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Carrier transport theory for twisted bilayer
graphene in the metallic regime
Girish Sharma 1,2,10, Indra Yudhistira 1,3,10, Nilotpal Chakraborty1,4,5, Derek Y. H. Ho1,4, M. M. Al Ezzi1,3,

Michael S. Fuhrer 6,7, Giovanni Vignale 1,4,8 & Shaffique Adam 1,3,4,9✉

Understanding the normal-metal state transport in twisted bilayer graphene near magic angle

is of fundamental importance as it provides insights into the mechanisms responsible for the

observed strongly correlated insulating and superconducting phases. Here we provide a

rigorous theory for phonon-dominated transport in twisted bilayer graphene describing its

unusual signatures in the resistivity (including the variation with electron density, tempera-

ture, and twist angle) showing good quantitative agreement with recent experiments. We

contrast this with the alternative Planckian dissipation mechanism that we show is incom-

patible with available experimental data. An accurate treatment of the electron-phonon

scattering requires us to go well beyond the usual treatment, including both intraband and

interband processes, considering the finite-temperature dynamical screening of the electron-

phonon matrix element, and going beyond the linear Dirac dispersion. In addition to

explaining the observations in currently available experimental data, we make concrete

predictions that can be tested in ongoing experiments.
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The seminal observation of superconductivity and correlated
insulating states in twisted bilayer graphene (tBG)1–3 has
generated tremendous excitement in the physics

community4. At present, there is no consensus on the mechanism
responsible for these observations. It was anticipated almost 15
years ago5 that when two sheets of graphene are stacked on top of
each other with a slight relative rotation, a large wavelength moiré
superlattice potential emerges. By reducing the twist angle in
these moiré systems, the Bloch period can be increased by two
orders of magnitude thereby bridging the lengthscales between
naturally occurring lattices in materials and optical traps of cold
atoms6.

The addition of a moiré potential significantly modifies the
underlying electronic structure, including both a reduction in the
Fermi velocity at low energy and a reduction of the bandwidth of
the lowest energy band. Both these effects enhance the impor-
tance of electron–electron interactions7. These properties can
be understood as follows: In the absence of any coupling
between the layers, the original Dirac-like bands are just folded
onto the smaller moiré Brillouin zone as determined by sym-
metry, but not modified; it is the interlayer coupling that causes
level repulsion between the folded moiré bands. The moiré band
closest to charge neutrality remains Dirac-like at low energy (the
sublattice symmetry protecting the Dirac cones is not broken by
the moiré potential) but with a reduced Fermi velocity, and the
first moiré band as a whole gets squeezed by the level repulsion.
This reduced bandwidth is quantified by the separation in the
energy of the two van Hove singularities (VHS) that are found at
the midpoint between the two original (relatively rotated in the
Brillouin zone) Dirac cones, but pushed closer in energy by
the level repulsion. Numerical ab initio studies soon confirmed
the predictions of this long-wavelength continuum picture8;
however, the experimental situation remained controversial for a
while (see e.g., ref. 9). Since then, the continuum model has been
largely confirmed experimentally (see e.g., refs. 10,11).

Taking the continuum model to its logical conclusion, Bis-
tritzer and MacDonald predicted12 that the Fermi velocity would
vanish at a family of so-called “magic angles”. Their original work
assumed that the lattices remained rigid. More recent work
including lattice relaxation effects13,14 suggests that only the first
and largest magic angle (θM~1.06∘) is stable, and that the rigid
lattice continuum approximation breaks down for smaller angles.

It should be emphasized that within the continuum model,
strictly speaking, the bandwidth or 2εVHS remains finite at the
magic angle. However, experimentally, at least in local spectro-
scopy measurements (e.g., refs. 15–18), an alternate definition of
magic angle is possible, i.e., when εVHS= 0. These would occur at
angles below the original magic angle and in the regime where
lattice relaxation effects are dominant (and it is not clear, in this
case, what the electronic structure would look like). Given the
observation of strongly correlated physics in other twisted 2D
materials19–22, it seems that the vanishing bandwidth is more
germane than the vanishing Fermi velocity, although, at present,
the relation between the two has not been established.

In this work, we establish yet another special angle, θcr ~1.15∘,
the angle at which the Fermi velocity equals the phonon velocity.
We show that at this angle, the phonon contribution to the
resistivity strictly vanishes, and the experimentally measured
resistivity would increase by several orders of magnitude for small
deviations in angle on either side of θcr. It has become normative
in this quickly evolving field to attribute factor of ~5 changes in
the resisitivity23 as evidence for superconductivity, and our work
suggests more caution. By construction, each magic angle must be
accompanied by two critical angles θcr (above and below θM), and
therefore its effects should be robust to lattice relaxation effects
(as we demonstrate explicitly below). We demonstrate that the
Fermi velocity of the linear bands and the VHS at the edges of the
moiré Brillouin zone have distinct effects on the resistivity, and
these could therefore be used in transport experiments to dis-
entangle the importance of each in the correlated regime.

The present work is not about the observed superconductivity
or correlated insulators. As we explain here, there is a geometric
enhancement of the electron–phonon coupling in such moiré
systems24,25 that would favor a phonon mechanism for super-
conductivity; however, in a separate paper26 we show that plas-
mons are also strongly enhanced and that superconductivity can
arise from a purely electronic mechanism. Similarly, at present, it
is unclear if the correlated insulator is a Mott insulator (see e.g.,
refs. 27–35) or a Wigner crystal36,37. Furthermore, it is possible for
long-range interactions to significantly distort the noninteracting
bands away from charge neutrality due to the formation of
inhomogeneous electrostatic potentials (see e.g., refs. 38,39)
although the experiments seem to suggest otherwise.

