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Abstract

Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR)
retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent
studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain
chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference
might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential
importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the
behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the
spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the
endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is
stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the
male germline. Bisulfite sequencing of the 59 LTR and its surrounding region suggests that tissue culture induces a loss of
epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants
containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled
transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and
show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has
considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define
conditions for the use of LORE1a as a genetic tool.
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Introduction

A large proportion of the eukaryotic genome is composed of

transposable elements (TEs). In flowering plants, Long Terminal

Repeat (LTR) retrotransposons have been regarded as the largest

order of TEs [1,2] and it has been suggested that the ratio between

propagation and exclusion of LTR retrotransposons may have

affected the size of host genomes [3,4]. In line with this notion,

large plant genomes usually contain substantially more LTR

retrotransposons than small plant genomes [5,6]. However, data

from a wide range of flowering plants strongly suggest that LTR

retrotransposons are not distributed evenly in genomes. Biased

accumulation has led to the formation of LTR retrotransposon-

rich, gene-poor heterochromatic blocks, which separate gene-rich

euchromatic regions [7]. Thus, the activity of LTR retro-

transposons has contributed remarkably towards generating the

basic structure of current plant genomes.

In flowering plants, the LTR retrotransposons have been

classified into two superfamilies, Gypsy and Copia, according to

their structural features [8]. In many plants, Gypsy outnumbers

Copia [9–13]. An exception is grapevine, in which the number of

Copia elements exceeds that of Gypsy [14]. Chromovirus is a most

widely-distributed lineage of Gypsy, characterized by a chromodo-

main at the carboxyl terminal of the ORF [15,16]. It has been

proposed that the insertion site preference of chromoviruses is

controlled by the chromodomain [15,16], and this suggestion has

been supported by functional characterization of MAGGY,

identified in the rice blast fungus Magnaporta grisea [17,18]. The

MAGGY chromodomain was shown to interact with histone H3 di-

and tri-methyl K9, which are hallmarks of heterochromatin [18].

When it was fused to the integrase of Tf1 retrotransposon, the

modified Tf1 preferentially transposed into heterochromatic

regions in Schizosaccharomyces pombe genome [18]. In flowering

plants, chromoviruses are phylogenetically distinct from the

lineage containing MAGGY and they are classified into four

clades, Reina, Tekay, Galadriel and CRM [16,19]. Members of

CRM were originally known as Gypsy elements which accumulate

in centromeric and pericentromeric regions in plant genomes

[20–23]. Since all four clades have been identified in both dicots

and monocots, and Reina and CRM elements have been found in
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angiosperms and gymnosperms, these elements are likely to have

an ancient origin within the seed plants [16,19]. In order to

complement these evolutionary studies, a precise characterization

of retrotransposon transpositional activity is now being pursued by

experimental analyses, and this activity represents one of the

subjects that must be addressed if we are to develop a deeper

understanding of plant genome dynamics and evolution.

Previously, most experimental studies of transpositional activity

and the regulation of plant LTR retrotransposons were conducted

using three Copia elements, Tnt1 and Tto1 in tobacco, and Tos17 in

rice. Transpositions of these elements were observed only in

cultured cells, where their transcriptional up-regulation occurs

[24–26]. Since transpositional activity is immediately repressed in

regenerated plants due to a decrease in transcription, transposi-

tions in intact plants have not been well characterized. Thus far,

transposition of Tos17 has been observed in intact transgenic

plants in which the transcriptional level of a gene encoding histone

H3K9 specific methylase was downregulated by RNA interference

[27], but the spatio-temporal pattern of transposition remained

unclear. Furthermore, little is known about the transpositional

activity of plant Gypsy elements, including chromoviruses, despite

their high abundance in plant genomes.

In more than a decade of studies, the model legume Lotus

japonicus has facilitated dissection of the molecular mechanisms

governing symbiotic nitrogen fixation with rhizobia. The L.

japonicus genome has been sequenced and sequence data covering

67% of the genome (472 Mb), corresponding to 91.3% of the gene

space, is now available [13]. From this model legume, we have

identified two transpositionally active LTR retrotransposon

families designated as LORE1 and LORE2 (Lotus Retrotransposon 1

and 2) [28,29]. Both belong to the Gypsy superfamily and were first

identified as insertions in symbiotic mutants isolated from a

transgenic plant population established by tissue culture- mediated

transformation [28–31]. However, the machinery underlying their

activation remained to be characterized. Both LORE1 and LORE2

encode unique long open reading frames (ORFs) with a

chromodomain at the carboxyl terminal ends, which suggests that

they are chromoviruses (Figure 1A) [29]. Although this chromo-

domain was overlooked in the original characterization of LORE1

[28], Novikova et al. re-classified LORE1 as a member of the Reina

clade of chromovirus [19].

Previously, we estimated the number of ‘‘preexisting copies’’

(insertions that were already present in a plant accession) of

LORE1 in the Gifu accession as ten, and obtained full or partial

sequences for nine out of the ten preexisting LORE1 copies [28].

Nucleotide sequence polymorphisms among the nine copies

enabled us to distinguish them from each other, and we designated

them in alphabetical order as LORE1a, b, c, d, e, f, g, h, and i [28].

In this report, we show that in the Gifu accession, the preexisting

LORE1a can be epigenetically de-repressed in standard tissue

culture. However, transpositions per se occur primarily in pollen,

i.e., male gametophytes, of regenerated intact plants, and so far

new insertions generated in cultured cells have not been detected.

We assume that the pollen-specific LTR promoter of LORE1a

regulates the spatio-temporal pattern of transposition. Although

LORE1 is a chromovirus, it does not appear to have a strong

insertional preference for heterochromatin. These distinctive

features of LORE1 underlie its ability to generate insertional

polymorphisms, leading to a wide range of genetic and epigenetic

diversity in a population. The results also define conditions for

using LORE1 for insertion mutagenesis.

Results

Activation of LORE1 in regenerated plant populations
The transpositional activity of LORE1 was first demonstrated by

the identification of four symbiotic mutant alleles, nin-7, symrk-1,

nup133-3 and nap1-1, in which gene inactivation was caused by the

insertion of LORE1 [28,32]. As all four mutants were isolated from

the same Ac/T-DNA tagging population established using the L.

