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Autoimmune diseases are characterized by the production of antibodies against self-
antigens and generally arise from a failure of central or peripheral tolerance. However,
these diseases may develop when newly appearing antigens are not recognized as self
by the immune system. The mechanism by which some antigens are “invisible” to the
immune system is not completely understood. Apoptotic and complement system defects
or autophagy imbalance can generate this antigenic autoreactivity. Under particular cir-
cumstances, cellular debris containing autoreactive antigens can be recognized by innate
immune receptors or other sensors and can eventually lead to autoimmunity. Ubiquitination
may be one of the mechanisms protecting autoreactive antigens from the immune system
that, if disrupted, can lead to autoimmunity. Ubiquitination is an essential post-translational
modification used by cells to target proteins for degradation or to regulate other intracellu-
lar processes. The level of ubiquitination is regulated during T cell tolerance and apoptosis
and E3 ligases have emerged as a crucial signaling pathway for the regulation of T cell
tolerance toward self-antigens. I propose here that an unrecognized role of ubiquitin and
ubiquitin-like proteins could be to render intracellular or foreign antigens (present in cellu-
lar debris resulting from apoptosis, complement system, or autophagy defects) invisible to
the immune system in order to prevent the development of autoimmunity.
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The central tolerance occurs in the thymus, where negative selec-
tion eliminates most of the developing thymocytes that can recog-
nize self-antigens. Peripheral T cells recognize antigens that have
been processed and presented in association with the major histo-
compatibility complex (MHC) by the antigen presenting cells. In
addition to central tolerance, several peripheral tolerance “check-
points” act to prevent self-reactivity. Indeed, self-reactive T cells
can be suppressed by regulatory T cells, eliminated by clonal dele-
tion or inactivated by a state of unresponsiveness known as T
cell anergy. In T cells, activation-induced cell death (AICD) is
responsible for maintaining tolerance to self-antigen. Pathogen
invasion gives rise to massive immune cell proliferation until the
infection is resolved and excess of immune cells is also elimi-
nated by activation-induced cell death (AICD) via an apoptotic
Fas (CD95; APO-1) or a tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL)-dependent pathway. Failure of these
processes (inactivation mutations or decrease expression of CD95,
Fasl, or other components of the Fas signaling pathway) can lead
to lymphoproliferation and autoimmunity (1–4).

The immune system can be classified in innate and adaptive
immunity. Innate immunity is a non-specific defense mechanism
that starts immediately or within an hour in response to pathogens.
The cells of the innate system play an important role for the initia-
tion of the adaptive immune responses, which is also known as the
acquired immune system. This system is more sophisticated and
specific and is composed of the humoral (production of antibodies
by B lymphocytes) and the cellular immunity (clonal expansion
of specific T lymphocytes such as cytotoxic T lymphocytes).

The innate functions can be divided into six steps: migration,
recognition, phagocytosis, antigen processing, presentation of the
antigenic peptide to lymphocytes, and cytokine secretion. There
are different possibilities for a dying cell or a pathogen to be elim-
inated from the body. Cells that undergo programed cell death
called apoptosis can set up an initiation signal (“eat me signal”) to
allow their recognition and digestion by phagocytic cells (5–11).
Several reports have shown that the deposition of proteins of the
complement system on apoptotic cells following the activation of
the complement pathways is required for their efficient digestion
by macrophages (12–15).

Selective autophagy of pathogens, organelles, and protein com-
plexes represents an important host innate mechanism that allows
their removal from the body. As for apoptosis, these processes
require the modification of these pathogens, organelles, and pro-
tein aggregates by an “eat me signal,” which involves a complex
modification of the bacteria, organelles, or protein complexes to
allow their recognition by specific cargo receptors (16–25).

We will see that improper removal of dying cells or pathogens
can cause autoimmune diseases.

ROLE OF DEFECTIVE APOPTOSIS, CELLULAR UPTAKE BY
COMPLEMENT, OR AUTOPHAGY IN AUTOIMMUNITY
APOPTOTIC- AND COMPLEMENT-MEDIATED CELLULAR UPTAKE
DEFECTS AND AUTOIMMUNITY
In adult tissues, cell death compensates for cell division. Apop-
tosis (Greek for “falling off”) also known under the name of
programed cell death is a form of cell death, which presents
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specific morphological changes. Apoptosis can be mediated by
the activation of cell death receptors on their cell surface such
as Fas or by intracellular inducers such as Staurosporine (26–
28). The intramolecular mechanism responsible of apoptosis
involves a family of proteases called Caspases that have a Cys-
teine at their active site and cleave their substrates at specific
Aspartic acids (29–33). Caspases are synthesized as inactive pre-
cursors (pro-Caspases), which are usually activated by cleavage
by other Caspases. Caspases 8, 9, and 3 play pivotal functions in
apoptotic cells. Caspases 8 and 9 activate Caspase 3 that subse-
quently cleaves vital substrates such as nuclear lamins or DNase
leading to the breakdown of nuclear lamina and fragmentation of
DNA. Mitochondria play an important role in apoptosis through
release of cytochrome c. Cell death can be regulated by a com-
plex network of pro- and anti-apoptotic proteins such as p53,
which act to regulate the expression of death receptors and the
mitochondria outer membrane Bcl2 family of proteins, which
are involved in the Caspase activation pathways. Bcl2 and Bcl-
XL inhibit apoptosis by preventing the release of cytochrome c
from the mitochondria (34), whereas others like Bax and Bak
stimulate the release of cytochrome c from mitochondria (35).
Bax and Bak are themselves activated by other proteins belong-
ing to the Bcl2 family such as Bid (35). A third group of factors,
the inhibitors of apoptosis (IAP), consists of structurally con-
served proteins (XIAP, cIAP1, c-IAP2, XIAP, livin α and β, ILP2,
and survivin) that can block apoptosis through their inhibitory
interaction with specific Caspases (36, 37). Several IAP proteins
have been shown to regulate apoptosis in a Caspase-independent
manner through the JNK or NF-κB signaling pathways (38–40).
Interestingly, IAPs function as E3 ubiquitin ligases and can target
cellular proteins for proteasomal degradation, this process being
essential for apoptosis (41). IAPs activities are regulated by second
mitochondria derived activator of Caspases (smac) (42). Signals
from dying cells such as expression of phosphatidylserine at cell
surface can be recognized by multiple receptors of macrophages
or dendritic cells and defects in the clearance of apoptotic cell
debris or in the uptake of dying cells can lead to autoimmunity
(43, 44).

