older people acquire lower
oxidative load, while acute exercise increases ROS production
and ultimately causes more damage (Davalli et al., 2016).

The Effects of Diet on Aging and
Antioxidant Compounds With Anti-aging
Activity
The effect of diet on oxidative stress has been extensively
studied recently, due to the fact that exogenous antioxidants
can be absorbed through diet. These compounds can act
as a defense mechanism against oxidative stress caused by
environmental factors. Mediterranean diet, characterized by a
high intake of fruits and vegetables full of antioxidants, has
been associated with increased longevity and a reduced risk of
age-related diseases (Chrysohoou and Stefanadis, 2013; Vasto
et al., 2014; Chatzianagnostou et al., 2015). Studies have proved
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that adherence to the Mediterranean diet is significantly linked to
lower levels of oxidative stress and can prevent cellular aging in
ECs (Dai et al., 2008; Marin et al., 2012). In contrast, a diet full of
fats has been linked with mitochondrial dysfunction, increased
levels of oxidative stress, and accelerated cellular aging (Fujita
et al., 2006; de Oliveira et al., 2011; Bonomini et al., 2015).
Some of the substances with anti-aging properties contained in
the Mediterranean diet are resveratrol, found in grapes and red
wine, and quercetin, found in citrus fruits, onions, and red wine
(Chatzianagnostou et al., 2015; Maurya et al., 2016).

Resveratrol
One of the compounds that activate sirtuins, and in particular
the signaling pathway induced by SIRT1, is resveratrol (Howitz
et al., 2003). Resveratrol is a polyphenolic molecule found in
several natural products, such as red wine, grapes, and peanuts
(Wallerath et al., 2002). In recent years, the biological action of
resveratrol has been extensively studied. It has been shown to have
antioxidant and anti-inflammatory properties, so its use is being
investigated in the context of diseases such as type 2 diabetes and
cardiovascular diseases (Pearson et al., 2008; Wong et al., 2011;
Mattison et al., 2014; Kulkarni and Cantó, 2015).

Activation of the SIRT1 signaling pathway by resveratrol can
affect processes such as metabolism, oxidative stress resistance,
cell survival, cellular aging, immune function, endothelial cell
function, and circadian rhythm (Baur et al., 2006; Murase
et al., 2009; Kao et al., 2010; Lin et al., 2014; Ramis et al.,
2015). Furthermore, resveratrol was shown to phosphorylate and
activate AMPK (5’ adenosine monophosphate-activated protein
kinase; Liu et al., 2016). AMPK is an enzyme found in all cells
and plays a role in the homeostasis of cellular energy, mainly
functioning in order to activate glucose and fatty acid uptake
and oxidation when the cellular energy levels are low (Min
and Ki, 2005). SIRT1 and AMPK play a similar role, including
their ability to respond to oxidative stress, induce mitochondrial
biogenesis, regulate glucose homeostasis and control the activity
of important transcription factors such as PGC-1a and FOXOs
(Fulco and Sartorelli, 2008; Price et al., 2012).

A study in middle-aged and elderly patients found a reduction
in ROS in resveratrol-treated peripheral blood mononuclear cells
isolated from the patients. However, the following difference
was observed between the two age groups: in elderly patients
there was a higher production of ROS, and the reduction caused
by resveratrol was smaller than in the middle-aged group. In
addition, there was increased SOD activity in resveratrol-treated
cells in the elderly group. For the middle-aged participants, it
was observed that SIRT1 and AMPK participated in antioxidant
pathways and that resveratrol acted through SIRT1, whereas in
the elderly no similar results were observed (Caldeira et al., 2021).

In another relevant study, researchers investigated the ability
of resveratrol to modulate PMRS during aging in 97 healthy
humans. It was found that resveratrol upregulated PMRS along
with ascorbate free radical reductase, protected against lipid
peroxidation and protein carbonylation, and restored the levels
of GSH and -SH groups during an oxidative stress-induced
injury in erythrocytes of all age groups (young, middle-aged,
old). Thus, this study underlined the importance of ascorbic acid

regeneration and its role as a primary plasma antioxidant that is
upregulated by resveratrol (Pandey and Rizvi, 2013).