Rather, this work is about the carrier transport theory in the
metallic regime (including at the van Hove singularity at higher
carrier densities). We find that the role of phonons in tBG is
perhaps as interesting as that of electrons: the same moiré
potential that gives rise to the flat electronic bands, also results in
enhancement of the electron–phonon coupling. Soon after the first
experiments1–3, we predicted40 that charged impurities would
always dominate the resistivity at the lowest carrier densities and
temperatures, but that gauge phonons would dominate for most of
the experimental window. This crossover is also present in
monolayer graphene, but occurs at a temperature of ~ 500 K, while
for tBG the crossover happens at ~5 K. As we show in Methods,
available experimental data largely confirm our earlier predictions.

By now there have been two experimental transport studies
focusing on the metallic regime. The first is from the MIT
group41 and the second is a UCSB-Columbia collaboration42.
While the two experiments are largely consistent with each other,
they arrive at very different conclusions on the dominant scat-
tering mechanisms at play. Ref. 41 argues for a Planckian
mechanism to explain their data, which implies a scattering rate
ℏτ−1= CkBT, where C≲ 143. Here C= 1 is the Planckian bound
set by holography and believed to be relevant for strange metals44.
They argue that the linear-in-temperature behavior persisting
well below the Bloch–Gruneisen temperature and the saturation
of resistivity at higher temperature are both inconsistent with the
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Fig. 1 Illustration of the different carrier transport regimes in twisted
bilayer graphene. Electron–phonon scattering dominates except at very
low temperature. At intermediate temperature (TF, TBG)≪ T < TVHS,
resistivity is linear-in-T and at high temperature (T∼ εVHS), resistivity
saturates as a function of temperature. Inset: electron-impurity scattering
dominates the transport at low temperature. Resistivity increases for T≪ TF
and decreases for T≳ TF. This nonmonotonicity arises from the charged
impurity scattering40, and when the system crosses over from the
degenerate to the nondegenerate regime.
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conventional theory of phonon transport. We show here that
both of these features are actually essential features of phonon-
limited transport in tBG (see Fig. 1). While a microscopic theory
showing Planckian dissipation has not yet been developed for tBG
(it has for other systems, see e.g., ref. 45,46), we can assume a
Planckian mechanism to make predictions for the transport. We
show here that a Planckian mechanism also gives a saturation in
resistivity at high temperature and linear-in-temperature beha-
vior at a low temperature consistent with experimental observa-
tions. In this work, we focus on the metallic regime that is far
from the superconducting regime. A detailed analysis ultimately
shows that the dominant scattering mechanism in this regime is
not Planckian for several reasons including (a) the Planckian
theory also predicts a strong carrier density dependence (absent
in the experiment); (b) the experiment and the phonon
mechanism both show the resistivity saturation at high tem-
perature is set by the VHS energy, while for the Planckian theory
this saturation is intrinsic (i.e., independent of bandstructure); (c)
the twist angle dependence of Fermi velocity as extracted from
experiment for phonon-limited scattering is consistent with the
continuum theory12–14, while it is orders of magnitude off for
the Planckian theory; and most significantly, (d) the extracted
value of the scattering time from the experiment using the
Planckian theory contradicts the assumptions of the Planckian
theory. Our work shows that the phonon interpretation of ref. 42

is consistent with the theory we develop here.

Results and discussion
Comparison of resistivities. In Fig. 2 we compare data from
ref. 42 (middle panels) with both a phonon-limited theory (left
panel) and a Planckian theory (right panel). Similar to the
experimental data, the phonon-mediated theory has weak density
dependence. By contrast, the resistivity of the Planckian theory
has strong density dependence (not seen in the experiment) that
results from the density of states dependence of the Drude weight,
which, unlike electron–phonon, remains uncompensated by the
scattering time. We note that both the phonon-limited theory and
the Planckian theory are linear-in-T at low temperature, and
saturate at high temperature (qualitatively similar to what is seen
experimentally). However, the origin of the saturation is very
different. For phonon scattering, the saturation is set by the
electronic bandwidth 2εVHS, while for Planckian dissipation it is
mostly independent of εVHS and set by Planckian strength C,
which is expected to be somewhat universal and C ≤ 1. This
illustrates that both the phonon-limited theory and the Planckian
theory provide robust predictions that can be tested against
experiment. Near magic angle, tBG has electron-hole asymmetry
that arises from the second-nearest hoping in the effective tight-
binding model for graphene. The superlattice potential renor-
malizes the kinetic energy scales including the asymmetry to
lower energies12. We include this effect in the theory by fitting
separately for the electron and hole side (see below). Details of
how we fit the experimental data to electron–phonon and
Planckian theory are provided in Methods.

Linear-in-T resistivity. Since phonons appear to dominate the
transport properties, we are motivated to carefully consider
the role of electron–phonon scattering. In this paper, we inves-
tigate the problem of normal state electronic transport in tBG
focusing on the role of electron–phonon collision, which we find
is the most important scattering mechanism in the relevant
temperature and density regimes. The usual treatment of the
electron–phonon does not take into account interband scattering,
that we find below to be crucial near the magic angle. Secondly,
dynamical screening of phonons is completely neglected because

typically vF≫ cph, which again no longer holds true near the
magic angle. Thirdly, geometric enhancement of the gauge pho-
non mode remains poorly addressed, which we find below to be
the most dominant phonon mode in tBG. Lastly, the usual
treatment of the electron–phonon problem has limited validity
and fails beyond the linear regime (near VHS) that pushes us to
go beyond the Dirac approximation and include nonlinear lattice
effects. An accurate treatment of the electron–phonon scattering
requires us to go well beyond the usual treatment, whereby
including both interband and intraband processes, we show, for
example, that the interband process allows for a linear-in-T
behavior well below the Bloch–Gruneisen temperature and the
transition between the two is accompanied by several orders of
magnitude decrease in the resistivity at a critical angle θcr, distinct
from the magic angle θM. By considering the finite-temperature
dynamical screening of the electron–phonon matrix element, we
show, for example, that only the antisymmetric gauge phonon
mode survives at a low twist angle; and by going beyond the
linear Dirac dispersion, we show that the van Hove singularity
causes saturation in resistivity as a function of temperature. In
addition to explaining the observations in currently available
experimental data, our theory makes concrete predictions that
can be tested in ongoing experiments.