The complement system is composed of 30 different proteins
that are either circulating in the serum or attached to the cell sur-
face. This system plays four major functions: lysis of pathogens,
activation of inflammation, opsonization, and immune clearance.
For example, cellular uptake can be mediated by macrophage-
associated complement receptors that constitute susceptibility
genes for the development of the autoimmune disease systemic
lupus erythematosus (SLE) (13, 45–49). Interestingly, it has been
proposed that inadequate clearance of apoptotic cells due to the
reduced level of complement is responsible for these diseases (50).
Once engulfed, antigens derived from dead cells are processed and
presented at the cell membrane in association with the MHC.
These MHC/Ag interactions subsequently stimulate T helper cells
that can release cytokines such as interferon α/β (IFN) to activate
macrophages, monocytes, and B cells. Defects in the clearance
of apoptotic cell or in the uptake of the dying cell have been
linked to autoimmune diseases (51–54). Cell debris can be rec-
ognized by innate immune receptors or other sensors to develop
autoimmunity.

AUTOPHAGY DEFECTS AND AUTOIMMUNITY
Autophagy (Greek for “self-eating”) is an evolutionary conserved
mechanism that was first described by Christan de Duve as a
lysosome-mediated degradation process for damaged cytoplas-
mic constituents. In macroautophagy, a double membrane called
“phagophore” forms the autophagosome that surrounds cyto-
plasmic proteins or organelles. Autophagosome then fuses with
lysosomes to create autolysosomes in which the cytosolic cargos
are degraded. Autophagosome formation requires evolutionarily
conserved proteins known as Atg proteins in yeast. Microtubule-
associated protein light chain 3 (LC3) is the mammalian homolog
of yeast Atg8 and is a widely used marker of autophagy. LC3 is
localized in autophagosomes and the amount of its phagosome-
associated form, named LC3-II, is correlated with the amount
of autophagosome formed. Autophagy also contributes to innate
immunity by protecting host cells from invading pathogens, a
process called xenophagy. Substrates for selective autophagy are
recognized either directly or indirectly (through “eat me” sig-
nals) in the cell (see below). As for apoptosis, autophagy imbal-
ance – i.e., perturbation of autophagy function or autophagy gene
defects – has been involved in autoimmune diseases (55–58).

UBIQUITIN AS A “CAMOUFLAGE UNIFORM” TO AVOID
RECOGNITION OF ANTIGENS BY THE IMMUNE SYSTEM?
My reflection was guided by different publications on the biologi-
cal properties of ubiquitin chains (abundance, structure, immuno-
genicity, and function), E3 ubiquitin ligases and deubiquitinases
(Figure 1).

Ubiquitin, a peptide of 76 amino acids, can be covalently
attached to protein substrates on lysine residues either as a
monomer or polymer. Its amino acid sequence is highly con-
served with little variance from insects to human. These ubiq-
uitin chains are covalently attached to protein substrates by the
concerted action of enzymes called E1, E2, and E3. Ubiquitin
chains can be formed by isopeptide linkages between one of the
seven internal lysine residues of an ubiquitin moiety and the
carboxy-terminal residue of another ubiquitin. More recently, it
has been shown that ubiquitin chains can also be formed in a
head-to-tail fashion by peptidic bonds between the C-terminal
glycine and the amino-terminal methionine of consecutive ubiq-
uitin molecules. These ubiquitin modifications are reversible since
deubiquitinating (DUB) enzymes can remove them.

UBIQUITIN CHAINS POSSESS ALL OF THE REQUIREMENTS FOR
MASKING ANTIGENS TO THE IMMUNE SYSTEM
High abundance
Ubiquitin is highly abundant in all eukaryotic cells and tissues. It
is the second most common post-translational protein modifica-
tion after phosphorylation. Mass spectrometry analyses identified
around 20,000 ubiquitination sites present on more than 5000
ubiquitin putative substrates (59–61).

Low immunogenicity
Importantly, ubiquitin is a highly conserved polypeptide and is
poorly immunogenic (62). Interestingly, the presence of antibod-
ies to ubiquitin has been found in 80% of patients exhibiting
autoimmune responses associated with SLE and in those present-
ing a systemic sclerodermia (they are only present in 3% of normal
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FIGURE 1 | Hypothesis of the masking of epitopes in cell debris by
ubiquitin preventing their recognition by the immune system.
Eukaryotic cells use autophagy and the ubiquitin–proteasome system (UPS)
as their major protein degradation pathways. Whereas the UPS is involved
in the rapid degradation of proteins, autophagy pathways can selectively
remove protein aggregates, damaged or excess organelles, and pathogens.
Ubiquitin have been involved as a specific factor for selective autophagy as
exemplified here by autophagy of pathogens. Different cellular adaptors
connect pathogens to the protein light chain 3 (LC3), a key
autophagy-related protein that is located at the surface of autophagosomes.
Proteasome-mediated degradation also requires the ubiquitination of the
cargo, which is then recognized by ubiquitin receptors allowing their
degradation by the 26S proteasomes. The defective clearance of apoptotic
debris by phagocytes and autophagy imbalance can result in the
accumulation of cell debris that is responsible for the initiation of systemic
autoimmunity. Such defect of clearance induces the release of
immunogenic intracellular contents from the dying cells. I hypothesize that
ubiquitination protects antigens generated by cells escaping from
destruction by the immune system and that failure of ubiquitination
mechanisms may induce an immune response to cross-reactive
self-antigens that can lead to organ damage.

human sera) (63–65). These reports suggest that the accumulation
of ubiquitinated proteins is highly immunogenic in these autoim-
mune patients. However, this could not been confirmed by another
study (66).