japonicus Gifu accession [30,31], we screened other plants of the

same population for LORE1 transpositions. Sequence-specific

amplified polymorphism (SSAP) analysis of LORE1 insertion sites

detected new transpositions in 32 plants out of a sub-population of

41 plants (Population 1 in Table 1), indicating that LORE1 was

widely active in this population. Next, we investigated whether

LORE1 transpositions were present in four transgenic or non-

transgenic regenerated plant populations created using the Gifu

accession. To detect new insertion sites of LORE1, we used SSAP

to analyze the T1 and R1 progeny of primary transformants (T0)

and of primary non-transgenic regenerated plants (R0). In

addition to population 1 (Table 1), transpositions were detected

in three of the other four populations. Importantly, transposition

was detected in transgenic plants generated using six different

constructs, as well as in non-transgenic regenerated plants. These

results suggest that the simple process of in vitro tissue culture can

activate LORE1 in a stochastic manner that is independent of the

presence or absence of transgenes, antibiotic selection, and of the

composition and contents of transgene constructs. The newly

transposed LORE1 copies observed in R1/T1 plants might have

resulted from transpositions in cultured cells and/or in the

parental R0/T0 plants. However, LORE1 transposition was

absent, infrequent, or below the detection levels of the SSAP

method in a total of 27 plants from the initial R0/T0 plants from

populations 2 and 3 (Table 1; data not shown). Previously, we

observed the absence of obvious transcriptional or transpositional

activation of LORE1 in cultured cells [28,29]. These results suggest

that even though LORE1 was apparently de-repressed in tissue

culture, the transpositions per se appear to have occurred in

Author Summary

In contrast to animals, where germline differentiation
initiates early in embryogenesis, germline differentiation in
plants starts in the adult phase during reproductive
development. Transpositions of transposable elements in
both somatic and gametic cells can be transmitted to the
next generation. As a result, plant genomes may contain
transposable elements exhibiting a variety of tissue-
specific activities. Thus far, the spatio-temporal activity of
LTR retrotransposons, the most abundant class of trans-
posable elements in plants, has not been well character-
ized. Here, we report a detailed analysis of the spatio-
temporal transposition pattern of a plant LTR retro-
transposon in the endogenous system. Using the model
legume Lotus japonicus, we found that LORE1a, a member
of the chromovirus LORE1 family that belongs to the Gypsy
superfamily, was epigenetically de-repressed via tissue
culture. Activation was stochastic and derepression was
maintained in regenerated plants. This feature made it
possible to trace the original spatio-temporal activity of
the retrotransposon in the intact plants. We determined
that the plant chromovirus retrotransposes mainly in the
male germline, without obvious insertional preferences for
chromosomal regions. This finding suggests that the tissue
specificity of transposable elements should be taken
into account when considering their impact on the host
genome dynamics and evolution.

Germline Retrotransposition of a Plant Chromovirus
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regenerated intact plants, rather than in the cultured cells (see

details in the next section).

Transposition of LORE1 in intact plants
To gain more precise information about transposition of LORE1

in intact plants, eight independent T0 plants were randomly

selected from population 3 (Table 1) and investigated together

with their T1 progeny. LORE1 transpositions were detected in the

T1 progeny from 6 of the 8 T0 plants. A typical result of a

genomic Southern blot analysis and SSAP analysis of a T0 and its

10 T1 progeny plants (in this instance plant line no. 30) are shown

in Figure 1B and Figure S1, respectively. Notably, the banding

pattern in the T0 plants was the same as in the control Gifu, again

indicating absent or infrequent LORE1 transposition in the

primary regenerated plants (Figure 1B). However, additional

bands corresponding to newly transposed LORE1 copies were

Figure 1. LORE1 transposition. (A) Schematic representation of the LORE1a element. Boxes with triangles represent long terminal repeats (LTRs).
Regions encoding functional domains predicted by Pfam are indicated as patterned boxes. GAG, Retrotransposon gag protein; AP, Aspartic protease;
RT, reverse transcriptase; Int, integrase core domain; Chr, chromodomain. Positions of Primers 1, 2, 3, and 4 are indicated with arrows. Regions 1 and
2, containing LORE1a-specific SNPs, are indicated as bars. Positions of the DNA probes and Hind III sites used in the genomic Southern blot analyses
shown in (B–D) are represented as bars and vertical lines with H, respectively. (B) Southern blot detection of transposed LORE1 elements in T1 siblings.
LORE1 copies in control Gifu (Gifu), a T0 individual (T0), and 10 of its T1 siblings (T1) were analyzed. (C) LORE1 transposition in late development. Five
siblings originating from each of two pods, pod1 and pod2, set at the top of the same inflorescence of a LORE1-activated T0 plant. (D) Southern blot
analysis showing germline inheritance of LORE1 via male gametophytes. DNA from five F1 plants from each of the MG20 (female)6no. 30 (male) and
no. 30 (female) 6MG20 (male) crosses was analyzed. Gel images show PCR products obtained using Primers 1 and 2 detecting LORE1a (+LORE1a)
from Gifu, and Primers 1 and 3 detecting absence of LORE1a (2LORE1a), the allele from MG20. Amplification of both bands confirmed the hybrid
genotype of F1 plants.
doi:10.1371/journal.pgen.1000868.g001

Table 1. LORE1 transpositions in regenerated plant populations.

Population
Generation
investigated

No. of plants
investigated

No. of plants with LORE1
transpositions# Origin Antibiotics used

1. Ac/T-DNA tagging population generated
in Denmark

Later than T2 41 32 - G418

2. Regenerated plants produced in Japan R1 50 10 10 R0 plants None

3. Transgenic plants generated in Japan T1 88 42 17 T0 plants Hygromycin or
G418

4. Other transgenic plants generated in Denmark T1 31 1 6 T0 plants G418

5. Regenerated plants produced in Japan R1 45 0 9 R0 plants None

#Transpositions were detected by SSAP (Sequence Specific Amplified Polymorphism) analysis amplifying 59 fragments flanking LORE1 inserts.
doi:10.1371/journal.pgen.1000868.t001

Germline Retrotransposition of a Plant Chromovirus
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detected in the T1 progeny (Figure 1B and Figure S1). The highly

polymorphic banding pattern indicates the occurrence of frequent

independent transpositions of LORE1 in T1 plants (Figure 1B and

Figure S1).

Next, we determined whether the new insertions of LORE1

found in the T1 plants were the result of transmission of previous

transpositions in somatic cells from T0 forming sectors or of de novo

transposition. We analyzed T1 plants originating from two seed

pods at the top of the same shoot of the parental T0 plant

(Figure 1C). We did not detect any new bands that were shared by

the two neighboring pods, or T1 plants originating from the same

pod. This result indicates that the majority of LORE1 transposi-

tions occurred at late developmental stages in T0 plants.

Reciprocal crosses between plant no. 30 (from the Gifu accession)

and plants from the MG20 accession were used to determine if the

new transposed copies detected in the T1 plant were transmitted

via male or female gametes. Five F1 plants obtained from each

reciprocal cross were analyzed for LORE1 copy number

(Figure 1D). In total, 21 bands corresponding to new LORE1

transpositions were detected among the 5 F1 plants obtained from

the MG20 (female)6no. 30 (male) cross. In contrast, only 1 newly

transposed LORE1 copy was detected in 5 F1 plants from no. 30

(female) 6MG20 (male) cross. We conclude that although LORE1

is active in both male and female gametophytes, its activity is much

higher in male tissues. Next, we used parent-specific single

nucleotide polymorphisms (SNPs) in the flanking regions to

determine the parental origin of the seven new insertion sites in

MG20x30 F1 plants. This analysis showed that all the new

transpositions originated from Gifu, the pollen donor. Hence, the

majority of LORE1 transpositions detected in the F1 plants seemed

to occur before fertilization. Altogether, LORE1 was revealed to be

robustly active especially in male gametophytes. Previous reports

indicate that activated retrotransposons can be re-silenced again

by activities such as copy number-dependent establishment of

epigenetic silencing [33,34]. However, LORE1 was still active in

three T1 plants that already possessed an increased number of

LORE1 copies (Figure S2A). This finding indicates that once

activated, LORE1 was able to transpose over at least two successive

generations. On the other hand, we also observed that LORE1 was

inactivated in the nup133-3 mutant, in which a single new

transposition was detected in the Nup133 gene (Figure S2B).

