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Genome-wide association studies (GWAS) are primarily conducted in single-ancestry
settings. The low transferability of results has limited our understanding of human
genetic architecture across a range of complex traits. In contrast to homogeneous
populations, admixed populations provide an opportunity to capture genetic architecture
contributed from multiple source populations and thus improve statistical power. Here,
we provide a mechanistic simulation framework to investigate the statistical power and
transferability of GWAS under directional polygenic selection or varying divergence. We
focus on a two-way admixed population and show that GWAS in admixed populations
can be enriched for power in discovery by up to 2-fold compared to the ancestral
populations under similar sample size. Moreover, higher accuracy of cross-population
polygenic score estimates is also observed if variants and weights are trained in the
admixed group rather than in the ancestral groups. Common variant associations are
also more likely to replicate if first discovered in the admixed group and then transferred
to an ancestral population, than the other way around (across 50 iterations with 1,000
causal SNPs, training on 10,000 individuals, testing on 1,000 in each population,
p = 3.78e-6, 6.19e-101, ∼0 for FST = 0.2, 0.5, 0.8, respectively). While some of
these FST values may appear extreme, we demonstrate that they are found across the
entire phenome in the GWAS catalog. This framework demonstrates that investigation
of admixed populations harbors significant advantages over GWAS in single-ancestry
cohorts for uncovering the genetic architecture of traits and will improve downstream
applications such as personalized medicine across diverse populations.

Keywords: admixture, statistical power, complex trait genetics, polygenic score, genetic architecture

INTRODUCTION

Genome-wide association studies (GWAS) have allowed for significant progress in the field
of human complex traits. However, groups with multiple ancestral origins have seldom been
a primary focus in large scale genetic studies because: (1) admixed groups, along with other
non-European populations, have largely been underrepresented in GWAS designs in the past
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(Bustamante et al., 2011; Popejoy and Fullerton, 2016;
Martin et al., 2017a), and (2) the population structure from
heterogeneous ancestries in an admixed group, if not properly
corrected, can result in spurious correlation signals and thus
greater false positive rates (Rosenberg et al., 2010). However this
mixture of ancestries present in admixed populations provides
opportunities for novel discovery. Recent advancements
in methodologies tailored for genetic mapping in admixed
populations include disentangling of ancestry principal
components and relatedness in the presence of admixture
(Thornton et al., 2012; Conomos et al., 2015, 2016), combining
local ancestry and allelic information to improve quantitative
trait locus (QTL) mapping (Pasaniuc et al., 2011; Shriner et al.,
2011; Atkinson et al., 2021), leveraging local ancestries for
detection of epistasis (Aschard et al., 2015), and better fine
mapping from linkage disequilibrium (LD) variability in diverse
groups (Zaitlen et al., 2010; Asimit et al., 2016; Wojcik et al., 2019;
Shi et al., 2020). Despite the fast development and practicality
of these methods, they have not often been applied to sample
sizes of hundreds of thousands to millions because study design
and data collection in mega-scale cohorts routinely prioritize
recruitment of participants of single ancestry (Atkinson et al.,
2021). This greatly impedes downstream progress, such as
polygenic risk score application across populations, where much
lower accuracy is observed in non-European populations for
many traits (Duncan et al., 2019; Martin et al., 2019; Cavazos and
Witte, 2021).

In addition, complex traits in admixed groups potentially
harbor differing genetic architectures and varying environmental
exposures compared to most widely studied groups such as
Europeans. Some biomedical traits have higher risk prevalence
in admixed groups, such as prostate cancer in African Americans
(Bhardwaj et al., 2017; Conti et al., 2021), asthma in Puerto Ricans
(Lara et al., 2006; Pino-Yanes et al., 2015), obesity and type II
diabetes in Native Hawaiians (Maskarinec et al., 2009), and active
tuberculosis in a South African admixed population (Chimusa
et al., 2014), which are likely attributed to elevated ancestry-
specific risk allele frequency. Among anthropometric traits, skin
pigmentation in groups with admixed ancestry harbor greater
phenotypic variance than those with single ancestries (Martin
et al., 2017b). Here, the larger phenotypic variance is likely caused
by increased polygenicity in admixed groups, where in contrast
some causal variants are nearly fixed in the single ancestry
groups due to strong directional selection of skin pigmentation
(e.g., rs1426654 in SLC24A5; Lin et al., 2018). The increase
in minor allele frequencies in admixed populations compared
to the populations of ancestral origin could be ubiquitous in
traits that have been under differential processes of selection
among ancestral populations or simply among populations that
are deeply diverged. This would theoretically result in greater
power of discovery in GWAS, as the analysis is most powerful
for variants with higher minor allele frequency (MAF).