To our knowledge, the Boltzmann transport theory for acoustic
phonon scattering in monolayer graphene was first developed by
Hwang and Das Sarma47. In this work, we adopt the same
formalism with several extensions appropriate for tBG. First, we
consider both intraband and interband processes. As we show in
the Supplementary Information, close to the magic angle, only
interband scattering is operational which was not considered in
ref. 47. Second, while the linear Dirac Hamiltonian was an
appropriate model for monolayer graphene, the reduced energies
in tBG requires us to use an effective two-band Hamiltonian first
proposed by ref. 48 that captures the physics near the van Hove
singularity. Finally, we do the full finite-temperature and finite
frequency RPA screening of the electron–phonon matrix
elements (which is necessary due to the diverging density of
states close at the magic angle). This demonstrates that it is the
off-diagonal (or so-called gauge phonon contributions40,49,50) of
the acoustic phonon matrix element that dominates the transport
properties. How to screen the electron–phonon matrix element in
two dimensions has long remained controversial. The issue is that
prior to the present work, calculating the full dynamical
polarizability at finite temperature has been challenging. Since
the phonon propagator couples at a particular frequency, without
dynamical screening, it is unclear how the electrons screen the
deformation potential. This led to speculation in the theoretical
literature as to whether the deformation potential should be
screened or left unscreened. For example, in ref. 51, Okuyuma and
Tokuda argue that experimental data for GaAs 2DEGs is better fit
using the unscreened theory, while in a later work, Kawamura
and Das Sarma argue that once correctly done, static screening
gives excellent agreement with experimental data52. Even for
monolayer graphene, ref. 50 argue that the deformation potential
is completely screened, while the ref. 53 argue for no screening. In
this work, we demonstrate conclusively that as anticipated by
Kawamura and Das Sarma, the static screening approximation is
closer to the correct dynamically screened result than the
commonly used unscreened approximation. The Supplementary
Information has details of the screening as well a discussion of the
geometric enhancement due to the moiré that is present for gauge
phonons, but not scalar phonons.

Interplay between intraband and interband scattering. There
are two qualitatively distinct regimes depending on whether the
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phonon velocity cph is greater than or smaller than the Fermi
velocity vF. The crossover from vF > cph to vF < cph is expected
because the renormalized vF vanishes at magic angles θM. For the
largest magic angle, this crossover occurs at θ= θcr ~1.15∘and
separates the regimes of interband (vF < cph) and intraband
(vF > cph) scattering. Within the Dirac regime, the theory for
intraband scattering is now well established47,50,53–55. The resis-
tivity shows a Bloch–Grüneisen behavior similar to metals and is
given by ρe�ph ¼ ½16ζðθÞ2kF=ðe2μscphv2FÞ�FðTBG=TÞ, where TBG=
2ℏcphkF is the Bloch–Grüneisen temperature, which is the char-
acteristic crossover scale over which the temperature dependence
of the resistivity due to electron–phonon scattering changes from
T4 below TBG to T− linear above TBG. This change in the
resistivity occurs due to the restricted scattering phase space of
phonons at low temperatures when their quantum nature
becomes important, compared to higher temperatures where the
phonon distribution is quasiclassical. The graphene mass density
is μs, and FðxÞ ¼ R 10 dy½xy4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

exy�= exy � 1ð Þ2 (This form of
the integral first appeared in ref. 53). For T≫ TBG, the quanti-
zation of the lattice phonon modes is irrelevant and the scattering
is expected to be proportional to the amplitude of lattice

vibrations and is linear-in-T. In fact, one can show exactly that
the linearity persists up to temperatures as low as TBG/4.

The interband phonon scattering rate (dominant close to
magic angle) shares some similarities with the intraband
scattering: it is density-independent and T− linear at high-T.
Moreover, it vanishes when vF→ 0 as the scattering phase space
tends to zero. However, qualitatively the interband and intraband
scattering are quite different (see Supplementary Information).
For example, while the intraband scattering rate within the Dirac
model shows a monotonic increase with energy, the interband
scattering rate is non-monotonic highlighting the suppression of
interband scattering for energies larger than kBT. Most impor-
tantly, the temperature scale for the scattering rate to be
T− linear is not set by the Bloch–Grüneisen temperature TBG,
but rather by the Fermi temperature TF (which is the maximum
phonon energy at the Fermi surface allowed by kinematic
constraints). We note that TF and TBG are defined in such a way
so that at θcr, TF= TBG/2. Therefore, close to the magic angle
when vF < cph, we have TF < TBG/2 and the electron–phonon
scattering becomes T− linear for temperatures well below TBG
The reversal of the temperature scales is due to the fact the TF
depends on the twist angle dependence (through vF). On the
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Fig. 2 Experimental observations are consistent with the electron-phonon scattering theory. The electron–phonon scattering theory (left panels)
correctly captures the a carrier density and b temperature dependence of experimentally observed resistivity (middle panels), unlike the Planckian theory
(right panel) that shows a stronger density dependence. Experimental data is taken from ref. 42 for θ= 1.11∘ (comparison for devices with other twist angles
is shown in the Supplementary Information). Solid lines in the electron–phonon and Planckian theory are for a two-band effective model that includes the
van Hove singularity, while the dashed lines are for the linear Dirac model. For electron–phonon scattering, the linear-in-T resistivity at low temperature is
captured by the Dirac model, while the saturation at higher temperature requires the van Hove singularity. For the Planckian theory, the Dirac model and
the two-band model are quantitatively similar and show much stronger density dependence compared to the experiment. In this case, the saturation at high
temperature is set not by the van Hove singularity, but by a universal value ρðT ! 1Þ ¼ C=ð8ln 2Þh=e2 (the coefficient C≤ 1 for Planckian dissipation). For
most experimental data, including those shown here, C≥ 1. Taken together with the weak density dependence seen experimentally, this suggests that
phonon scattering rather than Planckian dissipation is the dominant scattering mechanism at play in twisted bilayer graphene.
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other hand, TBG depends on phonon velocity and density, both of
which do not change with twist angle. Thus at small twist angles,
TF can become significantly smaller than TBG. For T≫ TF, we
find