Conformation
The important variations in length and linkage architecture of
these ubiquitin chains may provide a canvas surrounding the

substrate that can adopt an open or more compact conforma-
tion depending on the type of ubiquitin chain and can determine
the fate of conjugated proteins (67). Furthermore, polyubiquitin
chains containing different linkages within the same chain (mixed
chains) have also been described.

Functions
Since the discovery that ubiquitination targets proteins to proteol-
ysis by Aaron Ciechanover, Avram Hershko, and Irwin Rose, it has
been shown that ubiquitin conjugation controls different cellular
processes (68).

The attachment of one or more ubiquitin provides a large inter-
action surface and results in a vast number of potential signals
depending on the various conformations adopted by the ubiq-
uitin chains. In addition to their role in targeting proteins for
proteasomal and lysosomal degradation, signaling roles of ubiq-
uitin have been discovered in many processes such as endocytosis,
DNA repair, autophagy, and NF-κB activation (69–72).

Autophagy and the ubiquitin–proteasome system (UPS) are
the two major intracellular degradation pathways. While the UPS
is widely known for its role in intracellular protein degradation,
autophagy is responsible for the degradation of long-lived pro-
teins, organelles, and bacteria (71). Increased transcription of the
ubiquitin gene that leads to ubiquitination of cellular proteins
and degradation by the UPS is also characteristic of apoptotic
cell and is required for the apoptotic process (73). The ubiqui-
tin system is also widely used for autophagy. Various cytoplasmic
bacteria are targeted for xenophagy through ubiquitin-mediated
pathway. Bacteria and autophagosomes decorated with polyubiq-
uitin chains recruit ubiquitin-binding adaptors, which in turn
engage the autophagic machinery to restrict the proliferation of
the bacteria (74). Two E3 ligases responsible for linking ubiquitin
to the bacteria and/or bacteria-containing phagosomes have been
recently identified as LRSAM1 and Parkin (75, 76). Ubiquitina-
tion of these aggregates and pathogens triggers the recruitment
of different selective receptors, which in turn target these mate-
rials to the autophagosome membrane through their binding to
autophagy modifiers such as LC3-like molecules that are present
at the surface of autophagosomes (71). Damaged mitochondria
are directly targeted to LC3-like molecules by the selective recep-
tors Nix and FUNDC1 (16, 17). Four other autophagy receptors
recognize ubiquitin chains that behave as “eat me signal” through
their ubiquitin-binding domain (UBD): p62 (SQSTM1), NBR1,
NDP52, and optineurin (16–25). These receptors also bind to LC3-
like molecules through short LC3-interacting regions (LIRs). The
sequential recruitment of DUB enzymes may negatively regulate
the autophagy process. The physiological relevance of the cargo
receptors is underscored by the presence of mutations in p62 and
optineurin genes found in human patients with Paget’s disease of
bone, primary open angle glaucoma, amyotrophic lateral sclerosis,
or hepatocellular carcinoma (77–82).

In addition to phagocytosis and autophagy, neutrophil extracel-
lular trap (NET) consisting of microbicidal molecules and extru-
sion of decondensed chromatin has been shown to be important
strategy by which neutrophils kill microorganisms (83, 84). This
process called NETosis is enhanced in SLE (85–87). A proposed
hypothesis is that NETs may provide neoantigens for autoantibody
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formation (66, 88–91). Post-translational modifications of NET
proteins such as ubiquitination and their proteolytic cleavage by
NET proteases may provide the formation of neoantigens in cer-
tain circumstances. This could provide an explanation for the
immunogenicity of ubiquitin in SLE and sclerodermia and in the
rupture of tolerance responsible for these pathologies (see above).

It is well known that pathogens are involved in the appearance
of autoimmune diseases (92), however, it is unclear whether the
detection of microbial antigens by immune cells could result from
a defects of masking of the antigens. Nethertheless, the detection of
microbial antigens drive the clonal proliferation of specific T and
B cells, and multiple mechanisms have been proposed to explain
how pathogens can induce the expansion of autoreactive cells (93,
94). Among these mechanisms, it has been suggested that patho-
genic antigens might react with the self and provoke tissue damage,
a process known as molecular mimicry (94). Other hypotheses
have been proposed to explain the emergence of autoreactive
cells, including bystander activation of autoimmune cells caused
by an inflammatory environment, processing and presentation of
cryptic antigens, or adjuvant effects of pathogens.

I propose that, in addition to their roles in targeting proteins
for degradation or cell signaling, and pathogens for destruction
ubiquitin may protect antigens in cell debris resulting from apop-
totic and autophagy defects and in NETs from recognition by the
immune system (Figure 1).

In this hypothesis, we should expect that alteration of the ubiq-
uitin machinery would lead to autoimmunity. Consistently, several
mechanisms clearly illustrate the link between the ubiquitin system
and peripheral tolerance mechanisms. These mechanisms include
homeostatic regulation, T cell apoptosis, anergy, and regulatory
CD4+ T cells. As described above, apoptosis is a highly regulated
process involving the transcription of ubiquitin. In addition to
being involved in T cell apoptosis, ubiquitin is also implicated in
the molecular mechanism of T cell anergy. Clonal T cell anergy
is a tolerance mechanism in which T cells are unresponsive to a
second stimulation of the TCR. T cells can become anergic after
encountering antigen in the absence of a CD28 co-stimulation
or interleukin-2 (IL-2). The characteristic feature of clonal T cell
anergy is a decrease in cytokine production and proliferation. The
signaling cascade that leads to clonal T cell anergy has been the
focus of many investigations and it has been shown that E3 ubiq-
uitin ligases modulate different pathways leading to anergy. The
transcription factor nuclear factor of activated T cells (NFAT) is a
crucial factor for the induction of T cell anergy. In T cells, CD28 co-
stimulation activates AP1-family of transcription factors, which
cooperates with NFAT to induce the expression of genes encod-
ing effectors of the T cell activation pathway. In contrast to this
situation, a transcriptional program of anergy can be activated by
NFAT in the absence of AP1 (95).