Activation of LORE1a in the initial generation of
regenerated plants

Since the newly inserted LORE1 copies identified in the three

symbiotic mutant alleles (nfr5-2, symrk-2, and nup133-3) were

identical to one of the nine preexisting copies, LORE1a, we

suspected that LORE1a was preferentially activated [28]. LORE1a-

specific SNPs were identified in regions 1 and 2 (Figure 1A) and in

all eight of the newly-transposed LORE1 fragments from

population 3. This observation is consistent with our suggestion

that LORE1a is responsible for the majority of LORE1 transpo-

sitions described here.

The transpositional activity of retrotransposons is often

controlled at the transcriptional level [1,2,24–26]. We used RT-

PCR to compare the levels of LORE1 transcription in mature

flowers containing both male and female gametophytes (where

LORE1 transposition presumably occurs). Among the eight T0

plants, including no. 30 from population 3 (Table 1), higher levels

of LORE1 transcription were observed in the six T0 plants that

possessed active LORE1 elements, compared to the control Gifu

plant (Figure 2A). This finding indicated a correlation between the

transcriptional and transpositional activities of LORE1. To

determine which LORE1 family members were present in the

transcript pool, RT-PCR products were TA cloned and

sequenced. RT-PCR products spanning regions 1 and 2 were

amplified separately from flowers of the control Gifu plant and two

T0 plants (nos. 30 and 45) that exhibited LORE1 activity. LORE1a-

specific SNPs were present in the region 1 of 7/16, 15/15 and 15/

16 clones from the control Gifu, no. 30 and no. 45 plants,

respectively. For region 2, LORE1a-specific SNPs were present in

3/12, 16/16 and 16/16 clones from the control Gifu, no. 30 and

45 plants, respectively. These data suggest that transcriptional

activation is responsible for the preferential transposition of

LORE1a among the family members. This expectation is

supported by the following lines of evidence: i) a generally

increased level of LORE1 transcripts in flowers of active lines; ii) a

clear increase in LORE1a transcripts in two activated plants; and

iii) all transposition events detected thus far are of LORE1a origin.

Tissue specificity of LORE1 activation
The pattern of LORE1a activation via tissue culture is different

from that of other well-characterized retrotransposons such as

Tos17, Tto1, and Tnt1, which are activated and transpose during

tissue culture, resulting in a copy number increase in the primary

Figure 2. Correlation between transcription level and transpo-
sitional activity of LORE1. (A) LORE1 transcript levels in T0 plant nos.
3, 11, 17, 21, 30, 32, 42, and 45, as well as in a control Gifu plant. Plants
marked with + show transpositional activity of LORE1, those marked
with–do not. The upper panel (RT+) shows an image of an RT-PCR of
LORE1 transcripts in flowers. The middle panel (RT2) shows negative
control reactions without reverse transcriptase. The equal abundance of
RNA among samples was confirmed by RT–PCR detection of elongation
factor 1 alpha transcripts (EF1a). (B) LORE1 transcript levels among T0
plants vary in flowers, but not in leaves. The levels of LORE1 transcripts
in flowers and leaves were determined by RT–PCR as in (A) using RNA
samples extracted from four T0 plants, two with LORE1 activity (nos. 3
and 30) and two without LORE1 activity (nos. 11 and 42), together with
a control Gifu plant and liquid-cultured cells (LC) from a Gifu plant.
Images from a negative control experiment (RT2) and a control, to
demonstrate equal abundance of RNA (EF1a), are also presented. (C)
Transcriptional activation of LORE1 in pollen. Transcript levels in mature
pollen grains isolated from LORE1-activated T0 plants (3 and 30), T0
plants without LORE1 activity (11 and 42), and control Gifu plants, were
compared by RT–PCR. Images of a negative control experiment (RT2)
and a control, to demonstrate equal abundance of RNA (EF1a), are also
shown.
doi:10.1371/journal.pgen.1000868.g002

Germline Retrotransposition of a Plant Chromovirus
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regenerated plants (R0) [24–26]. We hypothesized that tissue- or

cell-specific transcription determines the unique spatio-temporal

pattern of LORE1 transposition. To test this hypothesis, we

compared LORE1 transcript levels in leaves and flowers among

four T0 plants and a control Gifu plant, as well as its

transcriptional level in cultured cells (Figure 2B). We found that

there were no detectable differences in LORE1 transcript levels in

the leaves of the four T0 plants or in the control Gifu plant. In

contrast, high levels of LORE1 transcripts accumulated in the

flowers of plant nos. 3 and 30 compared to nos. 11 and 42, or the

control Gifu plants and cultured cells. Furthermore, high LORE1

transcript levels were detected in pollen from the two T0 plants

exhibiting LORE1 activity, compared to the two T0 plants without

LORE1 activity or the control Gifu plant (Figure 2C). These

observations suggest that LORE1 has transpositional activity in

pollen and that tissue specificity is controlled at the transcriptional

level.

Since the 59 LTR is known to function as a promoter for LTR

retrotransposons [1], we determined promoter activity of the

LORE1a LTR using a transgenic L. japonicus Gifu accession

carrying LORE1a LTR fused to a GUS reporter gene. GUS

activity was detected in mature pollen grains that were released

from anthers and had accumulated at the tip on the inside of the

keel (Figure 3A), as well as in isolated pollen grains (Figure 3B). We

could not detect LTR-driven GUS activity in any other tissues

(data not shown). A similar pattern of GUS activity was observed

in three out of six independent transgenic plant lines. These results

are in good agreement with the RT-PCR analyses, which indicate

up-regulation of LORE1 transcription in pollen grains (Figure 2C).

To investigate the LTR promoter activity in a heterologous

system, we generated transgenic Arabidopsis plants carrying the

same construct. Four out of the seven Arabidopsis transgenic lines

showed GUS activity in hydrated pollen grains on stigmas and in

pollen tubes (Figure 3F and 3G). Prolonged staining for GUS

activity detected weaker expression in developing young anthers

(Figure S3A). In the youngest anthers showing activity, GUS was

detected primarily in cell layers around the developing pollen,

rather than in the developing pollen grains (Figure S3C and S3E).

No GUS activity was detected in other tissues. Taken together,

these results indicate that the LORE1 LTR specifically promotes

transcription in pollen and that the tissue specificity of the cis-

elements may be operational in a wide range of flowering plants.