While genetic epidemiologists have typically focused on
homogeneous populations, there are clear opportunities to
improve discovery in admixed populations. For example,
local ancestry can be leveraged to improve power in certain
scenarios (e.g., Pasaniuc et al., 2011). In addition, Zhang and

Stram (2014) observed a power gain in admixed individuals in
dichotomous traits compared to pooled ancestral populations
with stratification without environmental confounding. Here,
we develop the genotype-phenotype simulation package
APRICOT, Admixed Population poweR Inference Computed
for phenOtypic Traits, a flexible mechanistic model, to address
the question of power across a range of realistic scenarios
of genotypic and ancestry-associated contributions. With
APRICOT we compared an admixed population to a similar-
sized ancestral population on its own across a range of allelic
differentiation (as measured by FST; Weir and Cockerham,
1984) and varying narrow-sense heritability, allowing for a
range of ancestry–phenotype associations, whether driven by
genetics or environment. We further extend the insights gained
by APRICOT to look at power for replication, whether from
admixed populations to ancestral populations or vice versa, as
well as opportunities to derive trans-ethnic polygenic scores.

METHODS

Simulation Framework
The framework of the simulator, now at https://github.com/
menglin44/APRICOT, includes the main function of genotype-
mediated simulation framework, and a side function to
estimate simulation-based power estimate between a trait and
global ancestry.

Simulation-Based Power Estimate Between a Trait
and Global Ancestry
The first simulator we provide in this study builds phenotypes
in admixed populations using only global ancestries, without
involving genotype. The aim is to assess if the sample size
is adequate for observing a dichotomous trait by ancestry
correlation. The details are described in Supplementary Notes.

Genotype-Mediated Simulation Framework
The general simulation framework consists of two steps: first,
we model ancestries and simulate genotypes based on ancestry
specific frequencies and phenotypes (Figure 1); then, we test
associations between the phenotype and causal variants via a
linear model for a quantitative trait, or a logistic regression for
a dichotomous trait, and summarize the statistical power. If the
population is admixed, global ancestry is supplied as a fixed effect
to correct for population structure.

Ancestry Modeling
Global ancestry in a 2-way admixed population is modeled
as a beta distribution. The ith individual’s ancestry θ is
characterized as

θi ∼ Beta
(
m2

(
1−m

v
−

1
m

)
,

1−m
m

α

)
where m and v are the mean and variance of the global ancestry
(from a presumptive population 1 in this framework) in an
admixed population of interest.

The local ancestries, i.e., the source of ancestry of
both the maternal and paternal copies of haplotypes at
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FIGURE 1 | Flow chart of the simulation framework in APRICOT, including simulation of genotypes and phenotypes based on an admixture process and subsequent
association tests for statistical power. A separate side function for testing association between a trait and global ancestry is illustrated in Supplementary Figure 1.

any genomic position, can be obtained from a binomial
sampling with the probability equaling the global ancestry. The
process is repeated independently for diploid chromosomes

over a presumptive number (n) of LD-independent loci
to form a n N local ancestry matrix, where N is the
proposed sample size.
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Genotype Simulation
We first draw allele frequencies in the two ancestries (Population
1 and 2) from a beta distribution under the Balding–Nichols
model (Balding and Nichols, 1995) with a given FST

p1s, p2s ∼ Beta
(
ps(1− FST)

FST
,

(1− ps)(1− FST)

FST

)
where ps is the allele frequency at an independent locus s in an
ancestral population prior to the divergence and drawn from a
uniform distribution unif (0.001, 0.999). Within the model we
additionally provide additional distributions if the focus is not
on common variants as it is here. We set FST as a flexible value
to increase from a baseline genome-wide FST when the ancestral
allele becomes rare. This is to reflect that a rarer variant in the
ancestral population is easier to drift to different frequencies in
diverged populations, especially if one population has undergone
a severe bottleneck (as would be expected to increase FST).