ρe�ph
inter ¼ h

e2
2~β

2
Av

2
FkBT

_2μsc
6
ph

; ð1Þ

where ~βA is the twist angle-dependent enhanced gauge field coupling

constant. Close to magic angle, we expect ρe�ph
inter ðT � TFÞ / v4F

(where the additional v2F comes from ~β
2
A, see Supplementary

Information), and vanishes at the magic angle due to the lack of
scattering phase space.

Figure 3a shows intraband resistivity for a chosen θ > θcr. The
linear-in-T resistivity persists down to TBG/4 consistent with
earlier results47. A comparison of the scales of TBG and TF is also
done. Figure 3b shows the interband resistivity for a chosen
θ < θcr, comparing the scales of TF and TBG. The linearity in T is
observed to persist down to very low temperatures even when
T≪ TBG, which is very different from the known theory of
electron–phonon scattering in a typical Fermi liquid. The
empirical observation of T− linear resistivity well below TBG
has been attributed to the strange metallicity of non-Fermi
liquids41, however, we find that there is nothing mysterious about
this feature, it is merely the qualitative change in the nature of
electron–phonon scattering when vF < cph i.e., the lower of the
two energy scales switches from lattice vibrational energy to
electronic energy when vF crosses below cph.

Lattice relaxation effects. For small twist angles, atoms on both
layers will tend to move away from their nominal positions in
order to minimize the total energy of the system13. This relaxa-
tion process will increase the fraction of atoms with AB stacking
relative to regions with AA stacking. This rearrangement of atoms
also changes the relative strength of moiré coupling between
different sublattices across the twisted interface. Relaxed atomic
positions are calculated either using a continuum elasticity
theory56 for what we call “relaxed model A” or using the mole-
cular dynamic approach as implemented in LAMMPS57,58 that
we call “relaxed model B”. Once we know the relaxed atomic
positions, the moiré coupling parameters are obtained by Fourier
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Fig. 3 The persistence of linear-T behaviour to low temperature is due to
inter-band scattering. Electron–phonon resistivity for tBG within the Dirac
model for a intraband scattering and b interband scattering. Dotted and
dashed lines indicate TBG/4 and TF/2, respectively. Interband resistivity
shows a transition to linear-in-T at ∼TF/2 compared to intraband resistivity
which shows a transition around ∼TBG/4. In the interband regime, the
striking persistence of linear-in-T behavior for T≪ TBG is observed.
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Fig. 4 Close to the magic angle, the electron–phonon resistivity in tBG is
very sensitive to the twist angle exhibiting a variation of several orders
of magnitude when vF= cph and unrelated to Mott insulation or
superconductivity. The number of these sharp dips in resistivity and the
angles at which they occur provide information about lattice relaxation13.
a The rigid lattice model of Bistritzer and MacDonald12 predicts that the
resistivity will have multiple dips with decreasing twist angle
(corresponding to three dips per magic angle). b The relaxation model of
ref. 64 gives only three sharp dips close to a single value of the magic angle.
c The relaxation model of ref. 58 gives three sharp dips close to a single
value of the magic angle and another dip when vF becomes quite close to
cph but never goes below it.
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transforming the matrix that couples the orbitals in layer 1 and
layer 2. It is these “relaxed” hopping parameters that are then
used in the continuum model Hamiltonian to calculate electronic
bandstructure and corresponding renormalized Fermi velocity
(see Fig. 4) that is used as the input for our Boltzmann transport
calculation. While the two relaxation models have some quanti-
tative differences such as the position of the magic angle, they
both give the same qualitative description for the role of relaxa-
tion on the moiré bandstructure.

In Fig. 4 we plot the electron–phonon resistivity for both the
rigid continuum model12 of tBG as well as including the lattice
relaxation effects using the two different models that we label as

relaxed model A and relaxed model B. We first note that
whenever vF= cph, there are sharp dips in the resistivity profile,
which can span a few orders of magnitude. Secondly, at each
magic angle, there is another large dip. For the rigid lattice model,
there is a broad window where vF < cph around the magic angle
θM ~1.06∘, and the family of magic angles implies multiple
crossings of vF= cph, and hence multiple dips in the resistivity as
the twist angle is lowered. With the inclusion of lattice relaxation
effects, there is only a single stable magic angle (that is shifted
slightly from the original magic angle), and there are therefore
only three dips in the resistivity near each magic angle. The
window of the interband scattering regime (vF < cph) is also
narrower. We find that for relaxed model B, near 0.6∘, the Fermi
velocity becomes quite close to cph but never goes below it. This
results in another sharp dip near that angle.