Distribution of newly-transposed LORE1 copies
The reported locations of several chromoviruses in the host

plant genomes suggest that chromoviruses preferentially accumu-

late in heterochromatic regions [18,20–23]. Of the nine

preexisting LORE1 copies so far identified, the insertion sites of

LORE1d, e, f, h, and i were found in genomic clones containing

highly repetitive sequences, which were potential heterochromatic

regions. However, the remaining four, LORE1a, b, c and g, were

found in contigs that did not display any apparent heterochro-

matic characteristics (S. S. unpublished data). To investigate

whether LORE1 exhibits a strong insertion site preference for

heterochromatic regions, we used SSAP to obtain flanking

sequences located immediately 59 of new insertions in the T1

and R1 populations. A total of 97 SSAP fragments longer than

40 bp were analyzed by homology search using public databases

including the L. japonicus genome sequence data obtained from the

MG20 accession [13]. The absence of the 97 LORE1 insertions in

the wild-type Gifu accession was confirmed by PCR (data not

shown). In this analysis, only sequences showing homology higher

than 77%, along stretches longer than 40 bp and with bit scores

larger than 58, were considered homologous sequences. For the

75% of the LORE1 flanking sequences (73 out of the 97),

homologous sequences including possible identical (allelic) se-

Figure 3. Promoter activity of the LORE1a LTR. Histochemical GUS assay of transgenic plants containing a LORE1a LTR::GUS fusion. (A) GUS
staining was observed at the tip of keel containing released pollen grains in a transgenic L. japonicus plant (upper), while no GUS activity was
detected in the control Gifu (lower). (B,D) Close up of pollen grains after GUS staining of transgenic (B) and control Gifu (D) samples. Scale bars
correspond to 50 mm. (C,E) Hoechst 33258 staining of the pollen grains shown in (B,D), respectively. (F) A transgenic Arabidopsis inflorescence
incubated with GUS substrate for 12 h. Blue staining (GUS positive) was observed only at the pollinated pistils, indicated with arrowheads. GUS
activity was not detected in other tissues. (G) Magnified image of a GUS-positive stigma. GUS activity was observed in pollen tubes penetrating the
stigma and in hydrated pollen on the stigma.
doi:10.1371/journal.pgen.1000868.g003

Germline Retrotransposition of a Plant Chromovirus
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quences were identified from the published L. japonicus genome

sequences (Table 2). The percentage (75%) is close to the coverage

of the whole genome reported for the genome sequence project

(67%) [13]. Among the 73 sequences, 37 were protein coding

cellular genes or expressed sequence tags (ESTs), 11 were

homologous to transposable elements (TEs), and the residual 25

did not show homology to genes or TEs and were categorized as

unknown (Table 2). On the other hand, among the 24 fragments

that did not show significant homology with L. japonicus sequences,

6 were classified as genes or ESTs, one was categorized as a TE,

and the remaining 17 were classified as unknown (Table 2). Thus,

a total of 43 sequences were assumed to be in genic regions.

Among the 43, 31 were predicted to be exonic, since the insertion

site was positioned in a region homologous to protein coding

sequences and/or deposited ESTs. In contrast, 12% of the 97

LORE1 flanking sequences showed homology with TEs, which is

lower than the predicted TE content of the L. japonicus genome

(36%) derived from end-sequencing data of randomly selected

BAC clones (S. S. unpublished data). Finally, we physically

mapped 24 of the 73 SSAP sequences, and 4 of the 9 preexisting

LORE1 members whose positions could be uniquely assigned, to

the latest version of L. japonicus chromosome pseudo molecule [13]

(Figure 4). This mapping indicated that the new insertion sites

were distributed across the Lotus genome and no strong preference

for LORE1 insertion sites was observed from those data.

Variation in cytosine methylation patterns at LORE1a
among regenerated plants

Because of the frequent but stochastic derepression of LORE1a

in regenerated plant populations (Table 1), we predicted that

LORE1a activation accompanying tissue culture was induced

epigenetically rather than genetically. We examined the status of

cytosine methylation around the 59 end of LORE1a by Southern

blot analysis using two restriction enzymes, Hind III and Alu I,

which are sensitive to cytosine methylation at residues inside their

recognition site [35]. We examined genomic DNA from five T0

plants (nos. 3, 11, 30, 42 and 45), together with the control Gifu

(Figure 5A). When Hind III was used to digest genomic DNA from

leaves, we observed distinct bands (approximately 1.5 kb) in all of

the five plants, suggesting the absence of cytosine methylation at

the two Hind III sites surrounding the region complementary to

the DNA probe used in this analysis (Figure 5B). When genomic

DNA samples were digested with Alu I, signals corresponding to

approximately 300 and 650 bp DNA fragments were detected in

each plant (Figure 5A). We assumed that the lower band signals

represented a mixture of three Alu I fragments of 263, 284, and

306 bp, resulting from the digestion of the Alu I site 59 adjacent to

LORE1a and one of three Alu I sites in the 59 LTR (Figure 5B).

Thus, detection of the smaller hybridizing bands indicates the

presence of hypomethylated Alu I sites in the 59 LTR. On the

other hand, the larger band was assumed to correspond to the

640 bp Alu I fragment, resulting from the absence of hypomethy-

lated cleavable Alu I sites in the 59 LTR (Figure 5B). Detection of

signals from both high and lower sized DNA fragments indicates

heterogeneity of the methylation status at the three Alu I sites in

the 59 LTR of each of the six investigated plants. However, the

relative signal intensity of these DNA fragments showed variation

among the five plants. The intensity of lower bands (corresponding

to a hypomethylated status) was predominant in plant nos. 3 and

30, which have active LORE1a. However, the higher band

(corresponding to hypermethylated alleles) was more intense in

plant no. 11, which did not have active LORE1a. In plants nos. 42

and 45, both higher and lower bands were detected, with

intensities similar to that of the control Gifu (Figure 5A). These

trends in the relative signal intensity between the large and smaller

sized bands were reproducible in independently extracted genomic

DNA (Figure S4). The banding patterns observed in flowers,

where transcriptional activation of LORE1a was observed, were

similar to those observed in leaves (Figure S4). This finding

suggests that no obvious changes in cytosine methylation pattern

can be correlated to changes in LORE1 transcriptional level

between the two tissues. Altogether, it would appear that T0 plants

have a variable epigenetic status for LORE1a, and that it is

different from Gifu control plants.

An independent determination of the cytosine methylation

status was obtained by bisulfite sequencing of the 59 LTR of

LORE1a in the five T0 plants and control Gifu. The same genomic

leaf DNA samples used in the Southern blot in Figure 5 were

Figure 4. Linkage map positions of LORE1 insertion sites. The
Gifu map positions of 24 new insertion sites, together with the 4
preexisting LORE1 elements. CM positions are indicated. Vertical bars
with numbers indicate chromosomes. Lengths of chromosomes are
represented in proportion to their genetic distances (http://www.
kazusa.or.jp/lotus/). Regions predicted as centromeric and pericentro-
meric are indicated as black boxes (S. S. unpublished data). New
insertion sites are indicated with horizontal lines. Positions of the four
preexisting LORE1 elements are indicated as horizontal lines with a
letter identifying the individual copy.
doi:10.1371/journal.pgen.1000868.g004

Table 2. Flanking sequences of new LORE1 insertions.

Homologues in L. japonicus
genome sequence data

Number
(%) Category

Number
(%)

Yes 73 (75) Genes or ESTs 37 (38)

TE or repetitive 11 (11)

Unknown 25 (26)

No 24 (25) Genes or EST 6 (6)

TE or repetitive 1 (1)

Unknown 17 (18)

total 97 (100) 97 (100)

doi:10.1371/journal.pgen.1000868.t002
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analyzed, and twenty to twenty-four amplicons were sequenced

from each plant line. This analysis revealed that cytosine residues

in U3, the promoter region of LORE1a containing the three Alu I

sites, are frequently methylated in control Gifu DNA, especially at

CG and CHG sites (Blue bars in Figure 6A–6E). Graphical

representation of the methylation status obtained from twenty

amplicons showed some heterogeneity in the cytosine methylation

patterns of the control Gifu (Figure S5A). This correlates with data

obtained from the Hind III and Alu I digestion patterns (Figure 5

and Figure S4). LORE1a is activated in plant no. 30, and

compared with control Gifu, this line showed a dramatic decrease

in the cytosine methylation level throughout the investigated

region (Figure 6C and Figure S5D). Plant no. 3 possesses activated

LORE1a and it showed a general decrease in the methylation level

in the U3 region; in three of twenty-three amplicons a complete

loss of cytosine methylation in U3 was observed (Figure 6A and

Figure S5B). LORE1a remains inactive in plant no. 11, and

methylation at CG and CHG sites was maintained, as well as

being very evident in the U3 (Figure 6B and Figure S5C). Plant

nos. 42 and 45 showed similar methylation patterns when

averaged among clones (Figure 6D and 6E). However, two

amplicons corresponding to alleles that were completely demeth-

ylated in U3 were observed in plant no. 45, in which LORE1 is

active, but not in no. 42, in which LORE1 remains inactive (Figure

S5E and S5F). Among the T0 plants analyzed, these data support

the idea that there may be a correlation between LORE1a

activation and the presence of LORE1a alleles that have totally lost

cytosine methylation in U3.