Quercetin
Quercetin is one of the most common flavonoids in our diet, as it
is included in a wide range of foods, such as grape peel, red onion,
green tea, or tomatoes (Li et al., 2016). Quercetin is of great
interest to scientists because of its unique anti-aging properties
(Chondrogianni et al., 2010). Quercetin belongs to the senolytics,
a group of drugs which selectively kill senescent cells.

Recently, the mechanism by which quercetin reduces
age-related neurological disorders has been described. Quercetin
was administered orally to 7-month-old mice in two doses,
35 and 70 mg/kg for 4 weeks. Behavioral experiments showed
that the mice, at the end of the quercetin intervention, showed
improved spatial learning and memory. In order to investigate
the molecular mechanism of this effect, mice hippocampus was
isolated and the expression of SIRT1, inflammasome proteins
such as NLRP3 (NLR family pyrin domain containing 3)
and ASC (apoptosis-associated speck-like protein), the synaptic
marker PSD95 (postsynaptic density protein 95), and the
neutrophic factors BDNF (brain-derived neurotrophic factor)
and NGF (nerve growth factor) was measured. The results
showed that quercetin intervention increased the expression of
SIRT1 and prevented neuroinflammation, a finding based on
the decreased protein expression of the astrocyte marker GFAP
(glial fibrillary acidic protein, neurological damage marker), and
proinflammatory factors such as IL-1β, caspase 1, and IL-18.
Moreover, quercetin reduced the levels of malondialdehyde and
ROS in the hippocampus of the elderly mice (Li et al., 2021).

In a previously described study, idiopathic pulmonary fibrosis
lung tissue expressed several cellular senescence biomarkers, but
the treatment with dasatinib and quercetin eliminated senescent
cells and ameliorated lung function (Schafer et al., 2017).
Similarly, dasatinib and quercetin were used in another study
where they were found to successfully eliminate senescent cells
in vitro, but most importantly they also led to a marked decrease
in senescent cells in aged, radiation-exposed, and progeroid mice
in vivo. Several functions of the aged mice, such as cardiac
function, were improved even after a single dose, whereas treated
mice with one irradiated limb were more capable of exercising.
Finally, progeroid mice benefited from an extended healthspan
and delayed age-related phenotype and relevant pathologies (Zhu
et al., 2015).

Moreover, another in vivo study of the combination of
dasatinib with quercetin showed reduced intervertebral disc
degeneration, which is associated with chronic back pain and
disability frequently observed in the elderly. These senolytic
drugs decreased senescence marker expression and preserved cell
viability, phenotype, and matrix content, resulting in alleviated
age-related disc degeneration (Novais et al., 2021). Lastly, a
Phase I pilot study was designed for the oral co-treatment of
dasatinib (100 mg) and quercetin (1,000 mg) for 3 days in elderly
patients with diabetic kidney disease. The treatment reduced
adipose tissue senescent cells and the chemotaxis of adipose
tissue macrophages within 11 days. Several senescence and SASP
factors were found downregulated, including IL-1α and IL-6
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among others. Therefore, the short-term treatment with senolytic
drugs reduced senescent cell burden in humans, suggesting the
anti-aging activity of these drugs (Hickson et al., 2019).

Vitamin D
Vitamin D can enhance cognitive functions, slow down aging
and protect humans from age-related diseases (Bartali et al.,
2014; Yang et al., 2020). Vitamin D can successfully affect
the mechanisms that regulate aging in humans, a fact that
has redirected the interest of the scientific community on its
potential anti-aging properties (Chan and Woo, 2011; Meehan
and Penckofer, 2014; Bocheva et al., 2021).

Steadily increasing findings show that vitamin D has
antioxidant properties (Sepidarkish et al., 2019). In a study of
302 participants aged 62–92 years old, serum 25-hydroxyvitamin
D levels were quantified and correlated with the overall redox
status and antioxidant enzymes such as CAT, GPx, and SOD.
The results of the study showed that 25-hydroxyvitamin D was
positively correlated with the expression of antioxidant enzymes,
indicating that adequate levels of vitamin D strengthen the
antioxidant defense (Jungert and Neuhäuser-Berthold, 2018).