We emphasize that the following robust features survive with
or without the inclusion of relaxation effects and are independent
of the relaxation modeling: (i) existence of the critical angle θcr by
construction, (ii) huge drop in resistivity at θcr and at θM resulting
in a total of three sharp resistivity dips near each magic angle.
Since close to magic angle, the resistivity is highly sensitive to
twist angle exhibiting a variation of several orders of magnitude,
one must be careful to experimentally distinguish this phonon
effect from possible Mott insulation or superconductivity.

Beyond the Dirac model. While the Dirac model captures the
physics of tBG at low density, in order to make accurate pre-
dictions for larger density and temperature, we need to extend the
model to capture the VHS. We use an effective two-band
Hamiltonian48

HðkÞ ¼ � _vF
jΔKj

0 k�2 � ðΔK�=2Þ2
k2 � ðΔK=2Þ2 0

 !
; ð2Þ

where vF is the Fermi velocity of tBG at the Dirac point,
k= kx+ iky, ΔK is wave vector separation between the two
Dirac points which are located at K and Kθ, which magnitude
is given by kθ � jΔKj ¼ 2kD sinðθ=2Þ, with kD being the

wave vector separation between the two Dirac points in
monolayer graphene and θ is twist angle. The two-band
model is valid when the bandwidth is much larger than ℏvF∣ΔK∣
which is a good approximation for small twist angles. The
eigenenergies of this Hamiltonian are given by

εk;λ ¼ λð1=4Þ_vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2θ þ 8ðk2x � k2yÞ þ 16½ðk2x þ k2yÞ=kθ�

2
q

, and

are anisotropic. Within an isotropic approximation for the
momentum-transport cross section, we calculate the
electron–phonon scattering rate for both intraband (vF > cph) and
interband (vF < cph) with only intravalley electron–phonon scat-
tering (see Supplementary Information for details). We find

where zν= cν/vF, qðr; ϕ; r0; ϕ0Þ is momentum transferred by
phonon, and f 0p0;λðnq;νÞ is the equilibrium Fermi (Bose–Einstein)
distribution function describing the electron (phonon) popula-
tion. Here, ξ= ±1 refers to phonon absorption (+1) and emission
(−1), respectively. The resistivity for this Hamiltonian is

1
ρij
¼ 8e2 ∑

λ¼± 1

R1
0 dr

R π
�π dϕ

J ðr;ϕÞ
ð2πÞ2 v

ðiÞ
k;λv

ðjÞ
k;λ

´ τe�phðr; ϕÞ � ∂f 0k;λ
∂εk;λ

� � ð5Þ

where vðjÞk;λ ¼ ð1=_Þð∂εk;λ=∂kjÞ is band velocity in j direction and
λ= ±1 refers to conduction (+1) and valence (−1) band,
respectively (see Supplementary Information for the explicit form
of J ðr; ϕÞ).

We plot the results of our calculation of hρi ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ρxxρyy

p
for

twist angle of θ= 1.1∘ in the left panel of Fig. 2. The
electron–phonon resistivity is linear-in-T at low temperature
but saturates at high temperature. The slope of resistivity with
temperature in the low temperature regime is set by vF while the
saturation of resistivity with temperature is set by the bandwidth.
Within this effective Hamiltonian, the bandwidth 2εVHS and vF
are not independent and related by 2εVHS= (1/2)ℏvFkθ. While
this relation between εVHS and vF is specific to our model, we
believe that the main conclusions are generic i.e., the low
temperature linear-in-T behavior is set by the Fermi velocity,
while the saturation is set by the VHS. The saturation of
electron–phonon resistivity can be simplified deep in the
intraband (vF≫ cph) and interband (vF≪ cph) regime as

ρe�ph
intra ðT ! 1Þ /

~β
2
A

e2_μs

1
v2Fc

2
ph

εVHS ð6Þ

ρe�ph
inter ðT ! 1Þ /

~β
2
A

e2_μs

v2F
c6ph

εVHS ð7Þ

Resistivity from the Planckian model. We take a simple phe-
nomenological model with _τ�1

Pl ¼ C kBT . The resistivity is

1
τe�ph
intra ðr;ϕ;λÞ

¼ ∑
ξ¼± 1

ν¼TA;LA

~β
2
Akθ

8πμs_cνvF

Z 1

0
dr0r0

Z π

�π
dϕ0

qðr; ϕ; r0; ϕ0Þsin2 ϕ0 � ϕ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r0 cos ϕ0Þ2 þ ðr0 sinϕ0Þ2

q ð1� ξÞ=2þ ξf 0p0;λ þ nq;ν
� �

´ δ λðr0 � rÞ � 4ξz qðr;ϕ;r0;ϕ0Þ
kθ

� � ð3Þ

1
τe�ph
inter ðr;ϕ;λÞ

¼ ∑
ν¼TA;LA

~β
2
Akθ

8πμs_cνvF

Z 1

0
dr0
Z π

�π
dϕ0

qðr; ϕ; r0; ϕ0Þsin2 ϕ0 � ϕ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r0 cos ϕ0Þ2 þ ðr0 sinϕ0Þ2

q ð1þ λÞ=2� λf 0p0;�λ þ nq;ν
� �

´ δ r0 þ r � 4z qðr;ϕ;r0;ϕ0 Þ
kθ

� �
;

ð4Þ
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obtained from the Boltzmann equation by using the relaxation
time approximation, with τPl as the relaxation time (see discus-
sion in ref. 43), and calculating the appropriate thermal average
with the density of states and Fermi velocity (see Eq. 19). We can
do this both for the Dirac model and the two-band Hamiltonian.
Surprisingly, both the Dirac Hamiltonian and the two-band
model give very similar results indicating that the van Hove
singularity is not important for the Planckian theory. This phe-
nomenological model exhibits a linear-in-T resistivity at low
temperature that saturates at higher temperature (qualitatively
similar to what is seen experimentally). We find that the slope of
resistivity with temperature in the low temperature regime is set
by both vF and C, while the saturation of resistivity with tem-
perature is set only by C. Within the Dirac approximation, the
resistivity is