To determine whether alteration in the methylation pattern

occurs in the same region of other LORE1 loci, we used bisulfite

sequencing to determine the methylation status of two LORE1 loci,

LORE1b and LORE1f, which contain 59 LTRs identical to that of

LORE1a. This analysis revealed that the cytosine methylation

profile of LORE1f is similar to that observed for LORE1a in control

Gifu (blue bars in Figure 6K–6O). Specifically, it shows a higher

level of methylation in the U3 region compared with the

remaining regions in the investigated areas. However, in contrast

to LORE1a, the methylation profile of LORE1f was largely

unchanged among the five T0 plants investigated (red bars in

Figure 6K–6O). LORE1b showed a moderate level of methylation

throughout the investigated region in control Gifu, resulting in a

flatter profile of methylation compared with LORE1a and LORE1f

(blue bars in Figure 6F–6J). The significant decrease in

methylation levels in LORE1b was observed in all the 5 T0 plants,

even though the level of decrease differed (red bars in Figure 6F–

6J). Taken together, the bisulfite sequencing unveiled variation of

epigenetic status at LORE1 loci in control Gifu plants and

indicated alteration of this status in the five T0 plants investigated.

A characteristic observed with LORE1a was the variability of

epigenetic changes among the T0 plants, whereas LORE1b and

LORE1f exhibited stability or rather similar changes among the

five T0 plants.

Discussion

In this study, we found that transposition of LORE1a, one of the

LORE1 elements present in the Lotus japonicus accession Gifu, can

be activated in plants regenerated from de-differentiated cells. In

addition, we show that LORE1a transposes in the male germline,

giving rise to independent insertions in the progeny. The

frequency of activation differs between populations (Table 1),

but was independent of construct or antibiotics used to select

transgenes. Combining all the data, we infer that the phenomenon

observed here is a result of a series of processes. The first is a tissue

culture step that induces epigenetic changes in LORE1a. This

alteration was documented by observing variation in the cytosine

methylation patterns among the T0 plants investigated. In turn,

this variation leads to the preferential transposition of de-repressed

LORE1a in the pollen of intact regenerated plants, since the

LORE1a LTR promoter is specifically active in pollen grains.

Finally, newly transposed copies in the male germlines are

inherited by the following generation. Our data suggests that

mechanisms regulating the tissue-specific activity of TEs should be

taken into account when considering the biology of TEs and their

impact on genome dynamics and evolution. Activation of LORE1a

appears to be an attractive system for investigating these

mechanisms, as well as for the experimental analysis of plant

chromovirus behavior.

Once de-repressed, the transpositional activity of LORE1a was

maintained for at least two generations, indicating that the

retrotransposon escaped the re-establishment of silencing during

this period. One possible explanation for this escape from silencing

is the low level of transcription of LORE1 in somatic cells, where de

novo transcriptional silencing can be induced by an RNA-directed

DNA methylation pathway. It has been shown that transcriptional

Figure 5. Variation in cytosine methylation status observed at
three Alu I sites in the 59 LTR of LORE1a from five T0 plants. (A)
Genomic Southern blot detecting fragments containing 59 DNA
flanking of LORE1a. Genomic DNA samples of the Gifu control (G) and
five T0 plants (nos. 3, 11, 30, 42, and 45) were extracted from leaves.
DNA was digested with Hind III (left) and Alu I (right). Plants marked
with + show transpositional activity of LORE1, those marked with–do
not. Molecular sizes of the DNA makers and the bands detected are
indicated on the left. (B) A restriction map of the region around the 59
LTR of LORE1a. 59 LTR of LORE1a is indicated as a box with a triangle.
The 59 flanking region of LORE1a is indicated as a gray line on the left
side of the LTR. The internal sequence of LORE1a is indicated as a black
line on the right of the LTR. Two Hind III sites closest to the LTR also
contain Alu I sites. The seven Alu I sites are shown as vertical lines.
Numbers in parentheses indicate the relative positions of the restriction
sites in base pairs. The probe is shown as a black bar below the
schematic of the genome region. Four Alu I fragments expected to
correspond to the bands detected in the Alu I-digested genome
samples are indicated as grey lines below.
doi:10.1371/journal.pgen.1000868.g005
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gene silencing is inducible by artificial RNAi constructs utilizing

the 35S promoter to drive the transgenes [36]. This promoter has

been shown to be active in somatic tissues but not in pollen [37],

and we do not know if de novo transcriptional silencing is inducible

in pollen. Addition to that, it has been demonstrated that the

RNA-directed transcriptional gene silencing and DNA methyla-

tion is less effective when the targets are located in the genic

sequences, compared to those in the repetitive sequences [38].

Since LORE1a is located in an intron of a MAP kinase gene [28],

efficiency of establishment of transcriptional gene silencing on

once activated LORE1a may be low. An alternative possibility is

that the increase in LORE1 copy-number was insufficient to induce

copy number-dependent silencing [33,34]. However, re-silencing

of LORE1 was observed in the nup133-3 mutant, which also has a

low LORE1 copy number. Interestingly, it was recently shown that

pollen sperm cells accumulate transcripts of a set of genes involved

Figure 6. Cytosine methylation status around the 59 LTR of LORE1a, LORE1b, and LORE1f. Bar graphs showing percentage of methylation at
58, 45, and 45 cytosines in the genomic regions around the 59 LTR of LORE1a (A–E), LORE1b (F–J), and LORE1f (K–O), respectively. Methylation status in
the Gifu control is represented by blue bars, while red bars indicate status in T0 plants. The positions of the 59 flanking region, the 59 LTR, and a part of
the internal region of each LORE1 locus were analyzed and are shown at the top. Regions correspond to LTRs and U3 regions are indicated with dotted
lines. Closed and open circles correspond to the cytosines in CG and CHG contexts, respectively. Cytosines without any marks are present as CHH.
Asterisks indicate cytosines in Alu I sites in the LTRs. The numbers of the sequenced TA clones are indicated at the bottom right of each bar graph.
doi:10.1371/journal.pgen.1000868.g006
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in small RNA and DNA methylation pathways [39]. Furthermore,

small RNAs of TEs originating from vegetative nuclei can transfer

to sperm cells [40]. Investigation of the re-silencing of once-

activated LORE1a in pollen, together with the steady state

silencing of LORE1a, should provide new insights into the

significance of epigenetic regulation in plant gametes.

