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Over 300 posttranslational modifications (PTMs) are known to modify the functions of pro-

teins by affecting processes ranging from activation, degradation, localization, secretion, rec-

ognition, and regulation [1]. One such PTM, ADP-ribosylation, can be defined as the transfer

of a single ADP-ribose (Mono-ADP-ribosylation (MAR)) or multiple ADP-ribose (Poly-ADP-

ribosylation (PAR)) units to target proteins utilizing nicotinamide adenine dinucleotide

(NAD+) as the substrate. PARP14 is a MARylating enzyme that is implicated in a range of pro-

cesses from tumorigenesis to DNA repair. Most notably, PARP14 is well known in the litera-

ture for promoting the anti-inflammatory interleukin (IAU : PleasenotethatILhasbeendefinedasinterleukininthesentenceMostnotably;PARP14iswellknown::::Pleasecheckandcorrectifnecessary:L)-4–mediated signaling pathway by

activating STAT6-dependent gene expression and inhibiting STAT-1–dependent gene expres-

sion. However, PARP14 expression is also induced by interferon (IFN), and it enhances host

IFN responses to lipopolysaccharide (LPS), poly(I:C), and viral infection, indicating a role for

PARP14 in restricting viral and bacterial infections. Despite these results, data supporting a

significant role for PARP14 in the antiviral response are limited. More studies are needed to

identify specific roles for PARP14 during viral infections, determine its targets following infec-

tion, and elucidate the mechanisms by which PARP14 modulates inflammatory pathways.

WAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:hat is PARP14?

PARP enzymes are ADP-ribosyltransferases (ARTs) that transfer ADP-ribose from NAD+

onto a target protein or nucleic acid [2]. PARP14 is the largest PARP, consisting of 1,801

amino acids (Fig 1), and is restricted to Mono-ART activity. PARP14 is also know by other

names like B Cell aggressive lymphoma 2 (BAL2) and Collaborator of STAT6 (CoaST-6). It

belongs to a unique group of Macro-PARPs, which also includes PARP9 and PARP15 that

contains multiple macrodomains (MDs). These MDs are characterized by their ability to bind

MARylated, but not PARylated proteins [3].

The PARP14 catalytic domain contains a NAD+ binding pocket with several key amino

acid residues that catalyze the transfer of ADP-ribose subunit to the appropriate protein targets

[4]. These catalytic residues include an HYL amino acid motif, where the leucine residue

replaces a key glutamate residue required for PARylating activity, which restricts PARP14 to

mono-ART activity [5].

Apart from these 2 domains, PARP14 also contains RNA recognition motifs (RRM) and a

WWE domain (Fig 1). There are 2 contiguous RRMs present in the amino terminus of the pro-

tein; however, their binding targets are yet to be discovered. WWE domains are characterized

by the presence of a Trp-Trp-Glu region, which is important for PARP14 protein structure sta-

bilization [4]. WWE domains can bind to ADP-Ribose derivatives, including iso-ADP-ribose,

a molecule specifically found in PAR [6], and promote interactions with ubiquitinated proteins

[7]. However, the PARP14 WWE domain was unable to bind to any ADP-ribose derivatives

and whether it interacts with iso-ADP ribose or ubiquitinated targets is unknown [8].
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What are the known functions of PARP14?

PARP14 affects several processes including cell differentiation, DNA repair, transcriptional

control, and inflammatory signaling pathways (Fig 2). PARP14 selectively binds to STAT6 and

promotes the expression of IL-4–regulated genes [9]. Since this original discovery, PARP14’s

ability to regulate IL-4 signaling pathway has been implicated in several diseases. In one study,

PARP14 promoted IL-4–mediated protection of B cells against apoptosis and IL-4–mediated

expression of other B cell survival factors like Pim-1, 2, and Bcl2 [10], possibly explaining the

overexpression of PARP14 in B cell aggressive lymphoma (BAL) [9]. PARP14 activation of

STAT6-dependent gene expression also led to increased TH2 cell differentiation and allergic

reactions, manifesting in the form of allergic airway disease [11]. Importantly, allergic

responses could be partially mitigated by a highly specific PARP14 inhibitor [12].

PARP14 is also implicated in functions independent of STAT6. Recently, Barbarulo and

colleagues found that PARP14 expression was induced by the presence of JNK2, which pro-

moted cell growth of cancer cells in multiple myeloma [13]. Using shRNA knockdown of

PARP14 and ectopic expression of truncated PARP14, they demonstrated that PARP14

reduced the activity of JNK1 via direct binding and prevented alleviation of carcinogenesis via

apoptosis in cellulo [13]. In contrast, PARP14 also alleviated cancer by promoting genomic

stability by improving homologous recombination and DNA repair in HeLa cells [14]. MD2 of

PARP14 bound to RAD51 and PCNA components of the DNA replication machinery and

promoted efficient DNA replication in DNA break sites [14]. A recent report found that

PARP14 was required for cell cycle progression by regulating cyclin D1 expression [15]. This

study found that cancer cell lines like RPE-1 and MCF-7 are arrested in G1 phase of cell cycle

upon PARP14 depletion. Given the involvement of PARP14 in these different pathologies and

cellular processes, it is critical to understand how PARP14 mediates these effects and is a

major topic of ongoing research in various fields.