FST = FSTG + (1−MAFa)δ

where FSTG is the genome-wide background FST between the
two populations of ancestral origin and is considered lower than
the FST between trait-causal loci because of the difference in
directional selection. MAFa is the MAF of the variant in ancestral
populations and δ is the increment with regard to MAF decrease,
set as 0.3 in this study. Alternatively, we also test for fixed FST
under the genome-wide background value when exploring the
effect on power from various FST values ranging from 0.1 to 0.9.
The genotypes are then drawn from binomial sampling using the
allele frequency corresponding to the local ancestry assigned at
the locus (i.e., p1s or p2s) across all loci.

Genetic Contribution to Trait
We randomly assign w out of the total n loci to be causal variants,
where w is the proposed polygenicity of the trait. The weights for
the causal variants are drawn from a standard normal distribution
N (0, 1), and the signs of the weights are tied to the prevalence of
the allele in the two populations of ancestral origin: the direction
of the weight, positive or negative, at a locus is decided by
the binary outcome of trial with probability p1s

p2s
. In this way, a

difference in directional selection of the complex trait in the two
populations is introduced to facilitate a correlation between the
trait and ancestry in the admixed group. Then, polygenic risk
scores (PRS) in samples can be calculated based on the weights
and the genotypes at causal loci.

Non-genetic Contribution to Trait
The non-genetic component is treated as the sum of two parts
in admixed populations: (1) random environmental variation
modeled as Gaussian noise and (2) environmental confounders
correlated with ancestry, such as socioeconomic status and
education, modeled as ancestry by environment interaction.
Details are described in Supplementary Notes.

Phenotype
For quantitative traits, the phenotype is the direct sum of the
genetic component (i.e., PRS) and the non-genetic score. For

dichotomous traits, the phenotype is converted from the sum of
genetic and non-genetic scores to binary case and control status
based on the given liability threshold of the case prevalence.

Association Testing
Association between the trait and a variant is tested via a linear
regression for a quantitative trait, or a logistic regression for a
dichotomous trait in all three populations. The global ancestry
is corrected in the admixed group. Power is defined as the
proportions of causal variants with a significant p-value above a
given stringency threshold.

Extended Analyses Based on
Simulations
Estimation of False Positives
A false positive rate in association tests is verified against the
association stringency by calculating the proportions of non-
causal variants being discovered with significant association
p-values. This is calculated separately in each population. The
background FST (at non-causal variants) between the source
populations was set to a constant 0.2, while a range of FST from
0.1 to 0.9 at trait causal loci that reflect trait divergence were
tested. Other parameters were set as standard as described in
the result section, with 100 causal variants, heritability 0.5, and
environment by ancestry effect modeled as the sum of ancestral
Gaussian environmental noise proportional to global ancestry.
Each set of parameters was run with 50 repetitions.

PRS Estimation
For training purposes, we obtained the “estimated” weights of
common (MAF = 5%), causal variants by conducting association
analyses in 10,000 individuals in each simulated population (i.e.,
admixed population with ancestry proportions approximating
those in African Americans, and two source populations: Pop
1 as the major ancestry source representing West Africans,
Pop2 as the minor ancestry source representing Europeans). The
simulations were run with 1,000 causal variants, FST at 0.2 and
an increment associated with the rarity of the ancestral MAF, and
other parameters the same as standard as above. We then used
these weights to estimate PRS in another 1,000 individuals in
each population as a test. We tested the PRS construction in two
ways: firstly, we only used significant (p < 0.05) causal-variants
from the training set (true positives); secondly, we included
all significant variants (all positives) over a range of different
stringency (p = 0.05, 5e-4, 5e-6, 5e-8, respectively). The true
PRS of the individuals in the test set were available through an
intermediate step in the simulations (Figure 1) and were used to
test the accuracy of the estimated PRS via correlation coefficients.