Genetic changes, such as transposition of TEs and nucleotide

substitutions and deletions generated during tissue culture, have

been regarded as causes of the so-called somaclonal variations

often observed as phenotypic changes in regenerated plant

populations. Our investigation has unveiled another hidden layer

of genetic changes creating phenotypic variation in regenerated

plants. Epigenetic derepression of TEs induced via tissue culture

can result in TE transpositions not in cultured cells but in

regenerated plants. A similar behavior was observed for Karma, a

rice LINE retrotransposon [41], and even though the underlying

mechanism remains unclear, this observation indicates conserva-

tion of the feature. There are most likely other examples, but the

temporal and spatial gaps between derepression and transposition

of such TEs might have limited their detection. Our observation

also indicates the potential use of tissue culture as a breeding

method for generating epialleles of a gene of interest, even though

these epialleles may not always be epigenetically stable, as

demonstrated by recombinant inbred lines with epigenetically

mosaic chromosomes consisting of wild-type and CG methylation-

depleted segments [42]. Since epigenetic changes can be also

generated in animal cells in culture [43], and considering the

growing importance of the generative therapy using cultured stem

cells, the risk of transposition of TEs after the regeneration of

tissues should be given more attention and properly validated.

Even though we observed a good correlation between LORE1a

activation and the presence of alleles with complete demethylation

in the U3 of T0 plants, the presence of one amplicon of highly

hypomethylated U3 in the control Gifu plant (completely

hypomethylated except for one CG site, Figure S5A) suggests

that demethylation alone might not be sufficient for LORE1a

derepression. Therefore, there may be additional factors contrib-

uting to loss of LORE1a silencing in regenerated plants, but not in

the Gifu plants. Alternatively, the changes in cytosine methylation

pattern observed here may represent a by-product accompanying

changes in chromatin states, such as histone modifications, which

directly trigger LORE1a activation. Since the T0 plants analyzed

in this study were selected with antibiotics during tissue culture,

they are most likely of unicellular origin. Therefore, we suspect

that the epigenetic variation at LORE1a that we observed among

regenerated plants might already exist in cultured cells. Corrob-

orating this suggestion is the finding that the epigenetic status of

long-term cell cultures of Arabidopsis deviates from that of intact

plants [44]. The range of epigenetic variation represented by the

cytosine methylation pattern on LORE1a was more pronounced

than in the other two LORE1 loci investigated in T0 plants. This

suggests that although different members of a TE family may

possess over 99% identity, their epigenetic regulation may differ

and that tissue culture could influence the silencing variably.

Position effects might represent a possible explanation for the

different epigenetic changes among the three loci. Potential

position effects have been observed in maize, which shows low

heritability of silencing of a MuDR element induced by the Muk

locus, a MuDR derivative producing a hairpin RNA molecule [45].

The transcriptional regulation of the neighboring MAP kinase

gene might also affect expression of LORE1a. Although LORE1b

was dramatically demethylated in regenerated plants, we have not

yet observed transcriptional or transpositional activation of the

copy. This finding indicates that silencing of LORE1b may be

achieved by methods other than DNA methylation, such as

histone modification, or even non-epigenetically via mechanisms

influenced by the surrounding sequence, as demonstrated by

Cheng et al. [46].

Chromodomains of chromoviruses are categorized into three

groups, according to their structural features. Reina, Tekay, and

Galadriel chromodomains are classified into group II, while the

MAGGY chromodomain belongs to group I [18,19]. Group I

chromodomains contain three conserved aromatic residues that

are necessary for interaction with methylated H3K9. Group II

chromodomains only retain the second of these residues. Since

CRM chromodomains differ more than those of groups I and II,

they are referred to as CR motifs [18]. Even though neither group

II chromodomains nor CR motifs interact with histone H3

methyl-K9, the interacting partner of group I chromodomains,

they are able to target a YFP fusion to heterochromatic regions

when expressed in plant cells, suggesting that they interact with an

unknown partner present in plant heterochromatin [18]. Follow-

ing the standard classification, the LORE1 and LORE2 chromo-

domains both belong to group II (Figure S6). Although the group

II chromodomain in LORE1 appears canonical, we have not

observed any strong global preference for insertion of LORE1 into

heterochromatin. However, since the Lotus genome project was

focused on euchromatic regions [13], we cannot exclude the

possibility that LORE1 exhibits an insertional preference for gene-

poor regions at a local level. In rice chromosome 1, the

distribution pattern of chromoviruses possessing group II chro-

modomains suggest such a preference [18]. Future characteriza-

tion of large numbers of new LORE1a insertion sites will, therefore,

provide an opportunity to understand the biological function of

the group II chromodomains. Gorinsek et al. pointed out that the

genome of L. japonicus seems to contain a larger diversity of

particular chromoviral clades than other plant species including

Medicago truncatula, another model legume [16]. This may suggest

that the L. japonicus genome was formed under the influence of the

very active chromoviruses. Information on new insertion sites of

LORE1a will also be useful for elucidating the survival strategy of

these successfully propagated chromoviruses and the impact they

have had on the current structure of the L. japonicus genome. From

a different perspective, it might be interesting to see if the insertion

site preference of LORE1 is affected by the chromatin structure in

the pollen where it transposes, since the features of chromatin in

plant sperm cells are distinct from somatic cells. Usually chromatin

in pollen sperm cells is transcriptionally active at the same time as

being highly condensed; it may use sperm-specific variants of

histone H3.3, which is a hallmark of active chromatin [47,48].

It is possible that in bisexual flowering plants, TEs like LORE1,

which are active in germlines, could be strong generators of

genetic variation over a short evolutionary period. Furthermore,

the uniparental activity of these TEs, i.e., showing transposition

mainly in male gametophytes, might provide an advantage as a

survival strategy. Activity in pollen minimizes the risk of adversely

affecting fertility because the number of pollen grains is usually

large. Since particular TE families often show distinct biases for

one of the two sex chromosomes, uniparentally-active TEs might

also be involved in formation of sex chromosomes, which are

evolutionarily recent events in flowering plants [49,50]. On a

shorter time-scale, as in the transpositional activity of LORE1,

gametophytic transposition, as well as the lack of strong bias for

insertion sites and frequent insertions into genes, indicates that this

retrotransposon could be an ideal tool for establishing an

insertional gene tagging system. We estimate that the population

size necessary to obtain at least one insertion allele for all genes at

a 95% probability is approximately 200,000 plant lines in L.
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japonicus. This calculation is based on the following assumptions:

the value 2.7, the highest average number of new copies observed

here in a T1 plant derived from a T0 plant; 2.9 kb as the average

gene size; and 472 Mb as the genome size of L. japonicus [13]. As L.

japonicus is a perennial plant and can be propagated by cuttings,

harvesting 200,000 seeds from the identified plants possessing

active LORE1 is feasible. We have started to establish a small-sized

tagging population to test the system. Other transposable

elements, activated in the same way as LORE1, might be identified

in the course of establishment of this population; LORE2 [29] is

one such candidate.

Note added during the production process
After the submission of this article, Tsukahara et al. reported the

identification of a Gypsy element transposed in intact ddm1 mutant

plants of Arabidopsis thaliana [51]. Precise characterization of the

behavior of the Gypsy element, together with that of LORE1, will

facilitate our understanding of the interaction between LTR

retrotransposons and plant genomes.