1
ρPl

¼ 1
C
4e2

h
∑

λ¼± 1
ln 1þ exp λ

μ

kBT

� �	 

; ð8Þ

with low and high temperature asymptotes

ρPl ¼
C h

4e2
T
TF

1þ π2

6
T
TF

� �2	 

;T � TF

C h
e2

1
8ln 2 1� 1

128 ln 2ð Þ3
TF
T

� �4	 

;T � TF

8>>><
>>>:

ð9Þ

For the effective two-band model, the Planckian resistivity is
given by an expression similar to Eq. 5. It can be simplified to

1

ρijPl
¼ e2

h
1
C
Kj

n
nVHS

;
kBT
εVHS

� �
; ð10Þ

where the function Kj is computed numerically (see Supplementary
Information). In the right panel of Fig. 2a, b, we show the
Planckian resistivity as a function of density and temperature,
respectively at twist angle of 1.11∘. The Planckian resistivity for
both models saturate at ρPlðT ! 1Þ ¼ C=8ln 2, independent of
the bandwidth εVHS, which is in sharp contrast to
electron–phonon scattering. Figure 5 shows the results of fitting

1 1.2 1.4 1.6 1.8 2
0

5

10

15

1 1.2 1.4 1.6 1.8 2

0

2

4

6

8

10

1 1.2 1.4 1.6 1.8 2

0

2

4

6

8

10
( ): Relaxed 

model A, electron (holes)

( ): Relaxed 
model B, electron (holes)

1 1.2 1.4 1.6 1.8 2

0

5

10

15

(a) (b)

(d)(c)

Fig. 5 The parameters obtained from fit to refs. 2, 42, 62 (see Methods for details). We find that the data agree much better with the expectations from
the electron–phonon theory than the Planckian model. a Relative deviations of Fermi velocity as a function of twist angle obtained by fitting the
experimental resistivity to the electron–phonon theory (b) obtained by fitting to the Planckian theory, c Relative deviations of the effective electron–phonon
coupling constant ~βA, and d Planckian strength C. The error bars represent 95% confidence interval of the parameters. The Planckian bound (C≤ 1) is
violated for small twist angles rules out the Planckian model as the dominant transport mechanism in tBG.
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Fig. 6 The weak density dependence at high temperature and strong density dependence at a low temperature of the resistivity close to charge
neutrality seen in experiment42 is well captured within the Dirac theory of electron–(gauge) phonon scattering40. Experimental data (top squares) for
resistivity at θ= 1.24∘ vs density at various temperatures (a) compared to the Dirac theory (bottom solid lines) of electron–phonon scattering (b).
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eight data sets of varying twist angle, temperature, and carrier
density to both the phonon and Planckian models (full fits are
shown in Supplementary Information). We find that the phonon
scattering theory (but not the Planckian model) gives fit
parameters for both the Fermi velocity and model parameters
that are consistent with theoretical expectations.

The nature of electron–phonon scattering investigated here
gives rise to several new features: Interband electron–phonon
scattering, which should be kinematically forbidden in monolayer
graphene, is shown to occur in tBG below a critical twist angle θcr,
when vF < cph. The critical angle (θcr) is a sweet spot where both
the interband and intraband scattering phase space (and thus
resistivity) both drop to zero, giving rise to multiple dips in the
resistivity unrelated to insulating or superconducting states that
could be investigated in the future experiments. We derive
explicit analytical expressions for the interband scattering rate
and show its qualitative dissimilarity from the intraband
scattering. Importantly, we show that this explains the linear-
in-T resistivity well below the Bloch–Gruneisen temperature TBG,
a previously unexplained experimental puzzle.

In this work, we also provide additional theoretical verification
of our earlier claim40 that the gauge phonon modes are enhanced
by the moiré geometry and are not screened, while the scalar
phonon modes have neither property. We also provide experi-
mental verification (see Figs. 6, 7) of our previous predictions that
charged impurity scattering takes over as the dominant scattering
mechanism at very low temperatures (below 20 K) and low carrier
densities (below ~1011cm−2). Taken together with the present
work on phonon scattering (that applies at high temperature and
high carrier density), this now presents a complete theory for the
carrier transport for tBG in the metallic regime.

Methods
Dynamical screening of electron–phonon coupling. The basic building block of
RPA screening is the polarizability bubble ΠC(q, ω), which can be written in the
most general form as

ΠCðq; iωmÞ ¼
1
β

g
A

∑
k;iωn

Tr ½Gðk; iωnÞGðk þ q; iωn þ iωmÞ�; ð11Þ

where the summation iωn is over the imaginary frequency, G(k, iω) is the Green’s
function, and the trace is over the sublattice degrees of freedom. Performing the
trace and the Matsubara summation we obtain

ΠCðq; iωÞ ¼ lim
η!0þ

g
A

∑
λ;λ0 ;k

f 0k;λ � f 0kþq;λ0

_ωþ εk;λ � εkþq;λ0 þ iη
Fλλ0
k;kþq ð12Þ

where Fλλ0
k;kþq is the tBG chirality factor, which for Dirac model is given by ð1þ

λλ0 cos θk;kþqÞ=2 and f 0k;λ ¼ ½expfðεk;λ � μÞ=ðkBTÞg þ 1��1 is the equilibrium Fermi
distribution function. The dielectric function ϵ(q, iωm) is given by the RPA sum-
mation and is related to the basic pair bubble as ϵ(q, ω)= 1−VqΠC(q, iω), where
Vq= 2πe2/κq is the Fourier transform of the Coulomb potential, κ being the
dielectric constant. We evaluate ΠC and ϵ(q, ω) for finite frequencies and

temperatures, semi-analytically. To the best of our knowledge, this has not been
done previously in the literature, at least in the context of phonons (see Supple-
mentary Information).