The Role of Exercise and the Reduction of
Calorie Intake as Anti-aging Strategies
Physical activity significantly contributes to having a healthy,
pleasant, and long life. Numerous studies have shown that there
is an inextricable link and interaction between exercise, fitness,
and human health (Farris and Abrantes, 2020; Raza et al., 2020;
Maynou et al., 2021).

A recent study aimed to compare two different types
of exercise not only in physical condition but also in the
levels of oxidative and inflammatory factors. Specifically, 36
middle-aged female rats (18 months old) underwent either
8 weeks of moderate intensity of continuous exercise or high
intensity of intermittent exercise (45 min, 5 times a week).
The results were compared with control rats of the same age
that did not follow an exercise program. Subsequently, the
effects of these exercise programs on physical condition, levels
of inflammatory factors, adipocytokines (leptin, adiponectin)
in adipose tissue and blood serum, as well as oxidative stress
markers, IGF-1, blood glucose, and the rats’ lipidemic profiles
were investigated. Animals’ weight and the fat percentage
increased from 18 to 26 months as a result of aging, while
only intermittent exercise effectively reduced animals’ weight.
In addition, intermittent exercise improved animals’ strength
and endurance. Rats following the intermittent exercise program
expressed reduced levels of C-reactive protein (CRP) and higher
serum IL-10 levels, compared with control rats and those
who exercised continuously. Both types of exercise increased
IGF-1 in skeletal muscles and decreased its serum levels,
while also reducing adiponectin levels. Rats at 26 months of
age had elevated levels of free fatty acids, but intermittent
exercise decreased these levels and increased leptin in the
serum while decreasing it in the adipose tissue. Intermittent
exercise also reduced malondialdehyde levels in the serum
and skeletal muscles compared with continuous exercise. Both
types of exercise resulted in a similar decrease in serum and

skeletal muscle levels of 4-hydroxynonenal and 8-oxodG in the
serum, while they also increased the activity of the antioxidant
enzyme SOD-2. In conclusion, intermittent exercise, even when
adopted in middle age, has beneficial effects on oxidative and
inflammatory factors that increase with age and contribute to
aging (Li et al., 2018).

Reducing calorie intake is an invasive strategy that has been
shown to have beneficial effects on the lifespan of several animals
(Miller et al., 2005; Sun et al., 2009; Colman et al., 2014), although
similar results were reported for dietary restriction without
caloric restriction (CR; Lee and Longo, 2016). The mechanism
underlying this beneficial action remains under investigation, but
it seems that the positive effects are associated, among others,
with the cellular redox state.

Indeed, CR was shown to protect the brain against aging
and related diseases by increasing the activity of multiple PMRS
enzymes, such as NADH-ascorbate free radical reductase, and
the levels of antioxidants, such as α-tocopherol and coenzyme
Q10 in neuronal plasma membranes during aging. Moreover,
a decrease in age-driven plasma membrane lipid peroxidation,
protein carbonylation, and nitrotyrosine were observed after CR,
hence downregulating the biomarkers of oxidative stress (Hyun
B.-H. et al., 2006).

Moreover, moderate CR prevented the age-induced increase
of oxidative stress in cerebromicrovascular ECs (CMVECs),
while this activity was linked to the restoration of Nrf-2
action and miR-144 expression. Although miR-144 was found
upregulated in aged CMVECs and Nrf-2 was downregulated,
CR was able to revert these changes, also leading to anti-
inflammatory, antioxidant and pro-angiogenic effects, as well
as to the evasion of the age-related increase of NF-κB and
pro-inflammatory shift in the secretome of ECs, which are critical
for EC homeostasis. These results were also consistent with the
in vivo findings, further contributing to the miRNA-dependent
CR effects against aging (Csiszar et al., 2014).