Interestingly, E3 ligases are over expressed in anergic T cells
(96, 97) and among other anergy-associated genes, NFAT induces
the transcription of E3 ligases genes (95). NFAT binds to pro-
moter/enhancer sequences of gene related to anergy in lym-
phocytes (GRAIL), Cbl-b, Itch. Interestingly, the protein growth
response (Egr)-2 and Egr-3 of the early Egr family of transcription
factor are induced in response to NFAT and control the expression
of Cbl-b and inhibition of T cell activation (98, 99). Consistently, it

has been shown that Erg3−/−mice have increased susceptibility to
autoimmunity (99). The upregulation of the anergy related genes
were abrogated by cyclosporine A, an inhibitor of the calcium-
dependent serine-threonine phosphatase calcineurin, which pro-
motes the activation of NFAT. Since the discovery of the increased
expression of E3 ligases in anergic T cells, the role of E3 lig-
ases in peripheral T cell tolerance has been the focus of many
reviews (100–104). Knocked-out mice and those carrying muta-
tions or overexpressing ubiquitin ligases and deubiquitinases [such
as autoimmune regulator (AIRE), Itch, Nedd4, Roquin, Cbl-b,
TNFR-associated factor 6 (TRAF6), Act1, Peli1, NEDD4-family
interacting protein 1 (Ndfip1), A20, CYLD] develop autoimmune
diseases (100–102, 105–107). In particular, upregulation of the E3
ligases Cbl-b, GRAIL, Itch, and Peli1 during immune tolerance
have been involved in the ubiquitination of key signaling mole-
cules of the TCR pathway, and these studies have highlighted the
key regulatory role of ubiquitin in the induction of tolerance and
prevention of autoimmunity (100–102).

E3 UBIQUITIN LIGASES AND IMMUNE TOLERANCE
Cbl-b
The RING-type E3 ligase Cbl-b (Casitas B cell lymphoma b) was
the first E3 ligase implicated in T cell tolerance (97, 105, 108).
It belongs to a family of proteins comprising three members:
c-Cbl, Cbl-b, and Cbl-3. Cbl-b is a critical regulator of T cells
since Cbl-b-deficient T cells do not require CD28 co-stimulation
for IL-2 production and proliferation. This observation suggests
that Cbl-b regulates CD28-dependent T cell activation. Addi-
tionally, the loss of Cbl-b also results in aberrant activation of
NF-κB in response to TCR stimulation. This hyperactivation of
NF-κB is mediated by PKCθ, which promotes the formation of
a complex formed by three signaling proteins, Carma1, Bcl10,
and Malt1 as known as the CBM complex (109). Interestingly,
the dysregulation of Cbl-b pathway in mice is responsible for
increased susceptibility to experimental autoimmune diseases (96,
97, 108). The mechanism used by Cbl-b to downregulate T cell
activation involves the GTP exchange factor Vav and the p85 sub-
unit of phosphatidylinositol 3-kinase (PI3K). Previous studies
have shown that PI3K phosphorylates phosphatidylinositol-4,5-
diphosphate (PIP2) at the D3 position to form active lipid second
messenger that regulate the exchange activity of Vav. It has been
reported that Cbl-b induces the attachment of K48-linked ubiq-
uitin chains to p85 and its proteasomal degradation and thus
indirectly regulates Vav activation. The absence of Cbl-b increases
CD28-mediated Vav1 activation and cytoskeleton reorganization
(96, 97, 110).

Cbl-b constitutively interacts with the p85 subunit of the
lipid kinase PI3K through its Proline rich region (111). Then,
Cbl-b promotes p85 ubiquitination and affects its recruitment
to the immune synapse, preventing the interaction of PI3K
with CD28 (112). Finally, it has been shown that Cbl-b con-
tributes to the disintegration of the immune synapse upon anergy
induction (113).

TNFR-ASSOCIATED FACTOR 6
TNFR-associated factor 6 is an adaptor protein that can act as
an E3 ubiquitin ligase to mediate the activation of the NF-κB
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signaling pathway in response to TNF or interleukin-1 (IL-1)/TLR
family members. Interestingly, TRAF6 expression is upregulated
in activated T cells (114).

Unlike Cbl-b, TRAF6-mediated ubiquitination is associated
with protein activation independently of the proteasomal degra-
dation pathway. TRAF6 mediates the attachment of K63-linked
ubiquitin chains to important signaling proteins allowing the
activation of these pathways. In addition, TRAF6-deficient mice
created by complementation of Rag2−/− blastocysts developed a
progressive inflammation disease characterized by hyperactiva-
tion of CD4+ T cells. Moreover, T cell-specific deletion of TRAF6
(Traf6-∆T) resulted in multiorgan inflammatory disease and
resistance of T cells to the suppressor function of CD4+CD25+

regulatory T cells (114). Like Cbl-b−/− T cells, naïve Traf6-∆T
T cells hyperproliferate in response to anti-CD3 stimulation.
Importantly, TRAF6-deficient cells exhibit hyperactivation of the
PI3K-Akt pathway, suggesting a negative regulatory role of TRAF6
in CD28-dependent T cell activation. Consistently, as for Cbl-b,
loss of TRAF6 restores the ability of CD28−/− T cells to pro-
liferate and produce IL-2, suggesting that TRAF6 is a critical
mediator of peripheral tolerance (115). TRAF6 also plays a role
in thymic development since its deficiency results in disorga-
nized distribution of medullary thymic epithelial cells (mTECs)
and in the absence of mature mTECs (116). The grafting of
TRAF6−/− thymic stroma tissue into athymic nude mice induced
autoimmunity.