Calculation of FST for Traits From the
GWAS Catalog
We used the full NHGRI-EBI GWAS catalog “All associations
v1.0” (Buniello et al., 2018) to extract variants that are
significant genome-wide (<5e-8). We restricted traits to 899
that have more than 10 significantly associated variants
that can be found in the 1000 Genome Project Phase 3
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(1000 Genomes Project Consortium et al., 2015), and computed
Weir and Cockerham’s FST (Weir and Cockerham, 1984) between
99 Utah Residents (CEPH) with Northern and Western European
Ancestry (CEU) and 108 Yorubans in Ibadan, Nigeria (YRI)
samples using PLINK v1.91 (Chang et al., 2015). The genomic
background weighted FST was calculated on common variants
(MAF > 5%) only.

RESULTS

Correlation Between a Trait and Ancestry
Is Common
Complex trait studies in groups with heterogeneous ancestries
usually require a correction for population structure. The
implicit assumption is often a correlation between global
ancestry and the trait that is commonly observed a priori. The
estimated ancestries, or typically ancestry informative principal
components, are included as a fixed effect to adjust for phenotypic
variance from non-genetic confounders (e.g., social and cultural
factors correlated with population structure), and to avoid
spurious associations (Price et al., 2006). The correlations
between ancestries and complex traits can also be due to changes
in genetic architectures among ancestral groups either due to
differential selection or deep divergence among populations.
This in turn forms one of the basic motivations of multi-
ancestry genetic studies, including admixture mapping (loci
with ancestry deviating from genome-wide expectation), and
cross-population transferability of genetic predictors. Therefore,
we provide a power estimate for whether a significant
correlation with ancestries can be observed, within a given
incidence rate and ancestry distributions (section “Methods” and
Supplementary Figure 1).

The Power of Genetic Discovery in an
Admixed Population Is Higher Than in
Ancestral Populations
We primarily focused on a genotype-mediated simulation
framework to investigate the GWAS setting in an admixed group.
We started by modeling global ancestries, then generating LD-
independent genotypes based on population divergence, and
subsequently the corresponding phenotypes under an additive
model (section “Methods” and Figure 1). We set up the model
in a 2-way admixed group with similar proportions to African
Americans, here an average of ∼75% West African ancestry
(denoted as Population 1 in simulations) and ∼25% European
ancestry (denoted as Population 2) (Bryc et al., 2015; Baharian
et al., 2016). We simulated a complex trait assuming 50% narrow
sense heritability with 100 causal variants, either as a quantitative
or a dichotomous trait with a liability threshold of 5%, in both the
admixed population of interest and the homogenous populations
of ancestral origin (N = 1,000 each). To induce a difference
between ancestral phenotypic distributions and a correlation
between a trait and global ancestries, we tied the direction of effect

1www.cog-genomics.org/plink/1.9/

sizes to the minor allele frequencies in the two populations of
ancestral origin (section “Methods” and Figure 2). In this study,
each independent setting was repeated in 50 runs.

In the standard setting, we modeled the parameters described
above, and FST across the 100 causal variants between Population
1 and 2 as a flexible value with a baseline equaling the genome-
wide FST of 0.2 and an increment associated with the rarity of the
ancestral MAF. This is referred to as Fst = 0.2+ in the text. The
aim of this is to mirror the larger stochasticity in the frequency
change of an ancestrally rare variant in diverged populations,
especially when one of the derived populations has experienced
the severe out-of-Africa bottleneck. We then tested associations
between the phenotype and each locus while correcting for
global ancestries over various sample sizes ranging from 1,000
to 1,000,000. We found the power to discover a causal variant
at a canonical threshold of p ≤ 0.05 significantly higher in an
admixed population than the average in either of the populations
of ancestral origin (Wilcoxon p = 1.23e-20 and 5.79e-10 across
the range of sample sizes for quantitative and dichotomous traits
described in Figure 2, respectively). In addition, we observed
similarly high power in admixed populations with a slightly
different ancestry composition to approximate the mixture of
Indigenous American and European major ancestries in Chileans
(Homburger et al., 2015), and an FST of 0.18 between the two
source populations (Vidal et al., 2019; Supplementary Figure 2).