Fig 1. Domain architecture of PARP14 with known functions of each domain. MAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and2:Pleaseverifythatallentriesarecorrect:D, macrodomain; NAD, nicotinamide adenine

dinucleotide; RRM, RNA recognition motif.

https://doi.org/10.1371/journal.ppat.1010535.g001

Fig 2. Known functions of PARP14 and their mechanisms of action. IFN, interferon; IL, interleukin; LPS,

lipopolysaccharide; MD, macrodomain.

https://doi.org/10.1371/journal.ppat.1010535.g002
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How does PARP14 regulate inflammation?

As mentioned above, PARP14 regulates IL-4–dependent [16] transcriptional activation of

STAT6 [17] via promoter interaction and MARylation of HDAC2/3. HDAC2/3 MARylation

acts to dissociate these proteins from the promoter region, ultimately increasing acetylation of

histones in promoter regions, allowing target gene activation [18]. In addition, Iwata and col-

leagues found that, in M1 macrophages, PARP14 suppressed IFNγ-induced inflammatory

response, while inducing IL4-dependent anti-inflammatory effects. Mechanistically, PARP14

MARylated STAT1 at sites proximal to it phosphorylation sites, which likely affected STAT1

phosphorylation and suppressed its pro-inflammatory function [19]. These findings were sup-

ported by enhanced arterial lesion development and atherogenesis in PARP14-deficient mice.

These results suggest that PARP14 could be a therapeutic target for attenuating inflammatory

disorders [19].

Does PARP14 regulate signaling in response to pathogens?

Recently, we and others found that PARP14 enhances the type I interferon (IFN-I) response to

pathogens [20]. Caprara and colleagues found that PARP14 up-regulated IFN-I in response to

LPS in RAW 264.7 macrophages and primary bone-marrow derived M0 macrophages

(BMDMs). In response to LPS, PARP14 activated the expression of several IRF3 target genes,

including IFN-β, but not the expression, phosphorylation, or localization of IRF3 itself. Inter-

estingly, pol II recruitment to the nucleus and H3K27 acetylation was reduced in IRF3 pro-

moter regions in the absence of PARP14, suggesting again that it may be altering the function

of HDACs. In addition to LPS, PARP14 altered the cellular response to a bacterial infection, as

Salmonella typhimurium bacterial load was elevated and IRF-3 target gene expression was

reduced in PARP14-depleted cells [20]. This finding suggests PARP14 could play a regulatory

role in immune pathways in response to pathogens.

PARP14 also induces IFN-I following poly(I:C) treatment, a double-stranded RNA mimic,

and virus infection. In the A549 lung epithelial cell line, we found that deletion of PARP14

reduces IFN-I in response to poly(I:C) [21]. To demonstrate the role of PARP14 in virus-

induced IFN induction we utilized a MD-deficient murine coronavirus, murine hepatitis virus

(MHV), a model coronavirus. Viral MDs possess ADP-ribosylhydrolase activity and counter

PARP activity. A recombinant MHV MD mutant virus (N1347A) enhances the IFN response

in BMDMs compared to wild-type virus, indicating that ADP-ribosylation promotes IFN

induction following MHV infection. This increased IFNβ production was completely ablated

in the absence of PARP14, again demonstrating that it has a critical role in IFNβ induction

[21]. However, the impact of PARP14 on STAT1 signaling and ISG expression in M0 macro-

phages or epithelial cells, as demonstrated in M1 macrophages following IFNγ treatment [19],

has not been addressed. Thus further research on this topic is necessary. Regardless, the clear

role of PARP14 in inducing IFNβ indicates that it may play a critical role in host–virus

interactions.

Does PARP14 restrict viral replication and/or pathogenesis?

Several pieces of circumstantial evidence indicate that PARP14 may be involved in the repres-

sion of viral infections. First, PARP14 expression is stimulated in a variety of viral infections

such as Chikungunya virus [22] and β-coronaviruses like MHV and severe acute respiratory

syndrome coronavirus 2 (SAU : PleasenotethatSARS � CoV � 2hasbeendefinedasSevereAcuteRespiratorySyndrome2inthesentenceFirst;PARP14expressionis::::Pleasecheckandcorrectifnecessary:ARS-CoV-2) [21,23]. Second, PARP14 was also identified as one of

the 5 human PARP genes that has evolved under positive selection, a trait common to genes

that are usually involved in immune response to pathogens [24]. Third, we demonstrated that

siRNA knockdown of PARP14 mildly enhanced the replication of MHV N1347A, but not WT
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virus. However, PARP14 knockout BMDMs did not show enhanced MD mutant virus replica-

tion, calling into question the role of PARP14 in restricting the replication of MHV [21].

Finally, one might predict that PARP14 could reduce immune pathology during infection in

vivo owing to its ability repress pro-inflammatory signaling via STAT6 [25]. The combination

of these factors strongly indicates that PARP14 could be an antiviral factor. However, there is

no convincing evidence where knockdown, knockout, or even overexpression of PARP14

results in altered virus replication or pathogenesis in cell culture or in vivo. The emergence of

a potent and highly specific PARP14 inhibitor, RBN012759 [12], and other knockout cell cul-

ture and mouse models will be useful in identifying infections where viral replication, immune

signaling pathways, and cell death pathways both in vitro and in vivo are modulated by

PARP14. However, given PARP14’s effect on crucial cellular functions like DNA repair and

the cell cycle, an inducible PARP14 knockout system in vivo and in vitro may be necessary to

accurately assess the effect of PARP14 depletion on viral replication and pathogenesis. Since

PARP14 is implicated in several diseases, including cancer, a full exploration of its potential

role in countering virus infection is needed to establish a platform to determine its targets, elu-

cidate the mechanisms by which PARP14 modulates inflammatory pathways, and develop

novel therapies.
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