GENE RELATED TO ANERGY IN LYMPHOCYTES
Gene related to anergy in lymphocytes (GRAIL) is a RING E3
transmembrane glycoprotein that localizes to vesicular structures
in the cell. GRAIL contains a single transmembrane-spanning
domain that promotes its endosomal subcellular localization, a
RING domain, a protease-associated (PA) domain, and a coiled-
coil region (117). GRAIL was discovered using differential dis-
play to examine early changes in gene expression in anergic
conditions (117). Retrovirally transduced T cell hybridoma that
expresses GRAIL strongly decreases IL-2 and IL-4 production
and inhibits proliferation in response to anti-CD3 and anti-CD28
co-stimulation. This function of GRAIL is dependent on endo-
somal trafficking, which suggests that GRAIL may target a pro-
tein of the endocytic pathway to control cytokine production.
It was shown later using yeast two-hybrid system that GRAIL
functionally interacts with two isoforms of the ubiquitin-specific
protease Otubain 1 that belongs to the ovarian tumor (OTU)
superfamily (118). Otubain 1 expressing cells contain less amount
of GRAIL and secrete large amount of IL-2 following antigenic
stimulation, while those expressing the alternatively spliced iso-
form, Otubain 1 alternative reading frame 1 (ARF-1), contain an
increased amount of GRAIL and are functionally anergic. These
data further demonstrate that the two isoforms of Otubain 1 have
opposing effects on GRAIL and that Otubain 1 ARF-1 recruits
the ubiquitin-specific protease 8 (USP-8) to promote GRAIL deu-
biquitination and stabilization. Using a prokaryotic system devel-
oped to screen for E3 ligase substrates, Rho guanine dissociation
inhibitor (RhoGDI) was found as a potential substrate of GRAIL
(119). GRAIL attaches ubiquitin-linked chains to RhoGDI and
inhibits its effect on the reorganization of the cytoskeleton in T

cells (120). Importantly, GRAIL-deficient mice are resistant to
immune tolerance induction and exhibit a greater susceptibility
to autoimmune diseases. GRAIL promotes CD3 ubiquitination
and consequently, GRAIL-deficient T cells fail to regulate TCR
expression in response to TCR stimulation and have an enhanced
activation of NFATc1, while T cells expressing GRAIL present an
enhanced TCR downregulation (107). It has been suggested that
GRAIL is also responsible for the decrease cell surface expression
of CD40L that occurs following anergy induction of CD4+ T cells
(121). Furthermore, similarly to CD40L−/− mice, GRAIL overex-
pression results in reduced lymphoid follicle formation. GRAIL
also targets CD83, a costimulatory signal for T cell proliferation
and function, for its degradation by the proteasome 26S (122).

ITCH
The E3 ligase Itch is encoded by the agouti locus, and its mutation
is responsible for constant itching of the skin and development of
a systemic lymphoproliferative disease characterized by enlarged
secondary lymphoid organs (123). In addition, Itch−/− T cells
present an activated phenotype and enhanced proliferation (124).
CD4+ T cells of these mice are also resistant to Treg-dependent
immunosuppression (125). Unlike Cbl-b and GRAIL, Itch con-
tains a HECT domain that is responsible for its E3 ligase activity.
Itch also includes a C-terminal C2 domain, which promotes its
localization to endosomes. Itch expression is upregulated under
anergizing stimuli allowing Itch to target members of the Jun fam-
ily of transcription factors (i.e., c-Jun, Jun B) for ubiquitination
and subsequent proteasomal degradation (126, 127). Since JunB is
required for T helper 2 (Th2) differentiation, Itch downregulation
in lymphocytes causes aberrant Th2 differentiation (124). Further-
more, Itch is responsible for the monoubiquitination of PLC-γ1
and PKC-θ and their lysosomal degradation (113). In these con-
ditions, decreased PLC-γ1 expression is responsible for impaired
Ca2+ signal and decreased stability of the immune synapse.

NEDD4-FAMILY INTERACTING PROTEIN 1
NEDD4-family interacting protein 1 (also known as N4WBP5) is
upregulated in activated T cells. Ndfip1 interacts with NEDD4-
family members and is proposed to function as an adaptor for
ubiquitinated targets of the NEDD4-family such as Itch (128–
130). Ndfip1 associates with Itch and promotes JunB degradation.
Importantly, Ndfip1 deficiency is responsible for the failure of
peripheral CD4+ T cell tolerance to self and innocuous for-
eign antigen, forcing them to exit cell cycle after a few divisions.
This mechanism prevents CD4+ cells from differentiating into
IL-4 producing cells. Ndfip1 deficiency disrupts peripheral T
cell tolerance to pancreatic islets and increases the incidence of
autoimmune pancreatic destruction and diabetes (131).

ROQUIN
Roquin was identified as a novel RING finger E3 ubiquitin ligase in
a systematic screen using ethylnitrosourea (ENU)-induced muta-
tion in the mouse and screening for autoimmunity (132). The first
mutation identified was named sanroque because the accompany-
ing lymphadenopathy exhibited all the features of SLE and small
intestine inflammation: antibodies against dsDNA, proliferative
glomerulonephritis with deposition of immune complexes necro-
tizing hepatitis, anemia, and autoimmune thrombocytomia (132,
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133). Using a genetic approach, it was found that the sanroque
mutation corresponded to a missense mutation of the Roquin
gene. At the cellular level, these mice present increased num-
bers of germinal centers and follicular helper T cells. Sanroque
CD4+ T cells express high level of the CD28 paralog “T cell cos-
timulatory receptor inducible T cell costimulator” (ICOS) that
was reduced upon re-expression of Roquin. Roquin was shown to
localize in cytoplasmic stress granules (P bodies) (134) and to limit
ICOS expression by promoting the degradation of ICOS mRNA.
A conserved segment containing a region complementary to T cell
expressed microRNA in ICOS 3′ untranslated mRNA was shown to
be critical for the regulation by Roquin (135). However, instead of
using microRNAs, a trimolecular complex containing Roquin, the
RNA helicase Rck and the enhancer of decapping Edc4 was shown
to promote ICOS mRNA decapping and ICOS repression (136).