In addition to the standard setting where an environment by
ancestry effect (Env × Anc) is modeled as ancestry-weighted
Gaussian noise, we explored an alternative where we model
Env × Anc as linearly dependent on the ancestry percentages,
which would explain a range of proportions of phenotypic
variance from 0% to 1 - h2 (Supplementary Figure 3). The power
advantage in admixed populations remains consistent between
the default Gaussian Env × Anc and linear modeling, where
the latter was set as up to 10% of non-genetic components
(Supplementary Figure 4).

The comparatively high power in admixed populations is
more pronounced when the trait distributions have greater
distance between Population 1 and 2, or the two populations
are more deeply diverged, reflected by the larger FST at causal
variants (Figure 3). To relate to real-world GWAS, we compared
our levels of differentiation to the NHGRI-EBI GWAS catalog
(Buniello et al., 2018). Among the 899 traits that have more
than 10 genome-wide significant hits found in 1000 Genomes
Project, the majority (N = 877) have at least one associated variant
beyond the background FST of 0.155 (Figure 3), we provide a
list of the most-differentiated traits between CEU and YRI in
Supplementary Table 1. In contrast to the response to varying
FST, the statistical power does not obviously change when the
narrow sense heritability of the trait differs (Supplementary
Figure 5). When increasing the overall stringency of the type
I error rate up to a conventional genome-wide significance of
5e-8, the power advantage remains very similar across different
thresholds, despite the expected decrease in power value on the
absolute scale in all populations (Supplementary Figures 6, 7).
Thus we picked the canonical threshold of p ≤ 0.05 for the
remaining analyses, as it can represent all stringency levels when
this study focuses on the relative power comparison, and this
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FIGURE 2 | Genotype mediated simulation under an example condition. The simulated trait has 100 causal variants with a narrow sense h2 = 0.5, FST at causal
variants 0.2+ (explained in Result), and environment by ancestry effect modeled as the sum of ancestral Gaussian environmental noise proportional to global
ancestry. (A) Simulated quantitative phenotype distribution of populations of ancestral origin (Pop1, Pop2, blue, and green, respectively) and admixed population
(ADX, red) of 1,000 samples each. (B) Correlation between simulated phenotype in admixed population and the global ancestry from Population 1. (C) Power to
discover a causal variant over a range of sample sizes in a quantitative and dichotomous trait. Data point and error bars represent the mean and standard deviation
across 50 repetitions, respectively.

more relaxed cutoff would include a larger number of causal
variants for further discussion. The actual false positive rate
of associations, as calculated from the 900 non-causal variants
from the simulation when setting the background FST to 0.2,
remained at approximately 5% in all three populations across
the full FST and h2 range for the causal variants of a trait
(Supplementary Figure 8).

Cross-Population Replication and
Transferability Is Asymmetric Between
the Admixed Group and Homogenous
Groups
As GWAS is conventionally focused on common variants, to
investigate replication and transferability we then increased

the polygenicity of a trait to 1,000 causal variants, and set
MAF filtering at 5% for each population’s genotypes prior
to testing associations. We compare discovery in the major
ancestral population (Population 1) relative to the admixed
population. The proportion of significant signals that replicate in
the reciprocal group is asymmetric between the two populations.
Discovery in the admixed samples was more likely to replicate in
Population 1 than the other way around, and this trend becomes
more exaggerated as trait FST increases (one-way Wilcoxon
p = 3.78e-6, < 2.2e-16, and < 2.2e-16 for FST = 0.2, 0.5, and 0.8,
respectively; Figure 4).