Materials and Methods

Plant materials
The Gifu accession of Lotus japonicus was used to generate both

the transgenic and regenerated populations. The MG20 accession

was used in the reciprocal crosspollination experiment with the T0

plant exhibiting LORE1 activity. For promoter analysis of LORE1

LTR using Arabidopsis thaliana, the ecotype Columbia was used to

generate transgenic plants.

Tissue culture methods
Transgenic and regenerated plant populations were produced

from the Gifu accession using two different protocols. Populations

1 and 2 were generated according to the method described in [52].

Populations 3, 4, and 5 were generated following the method

described in [53]. Antibiotic selection was not used when

populations 2 and 5 were produced.

Transformation of Arabidopsis and L. japonicus with the
LORE1 LTR::GUS fusion construct

The 225 bp LTR of LORE1a, corresponding to the region from

137 bp to 361 bp of the AJ966990 sequence, was cloned into a

multi-cloning site upstream of an intron-containing GUS gene in

the binary vector pZN-GUS [54]. The resulting plasmid was

introduced into Agrobacterium tumefaciens strain EHA105. Arabidopsis

thaliana ecotype Colombia was subsequently infected to generate

transgenic plants following the method described in [55]. L.

japonicus Gifu accession was infected with the same Agrobacterium

strain and transgenic plants were generated following the method

described in [53].

DNA methods
Genomic Southern blots were carried out following the method

described in [29]. Hind III was used to digest genomic DNA in the

Southern blot analyses shown in Figure 1 and Figure S2. Hind III

and Alu I were used to digest genomic DNA in Southern blot

analyses shown in Figure 5 and Figure S4. Washes were performed

at high stringency (65uC, 0.1x SSC, 0.1% SDS). The DNA probe

used in Figure 1 and Figure S2 was generated by PCR using the

primer pair LORE1gagF (59-GTTGCCAGTATCGCCATG-

GACG-39) and LORE1gagR (59-GGATTGAGGCCTCCAAGA-

TAAC-39), and BAC DNA containing LORE1a [28]. The DNA

probe used in Figure 5 and Figure S4 was generated by PCR

using the primer pair 59FLKF (59-TTGACCTGCTCTT-

CAGTGCATG-39) and 59FLKR (59-GAATCCGGGTA-

TAAGGGTTCC-39). The Megaprime DNA Labeling System

(GE Healthcare) was used for labeling the DNA probes with

alpha-32P-dCTP.

SSAP analyses to detect new LORE1 insertions were conducted

as described in [28]. In brief, genomic DNA was digested with Mse

I (New England Biolabs), and ligated with Mse I adapters. The first

PCR was conducted using a primer annealing to a internal region

of LORE1 and oriented outward, and a primer specific to the Mse I

adapters. A nested PCR was conducted using the first PCR

reaction as template. The amplified SSAP fragments were

electrophoresed on polyacrylamide sequencing gels, and detected

by silver staining. Bands for putative new insertions, i.e., absent

from control Gifu analyses, were excised using a scalpel, boiled in

1x PCR buffer, and then used as a template to reamplify the

fragment using the same primer pairs as in the nested PCR of the

SSAP reaction. The reamplified fragments were electrophoresed

on 1% agarose gels, excised, and extracted from the gel using

Wizard SV Gel and PCR Clean-up System (Promega). Cleaned

fragments were sequenced using a BigDye Terminator v3.1 Cycle

Sequencing Kit (Applied Biosystems). The reamplified fragments

would be expected to contain the junction sequence between

LORE1 and its flanking DNA, in which Mse I sites are absent.

Sequences that contained Mse I sites were regarded as artifacts and

not subjected to further analyses. To amplify junctions between

the flanking DNA and LORE1, we designed primers specific to the

flanking sequences obtained and oriented toward LORE1. When

genome sequences corresponding to flanking DNA were available

on the database, they were utilized to design primers. We

confirmed that amplifications were successful for plants from

which the SSAP fragments were recovered, but not from the

parent plant or control Gifu accession.

DNA sequences corresponding to regions 1 and 2 in newly

transposed LORE1 elements were obtained by direct sequencing of

PCR products. These were amplified by primers specific to the 59

flanking sequences of each LORE1 element and primer 4 (59-

CAACAGTAGTATCAAATGTAGG-39), as indicated in

Figure 1A, using a BigDye Terminator v3.1 Cycle Sequencing

Kit. The primers used for sequencing region 1 were Reg1F (59-

AGTAGCACCTGTAACAGTGGAG-39) and Reg1R (59-CAT-

TAAGAGAGACTTTAGGAAC-39), and those for region 2 were

Reg2F (59-CCTCCAACATTGTCAGTGATAG-39) and Reg2R

(59-TAGCTGTAAAGCTCCTGTCCAC-39). In the reciprocal

cross analysis shown in Figure 1D, PCR reactions were performed

using Primer 1 (59-GACTAAGTGCCTCTTCAACTGC-39) and

Primer 2 (59-GACTAAGTGCCTCTTCAACTGC-39) to amplify

LORE1a from Gifu, and Primer 1 and Primer 3 (59-CACCT-

GACGATGCTAGCCTTGG-39) to amplify the region allelic to

LORE1a (absence of LORE1) from MG20 (see Figure 1 legend).

Bisulfite sequencing
Genomic DNA samples were extracted from the leaves of T0

plants. Sodium bisulfite treatment of the DNA was conducted using

a BisulFast Methylated DNA Detection Kit (TOYOBO), following

the manufacturer’s instructions. Briefly, 1 mg of column-purified

genomic DNA was digested with Eco RI, treated with Proteinase K,

and then subjected to bisulfite modification. Bisulfite-treated DNA

(1 ml) was used as template for PCR reactions. Primary and nested

PCR reactions were conducted for each LORE1 locus. The

following primers were used for the primary PCR reactions: BSF

R1 (59-CTCTRAAACCTTRTTRCTTCARCCAT-39) in combi-

nation with BSFa F (59-TAAAAGAGAATYTGGGTATAAGG-

GAA-39) for LORE1a; BSFb F (59-TTYAAAGGTGYAGTY-
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TYAATTGTATT-39) for LORE1b; and BSFf F (59-AGGGAGAY-

GAYAGTGATGGTGTTTT-39) for LORE1f. For nested PCR

reactions, 1 ml of the primary PCR reaction was used as template,

with the following primers: for LORE1a, BSF R2 (59- CCA-

TRATTCRCTCCTCCRCTTCAC-39) and BSFa F; for LORE1b,

BSF R2 and BSFb F; and for LORE1f, BSF R2 and BSFf F. PCR

reactions (20 ml) were conducted as follows: incubation at 94uC for

2 min as an initial denaturation step, 30 cycles of 30 s at 94uC, 45 s

at 55uC, and 45 s at 72uC for amplification, and incubation at 72uC
for 5 min. Amplified fragments were TA cloned using the pGEM-T

Easy Vector System (Promega). For LORE1a, 6 to 8 TA clones were

obtained from each of three PCR reactions and, in total, between 20

and 24 clones were sequenced for each plant analyzed. For

LORE1b, 12 clones obtained from a PCR reaction were analyzed

for each plant examined. For LORE1f, 11 or 12 clones obtained

from a PCR reaction were analyzed for each plant examined.