However, in an experimental study using transgenic mice
models lacking the sirtuin 3 (SIRT3) gene, it was observed that
these mice had increased oxidative stress and therefore increased
oxidative damage, despite CR. This finding highlighted the role of
SIRT3 along with CR, which have been shown to reduce cellular
ROS levels. SIRT3 deacetylates two important lysine residues in
SOD2, promoting its antioxidant activity (Qiu et al., 2010).

DISCUSSION AND FUTURE PROSPECT

The discovery that ROS is responsible for cellular oxidative
damage and is associated with age-related degenerative diseases
has been a key contributor to making the oxidative stress
theory one of the leading theories in the pathophysiology of
aging, even with exceptions (Kirkwood, 2005b). The molecular
mechanisms underlying oxidative stress signaling and its impact
on age-related pathologies such as cardiovascular diseases,
diabetes and obesity have been extensively reviewed over the
years (Matsuda and Shimomura, 2013; Nijhawan et al., 2019; Tisi
et al., 2021; Alvarado et al., 2022; Hajam et al., 2022). However,
the implication of oxidative stress in aging and SASP factors has
been better elucidated in this review, while particular mention
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was made to exogenous factors that can affect aging through
the production of ROS, further highlighting the importance of
this mechanism towards the complete explanation of the aging
phenomenon.

So, the question arises; How can we delay the onset
and progression of aging? Despite the comprehensive studies
that largely deciphered the oxidative stress-related molecular
mechanisms involved in aging, there is an ongoing controversy
over antioxidant supplementation for the prevention or even
therapy of aging and age-related diseases. It seems that several
antioxidant compounds have conferred many desired anti-aging
effects, although not reaching a favorable conclusive endpoint in
clinical trials, for example, vitamin E or resveratrol. Additionally,
even though in studies with model organisms the maximum
lifespan could be increased, the maximum lifespan of humans
has not really changed since the 1990s. This may propose that
the maximum lifespan of humans has already been reached, is
fixed, and subject to natural constraints. Of note, multifactor
nutritional treatments may be the answer to this question,
i.e., combining an antioxidant compound with agents that
directly affect mediators of aging, such as SIRT1 activators
or NAD+supplementation or silencing of miRNAs related to
this process, which remain to be explored. Other therapeutic
strategies to curb the effects of oxidative stress include caloric
restriction and intermittent exercise, which have been shown
to ameliorate senescence biomarkers, such as SA-β-GAL, p16
(p16Ink4a), p21, p53, and inflammatory cytokines (IL-6, IL-
8), and even the extent the lifespan of animal models. As
for caloric restriction, it remains to be explored if just
dietary restrictions would have the same beneficial effects, by
determining which key factors contribute to the anti-aging
results.

However, there could be no effective anti-aging strategy
without first accrediting the environmental stressors that further
add to the oxidative load and contribute to faster aging.
Continuous exposure to heavy metals, air pollution, or UV

radiation has a significant impact on the molecular mechanisms
involved, hence a successful anti-aging therapy would have to
protect the organism from such detrimental impacts. Smoking
has been conclusively linked to faster organ aging and higher
aging rates, provoking several oxidative genetic and epigenetic
changes, so again eliminating this factor can contribute to
healthier aging. Therefore, it seems that reducing the oxidative
load with combination dietary therapies alone is not enough, and
healthy or at least delayed aging should also be accompanied by
radical changes in lifestyle and daily habits.

CONCLUSION

In conclusion, this literature review presented extended scientific
data on the biochemical and molecular mechanisms of aging
and deciphered the involvement of oxidative stress in this
process. The combination of experimental, epidemiological, and
clinical studies presented here has expanded our knowledge
of this field and proved that promising therapies against
age-related diseases involve various antioxidant agents. Indeed,
by attenuating ROS-activated signaling pathways we could delay
the expression of SASP factors and the accumulation of senescent
cells, key features of aging tissues. Moreover, through this
review, specific environmental and lifestyle-related factors that
enhance oxidative stress and become leading causes of aging
were highlighted. Thus, a better understanding and detailed
assessment of the environmental factors that lead to premature
aging, as well as their possible interaction with genetic elements,
could contribute to the development of more effective and
targeted strategies in order to significantly slow down the onset
and progression of the aging process.
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