To test the participation of ICOS with the sanroque pheno-
type, sanroque mice were crossed with ICOS−/− mice (135).
Interestingly, the partial reduction of ICOS expression was accom-
panied by a reduction of lymphadenopathy, splenomegaly, total
T- and B-cell number, and germinal center B cell number thus
demonstrating that overexpression of ICOS contributes to san-
roque mice autoimmune phenotype. Interestingly, it was further
shown that tissue-specific ablation of Roquin in T, B cells, or in
the entire hematopoietic system does not cause autoimmunity,
while enforced Roquin expression in T cells exacerbates the sever-
ity of experimental arthritis (137). Finally, it was clearly shown
that Roquin-1 has redundant function with Roquin-2 in the post-
transcriptional repression of ICOS mRNA and that Roquin-2
compensates for the absence of Roquin-1, but not for its mutation
(138, 139). It has been shown recently that Roquin-2 promotes
ubiquitin-mediated proteasomal degradation of apoptosis signal-
regulating kinase 1 (ASK1), a protein involved in the activation
of JNK and p38 in response to stress (140). However, further
investigation is required to define the ubiquitinated substrates
of Roquin-1 and Roquin-2 that could explain the role of these
proteins in autoimmunity.

AUTOIMMUNE REGULATOR
Autoimmune regulator (AIRE) gene mutation is responsi-
ble for the development of autoimmune-polyendocrinopathy-
candidiasis ectodermal dystrophy (APECED), also known as
autoimmune polyglandular syndrome type 1 (APS1), an organ-
specific autoimmune disease. Mice carrying a defective AIRE gene
also develop autoimmunity (141, 142). The clinical course in
human and mice appears after a latent period. This period can
be reduced in mice by the cross breeding of AIRE-deficient mice
with Cbl-b KO mice (143). AIRE is predominantly expressed in
medullar epithelial cells of the thymus and is considered to play
important roles in the establishment of self-tolerance. mTECs
have been implicated in the clonal deletion or inactivation of
self-reactive thymocytes. Many ectopically expressed antigens are
associated with organ-specific autoimmune diseases and it has
been shown that AIRE-deficient mTECs present a decrease in the
ectopic transcription of genes encoding peripheral antigens (141).
Interestingly, AIRE functionally interacts with the small ubiquitin-
related modifier (SUMO) ligase PIAS1 in the nuclear bodies, which
cooperates to activate AIRE-known target genes (144). AIRE also

functions as an E3 ligase. The AIRE gene is composed of two PHDS
and SAND domains and its E3 ligase activity is mediated by the
PHD1 domain and abolished by disease-causing mutations in the
PHD1 (C311Y and P326Q) (145).

NF-κB ACTIVATOR 1
NF-κB activator 1 (Act1) was discovered by searching for poten-
tial genes that play a role in NF-κB activation and was cloned in
parallel via a yeast two-hybrid screen using NEMO as bait (146,
147). The structure of Act1 consists of two TRAF binding domains,
an U-Box E3 ligase, a helix-loop-helix (HLH) and a SEF/IL-17R
(SEFIR) domain. Act1 is an important negative regulator of B cell-
mediated humoral immune response through its function in CD40
and BAFF signaling (two TNF receptor superfamily members).
Upon CD40 stimulation, Act1 is recruited to CD40 that also inter-
acts with TRAF3 (148). CD40 and BAFFR play critical roles in B cell
survival and maturation,and dysregulation of these pathways leads
to autoimmunity. In agreement with Act1 B cell function, Act1
knocked-out mice developed B cell-mediated autoimmune phe-
notypes including increased peripheral B cells, lymphadenopathy
and splenomegaly, hypergammaglobulinemia, and autoantibodies
(149). Interestingly, it was recently shown that crossing of AM14
transgenic (Tg) rheumatoid factor mice to Act1−/− mice leads to
the activation of AM14 Tg B cells. AM14 Tg Act1−/− mice devel-
oped enlarged spleens and lymph nodes and presented expansions
of rheumatoid factor-specific autoreactive B cells (150).

CD4+ T helper cells are divided into two lineages: T helper
1 (Th1) that secretes IFNγ and Th2 cells that secrete IL-4, IL-5,
and IL-13. Recently, a third lineage that secretes IL-17 (Th17) has
been found to play an important role in the defense against bacte-
ria and fungal infections. The number of these cells is increased in
autoimmune diseases. Act1 is a critical mediator of IL-17 signaling
and has been involved in this pathway because its SEFIR domain
is closely related to IL-17-receptor SEFIR domain. In response
to IL-17, Act1 interacts with IL-17 receptor through an homo-
typic SEFIR–SEFIR interaction. Following this recruitment, Act1
attaches K63-linked ubiquitin chains to TRAF6 allowing its inter-
action with the TGFβ activated kinase 1 (TAK1) and subsequent
phosphorylation of the NEMO/IKK complex followed by NF-κB
activation. Because IL-17 is important in experimental autoim-
mune encephalomyelitis (EAE) pathogenesis, a model of multiple
sclerosis, the effect of Act1 was assessed on a mouse model of EAE.
Interestingly, Act1-deficient mice showed a delay in the onset of
neurological impairment and had much lower severity compared
to wild-type mice (151).

PELLINO 1
The mammalian Peli (Pellino) family is composed of three mem-
bers, Peli1, Peli2, and Peli3. The E3 ubiquitin ligase activity of
Peli proteins is dependent on their C-terminal RING domain.
Peli1 is essential for the TLR-mediated NF-κB activation depen-
dent on the adaptor TRIF (152). Peli1-deficient T cells are hyper
responsive to TCR and CD28 signals, they secrete more IL-2 and
their naïve CD4+ T cells proliferation is not inhibited by Treg
cells as opposed to wild-type CD4+ T cells (105). Consequently,
Peli1−/− mice develop autoimmunity such as enlarged peripheral
lymph nodes, moderate splenomegaly, and infiltration of many
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organs by cells from the immune response. Consistently, T cells
from Peli1−/− mice show more pathogenic potential in EAE. In
addition, Peli1 deficiency causes hyperactivation of late phase NF-
κB and impairs ubiquitination and degradation of c-Rel, which
is important for the thymic development of Tregs by directly
inducing transcription of the Treg-specific transcription factor
Foxp3 (153).