We tested the cross-population transferability of polygenic
scores (or polygenic risk scores, PRS) constructed from
discovered loci with MAF > 5% in each population by
increasing the sample sizes of the training set to 10,000
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FIGURE 3 | Varying FST at trait associated loci. Ratio of power in admixed population over the average in the two populations of ancestral origin, with different FST at
causal loci in (A) a quantitative trait and (B) a dichotomous trait. FST was set to constant during simulations per a specified value. The trait was assumed to have 100
causal loci and a narrow sense heritability of 0.5, with environment by ancestry effect modeled as a sum of ancestral Gaussian noise proportional to the global
ancestry. Data points and error bars represent the mean and standard deviation across 50 repetitions, respectively. (C) FST at genome-wide significant hits for 899
traits from the GWAS catalog, between CEU and YRI from the 1000 Genomes Project Phase 3. Traits are spread along the radian (x-axis), with variant FST shown
along the radius (y-axis). The dashed line represents the genomic background FST.

per population and separately estimating the GWAS-
based PRS in an additional testing set of 1,000 samples
in each population. We measured the PRS accuracy as
the correlation coefficient r between the estimated values
and the true value in each test group across 50 repeats of
simulations. Interestingly, the prediction accuracy is also
asymmetric between admixed and homogenous samples.
When we constructed PRS using only true positive signals

at an alpha of 0.05, the accuracy of estimating PRS in
Population 1 or 2 using weights and loci trained from
the admixed population is significantly higher than the
other way around. This holds true when using all (both
true and false) positive signals at various stringency levels
(Figure 4, Supplementary Figure 9, and Supplementary
Table 2), suggesting another advantage in conducting GWAS in
admixed populations.
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FIGURE 4 | Transferability of GWAS variants across populations. (A) Replication of individual signals that are common in both ancestral Population 1 and the
admixed group. Direction of replication is shown as a solid or dashed line: the former indicates loci are discovered in an admixed population and replicated in
Population 1; the latter loci are discovered in Population 1 and replicated in the admixed population. Data point and error bars represent the mean and standard
deviation across 50 repetitions. (B–E) Heat map of accuracy of PRS using signals above different stringency of significance level at 0.05, 5e-4, 5e-6, and 5e-8,
respectively. The accuracy is measured as the correlation coefficient between the estimated PRS against the true PRS. The training population where the weights
and variants were identified, and the test population in which to construct PRS, are specified on the x- and y-axis. Central numbers in black within each cell are the
average correlation coefficient across 50 independent simulations, with the 95% confidence interval of the mean acquired from bootstrapping (n = 1,000).
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DISCUSSION

Our simulation framework,APRICOT, demonstrated that GWAS
in admixed populations has greater power for discovery than
in the homogenous populations of ancestral origin, given the
same sample sizes. The difference in power increases when the
trait is under more differentiated polygenic selection in the
two populations of ancestral origin, reflected by FST. This is
because when a trait is driven by more-differentiated variants,
its causal variants are likely to be pushed to more extreme allele
frequencies, thus weakening the statistical power of discovery in
that population. In contrast, the frequency of the same causal loci
in admixed populations likely have become more intermediate
due to variation in ancestries, making them much easier to
detect. An extreme yet classic example that echoes with the
observation would be skin pigmentation, where selection is in
the opposite direction in populations at high latitude and those
living near the equator. A non-synonymous, skin-lightening
mutation at rs1426654 is fixed in European descendants, with
a high FST of 0.985 between CEU and YRI. This mutation
would never have been discovered through GWAS if analyses
were only conducted in European populations, but it is highly
detectable through association analyses in admixed populations
(Martin et al., 2017b).

Additionally, the power advantage in admixed populations
may persist even for traits that have not been under such strong
differentiation: for almost all the 899 traits we examined from
the GWAS catalog, some associated SNPs can have a much
larger than background FST between CEU and YRI, even when
the traits themselves on average show limited differentiation
(Figure 3). We note, however, that the high FST across these trait-
associated variants could partially be attributed to ascertainment
bias, where the “tagging SNPs” by design are common in
Europeans, making the corresponding genetic component of
these traits seemingly more differentiated across populations
(Novembre and Barton, 2018). The true causal variants that
were tagged by these signals could have moderately attenuated
FST, yet the differences in allele frequency likely remain larger
than expected, as previously observed from GWAS on simulated
whole genome sequences between Africans and Europeans (Kim
et al., 2018). Therefore, attempts to discover variants similar to
these “FST outlier” signals would benefit from GWAS designed in
admixed samples.