Boltzmann transport. The distribution function fk,λ is evaluated within the
Boltzmann transport formalism, which reads

� eE
_
∇k f k;λ ¼ St½f k;λ� ð13Þ

The collision integral can be written as

St f k;λ

h i
¼ ∑

k0 ;λ0 ;ν
Pλ0λ
k0k;ν f k0 ;λ0 ð1� f k;λÞ

�Pλλ0
kk0 ;ν f k;λð1� f k0 ;λ0 Þ;

ð14Þ

where Pλ0λ
k0k;ν is the scattering probability from state λ0; k0

�� �
to λ; kj i within phonon

branch ν (TA or LA), which is given by

Pλλ0
k;kþq;ν ¼ 2π

_ gλ;λ
0

k;kþq;ν

��� ���2 nq;νδðεkþq;λ0 � εk;λ � _ωq;νÞ
h

þð1þ nq;νÞδðεkþq;λ0 � εk;λ þ _ωq;νÞ
i
;

ð15Þ

where the two terms account for absorption and emission of phonons, nq,ν is the
Bose–Einstein distribution function describing the phonon population,

ℏωq,ν= ℏcνq is the phonon energy, and gλ;λ
0

k;kþq;ν is the electron–phonon coupling,
which can be expressed as

gλ;λ
0

k;kþq;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_

2Aμsωq;ν

s
Mλ;λ0

k;kþq ð16Þ

where A is the area of the graphene layer, μs is the mass density, and Mλ;λ0

k;kþq is the
matrix element for scattering between initial and final states, which is given by

Mλ;λ0

k;kþq ¼ ζq Fλλ0
k;kþq

h i1=2
; ð17Þ

where ζ is the effective deformation potential and Fλλ0
k;kþq is the tBG chirality factor.

The effective deformation potential ζ stands for either the effective scalar potential
~DA or twice the effective gauge potential 2~βA (see Supplementary Information).

We use ansatz

f k;λ ¼ f 0k;λ þ neEτk;λ cos θkvF
∂f 0k;λ
∂εk;λ

ð18Þ

to obtain the transport scattering time τk,λ.

Finally the resistivity ρe−ph is obtained from the scattering time τe�ph
k;λ by

1

ρije�ph

¼ e2
g�
A

∑
k;λ¼ ± 1

vðiÞk;λv
ðjÞ
k;λτ

e�ph
k;λ � ∂f 0k;λ

∂εk;λ

 !
; ð19Þ

where g*= g for Dirac model and g*= g/2 for two-band effective model (g= 8 is

degeneracy), vðjÞk;λ ¼ ð1=_Þð∂εk;λ=∂kjÞ is band velocity in j direction, and λ= ±1
refers to conduction (+1) and valence (−1) band, respectively.

Resistivity within the Dirac model. In Fig. 6, we show the comparison of
experimental resistivity vs density from ref. 42 to theoretical resistivity due to
electron–phonon and electron-impurity scattering within Dirac model40. At low
temperatures, electron-impurities dominates over electron–phonon interaction40,
therefore we only fit the experiment to the electron-impurity limited resistivity. These
charged impurities also give rise to carrier density inhomogeneities59, which cures the
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Fig. 7 The non-monotonic temperature dependence at low temperatures and linear-in-T dependence at intermediate temperatures seen in experiment
is well captured within the Dirac theory of electron–(gauge) phonon scattering40. Resisitivity vs temperature from a ref. 42 and b Dirac theory40 at twist
angle of θ= 1.24∘. The non-monotonicity at low temperatures is due to the crossover from impurity-dominated transport to phonon-dominated transport.
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otherwise divergent resistivity at the charge neutrality. We fixed the parameters from
the effective medium theory (EMT)60 fit to experimental resistivity at the lowest
temperature, i.e., 2 K. In the fit, we have included a short-range scattering component
of the conductivity σs61, charged impurity density nimp, and charge density fluctua-
tions nrms. The first two parameters are used to calculate the Boltzmann-RPA con-
ductivity σB[σs, nimp], which takes into account both the dominant scattering
mechanism of screened Coulomb impurities and additional scattering mechanisms
due to short-range scatterers, such as point defects and line defects. The parameter
nrms enters through the EMT equations. We find that the 1.24∘ device of ref. 42 has
charged impurity density nimp= 2.1 × 1011cm−2, short-ranged conductivity
σs= 104e2/h and charge density fluctuations nrms= 3.6 × 1010cm−2. At a temperature
of 10 K and density of ~1011cm−2, electron–phonon interaction start to produce a
noticeable influence on the resistivity. We observe the reversal of temperature
dependence trend at 10 K that is followed by linear-in-T dependence at intermediate
temperatures (see Fig. 7) and weaker density dependence at higher temperatures in an
experiment. These were all predictions we made in our previous work40 that have
been now shown experimentally to be correct.