DEUBIQUITINASE AND IMMUNE TOLERANCE
The ubiquitin-editing enzyme A20 and the deubiquitinase CYLD
are important negative regulators of NF-κB signaling, and this
control is important for adaptive and innate immunity. The mod-
ification of key signaling proteins such as NEMO, TRAF6, RIP1,
Bcl10, MALT1 with K63-linked ubiquitin chains, or linear ubiqui-
tin chains has emerged as an essential process for NF-κB activation.
Ubiquitination can be reversed by DUB enzymes such as A20
and CYLD.

A20
A20 encoded by the TNF-α-inducible gene 3 (TNFAIP3) was iden-
tified in endothelial cells as a primary response gene induced upon
treatment with TNF (154, 155). A20 was shown to be an ubiquitin-
editing enzyme containing an amino-terminal DUB activity medi-
ated by its OTU domain and a carboxy-terminal zing finger (ZnF)
domain responsible for its E3 ubiquitin ligase activity (156). Fur-
ther studies demonstrated a role of A20 not only in TNF signaling,
but also in IL-1-, CD40-, TLR-, TCR-, and BCR-mediated NF-κB
activation. A20 expression is rapidly induced upon NF-κB activa-
tion, which suggests that A20 prevents the persistent activation of
NF-κB that could have negative effects on cell viability. In addi-
tion to ending NF-κB signaling, A20 exhibits NF-κB-unrelated
functions. In response to pathogen invasion, A20 inhibits RIG-I-
induced IRF activation and IFN responses by removing K63-linked
polyubiquitin chains from the innate immune kinases TBK1 and
IKKε (157–160). A20 has also been shown to control autophagy in
response to TLR activation through the deubiquitination of Beclin
1, a protein essential for autophagy (161). In addition, A20 func-
tions as an anti-apoptotic protein in several cell types and has been
shown to cleave TRAIL-mediated ubiquitination of Caspase 8 in
order to inhibit apoptosis (162).

Regarding autoimmunity, A20 has been reported as a disease
susceptibility gene for human inflammatory and autoimmune
pathology, including rheumatoid arthritis (RA) and juvenile idio-
pathic arthritis, SLE, inflammatory bowel disease (IBD), celiac
disease, psoriasis, type 1 diabetes, Sjogren’s syndrome, coronary
artery disease, rheumatic heart disease, and systemic sclerosis
(163). A case-control study in African-American SLE patients with
a genetic polymorphism of the A20 gene shows that it alters DUB
activity and mediates risk of autoimmunity (164). As a conse-
quence of the lack of regulation of NF-κB pathways, A20-deficient
mice present severe inflammation and hypersensibility to TNF
signaling and MyD88-dependent TLR signaling initiated by the
commensal flora (165, 166). Cell type-specific deletion of A20
in B cells, dendritic cells, myeloid cells, intestinal epithelial cells,
and keratinocytes confirmed that A20 plays a crucial role for the
maintenance of tissue homeostasis and the control of systemic
inflammation (167–173). Mice that specifically lack A20 in all

cells of myeloid origin, develop spontaneous polyarthritis with
the presence of type II collagen autoantibodies and inflammatory
cytokines in serum (171). An A20-conditional KO in dendritic
cells induces massive splenomegaly and lymphadenopathy. In one
study, these mice developed an SLE-like phenotype, including
the presence of double stranded DNA autoantibodies, glomeru-
lonephritis, antiphospholipid syndrome, and arthritis, while, in
an other study, they developed lymphocyte-dependent colitis,
ankylosing arthritis, and enthesitis (172).

In B cells, A20 depletion induces enhanced B cell prolifera-
tion and survival as well as autoantibodies secretion (168, 169,
174). These mice exhibit a lupus-like autoimmune pathology char-
acterized by increased numbers of germinal center B cells and
glomerular immunoglobulin deposits. These mice also produce
autoantibodies against cardiolipin, an important component of
the inner mitochondrial membrane.

CYLINDROMATOSIS
Cylindromatosis (CYLD) is a tumor suppressor gene whose muta-
tions result in a predisposition to familial cylindromatosis, a
disease characterized by the development of benign tumors of
the skin. CYLD exhibits deubiquitinase activity and has been
identified as a critical regulator of NF-κB signaling by different
approaches (175–177). As for A20, CYLD synthesis is regulated by
NF-κB. CYLD KO mice confirmed that CYLD is a negative regula-
tor of NF-κB (178, 179). The role of CYLD in B cell function is con-
troversial. Jin and colleagues found that CYLD KO mice present
several abnormalities of the immune system such as enlarged
lymph nodes, B cell hyperplasia, expansion of the B cell marginal
zone and B cell hyper-responsiveness in response to BCR, or LPS
stimulation (178). However, in other studies, CYLD deficiency did
not affect peripheral B cell numbers, but increased NF-κB activa-
tion upon stimulation (180, 181). T cells derived from CYLD KO
mice displayed an hyper responsive phenotype (179). Adoptive
transfer of CYLD KO T cells into RAG KO mice that lack endoge-
nous lymphocytes induced autoimmune symptoms and intestinal
inflammation (179). To explore potential overlapping functions
between A20 and CYLD, the A20/CYLD double KO in B cells was
generated (181). Interestingly, the lack of CYLD did not exacerbate
the developmental defects and hyper-responsiveness of the A20-
deficient B cell activity. The expression of CYLD must be tightly
regulated since overexpression of the short spliced variant of CYLD
gene (sCYLD) resulted in splenomegaly and lymphadenopathy,
hyperactivation of CD4+ T cells and decrease in mTECs. When
these mice were crossed onto TCR Tg background, they devel-
oped colonic inflammation associated with high production of
autoantibodies.