Total RNA extraction and RT–PCR
A method modified from [56] was used for RNA isolation from

plant tissues. Ground tissues (,0.1 g) were incubated with 700 ml

of extraction buffer (2% ß-mercaptoethanol, 2% hexadecyltri-

methylammonium bromide, 100 mM Tris-HCl [pH 8.0], and

25 mM EDTA) at room temperature for less than 5 min. The

recovered RNA was treated with 5 U DNase I at 37uC for 30 min

in a 100 ml reaction. DNase-treated RNA was purified and

recovered using an RNeasy Mini Kit (QIAGEN), with additional

DNase treatment performed on a column, following the

manufacturer’s instructions. For RT-PCR, cDNA was synthesized

by ReverTra Ace a (TOYOBO) using 1 mg of purified total RNA

and oligo (dT) 20 primer in a 20 ml reaction. A 56dilution of the

cDNA reaction (2 ml) was used as template for semi-quantitative

RT-PCR in a 20 ml PCR reaction using Ex Taq (TaKaRa) and 5

pmoles of each primer. The primers LORE1gagF and LORE1gagR

were used for detection of LORE1 transcripts and products were

amplified with 28 PCR cycles. As a control, the primers EF1aF

(59-GTGAGGGACATGAGACAGACTG-39) and EF1aR (59-

AAATAGCAGTGTAGGACAAGTC-39) were used for detection

of transcripts of elongation factor 1 alpha, and these reactions

required 24 PCR amplification cycles. To identify the transcrip-

tion of LORE1 members, RT-PCR amplifications of regions 1 and

2 were conducted using the primer pairs Reg1 F and Reg1 R, or

Reg2 F and Reg2 R, respectively.

Sequence data analysis
BLAST searches were used to identify sequences homologous to

SSAP fragments. These were conducted using Miyakogusa jp

(http://www.kazusa.or.jp/lotus/), NCBI BLAST (http://blast.

ncbi.nlm.nih.gov/Blast.cgi), and Phytozome Glycine max (http://

www.phytozome.net/soybean). Pfam was accessed at http://pfam.

sanger.ac.uk/. Bisulfite sequencing data was analyzed using

QUMA [57] and CyMATE [58].

Supporting Information

Figure S1 SSAP analysis for detecting new LORE1 insertions.

T0 and T1 plants used in Figure 1B were analyzed by 59 and 39

SSAP to detect new LORE1 insertions. Bands marked with red

asterisks were confirmed by PCR to have originated from new

insertions in the T1 plant.

Found at: doi:10.1371/journal.pgen.1000868.s001 (0.66 MB TIF)

Figure S2 LORE1 activity over generations. The results from

Southern blots of genomic DNA digested with Hind III and

hybridized with the probe indicated in Figure 1A are shown. (A)

Continuing LORE1 transposition in T1 plants that already possess

an increased number of LORE1 elements. LORE1 copy number

was analyzed by genomic Southern blot analysis in one T1 plant

and five T2 progeny from each of three plant lines (A–C). New

bands were detected in T2 progeny, suggesting that LORE1is still

active in T1. (B) LORE1 is inactivated in the nup133-3 mutant line.

Genomic Southern blot detected an additional band in the mutant

plants; however, the absence of polymorphic bands among the

nup133-3 plants indicates no transposition after the initial

activation giving rise to the nup133-3 allele. These data indicate

that LORE1 has been repressed, at least in the progeny analyzed.

Found at: doi:10.1371/journal.pgen.1000868.s002 (1.24 MB TIF)

Figure S3 Promoter activity of the LORE1a LTR is demon-

strated in Arabidopsis. Histochemical analysis of GUS expression in

Arabidopsis plants transformed with a LORE1a LTR::GUS fusion.

(A) Inflorescence assayed for 48 h. The long incubation revealed

that the LTR exhibits promoter activity in the young developing

anthers of flower buds marked with black arrowheads. GUS

activity in the pollinated flower, marked with a white arrowhead,

was more visible after this prolonged incubation than after the

12 h incubation shown in Figure 5F. (B) Close-up of the ovary of

the pollinated flower marked by the white arrowhead in (A). Blue

stained pollen tubes running to the ovules (O) and a bundle of

pollen tubes in the transmitting tract were observed. (C and E)

Dark field images of cross-sections of the youngest (C) and oldest

(E) GUS-positive anthers shown in (A). Anthers were embedded in

Technovit 7100 (Heraeus Kulzer) and sectioned. GUS activity was

visualized as red signals. (D,F) DIC images of the same samples

shown in (C,E), respectively. Higher GUS activity was detected in

the surrounding cell layers than in young, developing pollen grains

(pg), expected to be undergoing meiosis (C,D) and mitosis I (E,F)

stages, respectively.

Found at: doi:10.1371/journal.pgen.1000868.s003 (2.44 MB TIF)

Figure S4 Cytosine methylation status at three Alu I sites in the

59 LTR of LORE1a is compared between leaves and flowers.

Genomic Southern blot detected fragments containing 59 flanking

DNA from LORE1a. DNA samples of control Gifu and four T0

plants (nos. 3, 11, 30, and 45), extracted from leaves (left) and

flowers (right) respectively, were digested with Hind III alone or

double digested with Hind III and Alu I. Plants marked with +
show transpositional activity of LORE1 and those marked with - do

not. Molecular sizes of the DNA makers and the bands detected

are indicated on the left. The banding patterns observed in leaves

and flowers were consistent with each other.

Found at: doi:10.1371/journal.pgen.1000868.s004 (0.38 MB TIF)

Figure S5 Cytosine methylation statuses of the 59 LTR and its

surrounding region in LORE1a of control Gifu and five T0 plants

(nos. 3, 11, 30, 42, and 45) are predicted from bisulfite PCR

amplicons using CyMATE [58]. Red circles: cytosine residues in a

CG context, Blue rectangles: cytosine residues in a CHG context,

Green triangles: cytosine residues in a CHH context. Filled

symbols indicate methylated sites and open symbols indicate

demethylated sites. Asterisks indicate the three CHG sites present

in the three Alu I sites used to assay the cytosine methylation status

in the Southern blot analysis shown in Figure 5 and Figure S4.

Found at: doi:10.1371/journal.pgen.1000868.s005 (2.46 MB TIF)

Figure S6 Alignment of chromodomains. Chromodomains of

two cellular proteins and five chromoviruses were aligned using

CLUSTAL W (available at the DDBJ web site: http://clustalw.

ddbj.nig.ac.jp/top-j.html). Arrowheads indicate the three amino

acid residues in the chromodomain of HP1a that interact with

methylated lysine residues on histone H3; these are highly

conserved in authentic cellular chromodomains and group I
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chromodomains in chromoviruses [18,19]. Chromodomain se-

quences in LORE1 and LORE2 were predicted using Pfam (http://

pfam.sanger.ac.uk/) based on their nucleotide sequences. These

chromodomains are also classified in group II, according to

previous work [18,19]. Other sequences were obtained from [18].

Dm HP1a, Drosophila melanogaster HP1a; AT LHP1:TFL2,

Arabidopsis thaliana Terminal Flower 2; Mg MAGGY, Magnaporthe

oryzae MAGGY; Lj LORE2, Lotus japonicus LORE2; Os CHDII,

Oryza sativa RIRE3-like element; Lj LORE1a, Lotus japonicus

LORE1a; At Tma, Arabidopsis thaliana TMA.

Found at: doi:10.1371/journal.pgen.1000868.s006 (0.33 MB TIF)
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