Fitting of experimental data. In Fig. 2, we compare the electron–phonon resis-
tivity hρi ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ρxxρyy
p

from the two-band effective model (left panel) with the

experiment from ref. 2,42,62 (middle panel) at a twist angle of θ= 1.1∘. The fitting
parameters are Fermi velocity vF and the enhanced gauge field coupling constant ~βA ,
which are obtained from fitting the temperature dependence of resistivity at density
n= 1011cm−2 for a fixed twist angle. The dependence of the relative deviations of vF

and ~βA on twist angle are plotted in Fig. 5a, c, respectively. The same parameters are
used to plot the temperature dependence of electron–phonon resistivity at higher
density as well as its density dependence at several fixed temperatures (see the left
panel of Fig. 2b, a, respectively). We fit the electron-side and hole side separately due
to a slight asymmetry between them. We find that in the low temperature regime,
our results coincide with the Dirac model as expected, since the Hamiltonian in Eq.
2 reduces to a Dirac Hamiltonian at low energies. However, in the high temperature
regime, only two band effective model agrees with the experiment (see Fig. 2). We
see a clear saturation of the resistivity at higher temperatures as well as a weak
density dependence in the electron and the hole side, as seen in the experiment.
Both of these features are not captured within the Dirac model. From the fitting of
the electron–phonon theory to the experiment (see Fig. 5c), we obtain βA around
1− 9 eV, which is in good agreement with the accepted values for the gauge field
coupling constant in monolayer graphene50,63. The fit values for the velocity ratio
vF/v0 also agree well with theoretical estimates12. Hence, we have developed a
transport theory of tBG which explains all the salient features observed in the entire
metallic regime (intermediate and high temperatures) of the experiment42.

Comparison with Planckian Resistivity. We also compared the Planckian resis-
tivity to the same experiment in Fig. 2 (right panel and middle panel, respectively).
The fitting parameters are Fermi velocity vF and Planckian strength C. The fitting
parameters of the resistivity fit to both the electron–phonon and Planckian theory
for all the data sets are shown in Table 1. These are then used to plot the tem-
perature dependence of Planckian resistivity at higher densities, as well as its

Table 1 Fitting parameters for the resistivity fit to the electron–phonon and Planckian theory. The parameters are Fermi velocity
(vF) and electron–phonon gauge coupling ð~βAÞ for electron–phonon theory and Fermi velocity (vF) and Planckian strength (C) for
Planckian theory.

Twist angle Electron–phonon Planckian Ref

veðhÞF =v0 ~β
eðhÞ
A ðeVÞ veðhÞF =v0 Ce(h)

1.06∘ 0.14 ± 0.01(0.17 ± 0.01) 47 ± 2(51 ± 3) 0.30 ± 0.03(0.35 ± 0.02) 2.6 ± 0.1(2.5 ± 0.1) 42

1.07∘ 0.15 ± 0.01(0.15 ± 0.01) 32 ± 1(32 ± 1) 0.30 ± 0.01(0.30 ± 0.01) 1.06 ± 0.03(1.06 ± 0.03) 62

1.08∘ 0.2 ± 0.1(0.2 ± 0.1) 110 ± 60(100 ± 60) 0.5 ± 0.2(0.4 ± 0.3) 9 ± 3(9 ± 3) 2

1.11∘ 0.13 ± 0.02(0.13 ± 0.01) 39 ± 3(39 ± 3) 0.3 ± 0.1(0.31 ± 0.05) 2.0 ± 0.1(2.0 ± 0.1) 42

1.24∘ 0.18 ± 0.03(0.17 ± 0.03) 41 ± 4(39 ± 4) 0.5 ± 0.1(0.5 ± 0.1) 1.7 ± 0.1(1.7 ± 0.1) 42

1.59∘ 0.426 ± 0.001(0.426 ± 0.001) 24.6 ± 0.1(24.6 ± 0.1) 5 ± 4(5 ± 4) 1 ± 1(1 ± 1) 42

2.02∘ 0.491 ± 0.002(0.491 ± 0.002) 26.6 ± 0.2(26.6 ± 0.2) 2 ± 1(2 ± 1) 0.5 ± 0.3(0.5 ± 0.3) 42
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Fig. 8 Alternative method for comparing the phonon theory (blue), Planckian theory (red), and experimental data (black) focusing only on the change
in resistivity with carrier density. We take four representative experimental curves from the full data set used to make Fig. 5, i.e., a θ= 1.07∘ (ref. 62), b
θ= 1.08∘ (ref. 2), c θ= 1.11∘ (ref. 42), and d θ= 1.24∘ (ref. 42). Theory curves are the same as before, except we use the best theoretical estimates for βA and C.
Also included is the Planckian theory with effective medium theory to include the effect of disorder smearing (green). Similar to the conclusions in Fig. 5, this
method shows that the phonon theory has better agreement with the experiment.
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dependence on density at several fixed temperatures (see the right panel of Fig. 2b,
a, respectively). Although the Planckian theory exhibits similar linear-in-T beha-
vior at low temperature and saturation at high temperature, its density dependence
is much stronger than that of the experiment, especially at low temperatures (see
Fig. 8). The Fermi velocity vF extracted from the fit is somewhat larger than the
theoretical prediction (see Fig. 5). Moreover, we observe that the Planckian bound
(C ≤ 1) is violated for a small twist angle (see Fig. 5c). This rules out the Planckian
theory as the dominant mechanism of metallic transport in tBG. We illustrate this
point in Fig. 5 where we compare the relative deviations between theory and
experiment. In order to compare the various theories and experiment on equal
footing, these deviations were determined by shifting the magic angle for the
theoretical Fermi velocity such that they all have a common magic angle that
minimized the relative deviations of the parameters from their theoretical expec-
tations—the x-axis could be therefore be interpreted as twist angle with the magic
angle taken to be θM= 0.72∘.

Data availability
The data used to generate the figures are available at https://github.com/indrayudhistira/
tBG_metallic_phonon.

Code availability
The code used to generate the figures are also available at https://github.com/
indrayudhistira/tBG_metallic_phonon.
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