UBIQUITIN-LIKE PROTEINS AND AUTOIMMUNITY
Finally, ubiquitin-like proteins (UBLs) (182), such as SUMO and
ISG15, which are proteins related to ubiquitin, might also protect
their substrates from recognition by the immune system. Among
SUMO paralogs, SUMO4 harboring the M55V polymorphism
is associated with susceptibility to autoimmune diabetes (183),
although it is not clear whether SUMO4 protein is expressed.
Additionally, ISGylation affects many proteins that are localized
in different cellular compartments, participates in various cellular
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processes, and also targets a number of viral proteins. Interestingly,
a large-scale microarray study of muscle samples revealed that the
autoimmune disease dermatomyositis was specifically associated
with enhancement of ISGylation (184).

CONCLUSION
Our understanding of the role played by ubiquitin in immune tol-
erance is still in its early stage. Although much attention focused
on the function of E3 ligases and deubiquitinases in early events of
T cell activation and immune tolerance, it is important to deter-
mine whether E3 ligase activity in dying cells could be involved
in immune tolerance by preventing recognition by the immune
system.

Another related issue is whether the UBDs that are present
in a multitude of cellular proteins also protect proteins from
recognition by the immune system through their interaction with
ubiquitinated proteins. Intriguingly, defects in the interaction of
ABIN1 with other proteins through its UBD cause autoimmunity
in mice (185, 186). ABIN1 was originally identified by its inter-
action with the deubiquitinase A20, and mice with conditional
knockout of A20 developed autoimmunity (see above) (187).
Human polymorphisms were also identified in the ABIN1 coding
gene, which constitutes a susceptibility gene for the development
of autoimmune diseases.

In addition to changing the fate of proteins by targeting them to
degradation via the proteasome pathway or to signaling complexes,
ubiquitin may also mask epitopes that could lead to autoimmunity.

Finally, it is apparently difficult to conceive that the absence
of ubiquitin ligase or deubiquitinases such as A20 or CYLD,
which have the opposite effect leads to autoimmunity. However,
it must be noted that the A20 and CYLD DUBs cleave K63-
linked or linear ubiquitin chains, which are mostly important
for protein–protein interactions. Consequently, their depletion
increases the amount of K63-linked or linear-linked ubiquiti-
nated proteins in signaling complexes and therefore enhances
signaling. Consistently, the depletion of E3 ligases that mediate
K48-linked ubiquitination of signaling proteins and proteasomal
degradation also results in increased signaling. Furthermore, it
is now well known that besides its DUB activity, A20 catalyzes
the addition of K48-linked polyubiquitin chains to different sub-
strates including Ubc13, UbcH5c, and RIP1 and targets them
for proteasomal degradation (188) and that its depletion also
impairs its E3 ubiquitin ligase activity. It is also important to
consider that in lymphocytes, A20 is constitutively expressed to
prevent uncontrolled activation of NF-κB and its proteasomal
degradation or its cleavage by the paracaspase MALT1 impairs
its inhibitory function to allow optimal NF-κB activation as
exemplified by the increased antigen-mediated NF-κB signaling
pathways in A20-deficient lymphocytes (189, 190). My hypothe-
sis is that the decreased expression of E3 ubiquitin ligase induces
autoimmunity by a dual mechanism: The loss of immune toler-
ance [absence of regulation of autoreactive lymphocytes or loss
of regulatory T cell (Tregs) functions] and the absence of pro-
tection of epitopes against the immune system. However, we
cannot make this assumption in the case of deubiquitinase defi-
ciencies since epitopes are still protected by ubiquitin in these
conditions.

In the past few years, it has been suggested that ubiquitin can
be released from the cell to modulate the immune response (191).
Ubiquitin is released from damaged erythrocytes, from damage
tissues or from cells undergoing physiological turnover during
prolonged blood storage. Besides its presence in the bloodstream,
ubiquitin is also detectable in cerebrospinal fluid, bronchoalveo-
lar lavage fluid, seminal plasma, and urine. Multiple diseases are
known to be associated with increased concentration of extracel-
lular ubiquitin. Its increased concentration in the serum has been
reported in different pathologies including lupus erythematosus.
Different properties have been attributed to extracellular ubiqui-
tin such as antimicrobial activities. Intriguingly, ubiquitin have
been originally purified from bovine thymus and characterized as
a protein presenting a role in lymphocyte differentiation (192).
Daily injection of ubiquitin induced T cell differentiation in the
spleen and lymph nodes of athymic nu/nu mice. Interestingly,
injection of ubiquitin into skeletal muscles led to a recruitment of
lymphocytes (193). It has been suggested that ubiquitin presents
immunosuppression activity against B and T cell functions (194).
Despite the multiple effects that have been reported, little is known
on the mechanism of action of extracellular ubiquitin. Recent data
suggest that cellular uptake of extracellular ubiquitin is followed
by its conjugaison to intracellular proteins (195, 196). Thus, the
expression level of ubiquitin is not only controlled at the tran-
scriptional level, but also by cellular uptake. Given that ubiquitin
can be quickly available for protein modifications, that it lacks
immunogenicity, that it attracts lymphocytes, and presents an
immunosuppression activity, it is an attractive alternative hypoth-
esis that post-translational modification of proteins with ubiquitin
also neutralized their immunogenicity. Accordingly, administra-
tion of exogenous ubiquitin produces effects in various diseases
including autoimmune diseases.

The experimental autoimmune EAE is a well-characterized
model of the human autoimmune multiple sclerosis disease that
is produced by the injection of brain extracts, which is respon-
sible of demyelinisation. Using the same kind of approach, it
would be interesting to determine whether injection of apop-
totic thymocytes depleted for E1 ubiquitin enzymes to syngenic
mice could induce autoimmunity, compared to injection of non-
treated apoptotic thymocytes that should not induce autoimmu-
nity (197). Another option would be to treat apoptotic extracts
with non-specific DUB in vitro.

In conclusion, although it seems counterintuitive that modi-
fication of proteins by ubiquitin or UBLs may impinge on their
visibility by the immune system, this unrecognized role of ubiq-
uitin and UBL proteins in protecting from antigen-mediated
detection by the immune system and its implication in immune
tolerance could be a promising issue for the immunological
field. Furthermore, this should highlight the therapeutic potential
of manipulating E3 ligases and deubiquitinases in autoimmune
diseases.
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