In this study, we provide a mechanistic framework to
explore the relationship between power gain in single variant
associations and variation in ancestries, mediated by the nature of
intermediate allele frequencies in admixed populations. A similar
hypothesis of power increase was also explored via simulations
in Zhang and Stram (2014), though the focus of their study
was to explore the role of local ancestry in genetic associations;
therefore, the assumptions of architecture for comparison
between admixed and ancestral populations were simplified,
where non-genetic components (such as environmental effect
and environment by ancestry interactions) and heritability were
not considered in the model, and a constant effect size was
assumed for all causal variants. Under this model, Zhang and
Stram (2014) observed a power increase in admixed groups

when compared to stratified analyses in the ancestral populations
pooled with a proportion identical to the mean global ancestry
percentage. Our simulations extended this framework to dive
deeper into more-realistic scenarios across various ranges of
environmental effect, trait divergence, and heritability. Moreover,
we modeled the ancestry-phenotype association observed in
many real-world traits under various different distributions.
With a more adjustable genetic architecture in the model, we
were able to quantify power advantage in admixed populations
within different circumstances in order to investigate practical
applications as replication portability and PRS.

In realistic practice, some confounders and restrictions
beyond the model assumptions exist: first, some non-additive
genetic components, such as genetic by environment interactions
(G × E) and epistasis (Park et al., 2018; Rau et al., 2020), could
potentially induce effect size heterogeneity at causal loci with
or among populations (Rosenberg et al., 2019), thus obscuring
the prediction of power advantage in admixed populations
because the power of discovery would be variant-specific and
balanced by the gain vs. loss from the increase in frequency
and change in effect size. However, the increase in power is
still expected to be substantial from additive components that
are usually considered major in a genetic architecture, with
effect sizes highly similar across populations (Wojcik et al.,
2019). Additionally, currently the contribution from epistasis
or G × E components to most trait variability is estimated
to be relatively small (Wang et al., 2019; Dahl et al., 2020;
Hivert et al., 2021). For variants with heterogeneous effect sizes
per ancestry, other local ancestry-aware regression methods
could potentially improve the power of detection in admixed
populations (Atkinson et al., 2021). Second, the observations in
this study that admixed populations harbor a greater power of
discovery in GWAS than the ancestral populations is credited
to the existence of ancestry variance, independent of specific
demographic history of either the admixed or the ancestral
population. It is possible that the demographic details or specific
assumptions of the genetic architecture would affect the absolute
value of power estimate on a finer scale, which has not been
the focus of this study, yet is worth being further explored
through forward or coalescent simulations with additional details
(including modeling differential linkage disequilibrium patterns)
in the future. Third, we focused on a single admixture scenario,
albeit one reflecting a realistic scenario. We would anticipate our
observed patterns to be exaggerated in populations with even
contributions from Populations 1 and 2. Further our framework
could be extended to k-way admixed populations, albeit with
possibly elevated computation burden from the step of sampling
population specific allele frequency that needs to meet all pairwise
FST relationships. Additionally, the interpretation and degree
of population-specific interpretation become more complex to
be described here. Lastly, while we did not model selection
that happens after admixture, it may be possible to investigate
changes in post-admixture dynamics via bias in local ancestry,
and the development of that approach would be a relevant future
direction of APRICOT.

Despite the underrepresentation of admixed groups in large
GWAS, recent research has highlighted the importance of
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conducting genetic research with more diversity. Our work joins
burgeoning efforts to quantify the statistical benefits of complex
trait studies in diverse populations, especially populations of
mixed ancestry. Our work suggests another advantage for
conducting genetic studies in admixed populations, which comes
from elevated allele frequencies when traits are moderately to
highly differentiated. Moreover, discoveries from such studies
aid improvement in cross-population PRS, which is critical in
clinical prediction in personalized medicine yet presently has
suboptimal performance for many biomedical traits in non-
European populations (Martin et al., 2019; Rosenberg et al.,
2019; Cavazos and Witte, 2021). We therefore highlight that
insights gained from admixed populations provide improved and
appealing generalizable properties compared to homogeneous
populations. As the field increasingly moves toward personalized
medicine applications we must be mindful of opportunities to
incentivize novel studies and analyses in diverse and, particularly
as we highlight here, populations of mixed ancestry.
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