
Applied Intelligence
https://doi.org/10.1007/s10489-022-04217-5

From deterministic to stochastic: an interpretable stochastic
model-free reinforcement learning framework for portfolio
optimization

Zitao Song1 · YiningWang1 · Pin Qian2 · Sifan Song1 · Frans Coenen3 · Zhengyong Jiang1 · Jionglong Su4

Accepted: 28 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
As a fundamental problem in algorithmic trading, portfolio optimization aims to maximize the cumulative return by
continuously investing in various financial derivatives within a given time period. Recent years have witnessed the
transformation from traditional machine learning trading algorithms to reinforcement learning algorithms due to their
superior nature of sequential decision making. However, the exponential growth of the imperfect and noisy financial data
that is supposedly leveraged by the deterministic strategy in reinforcement learning, makes it increasingly challenging for
one to continuously obtain a profitable portfolio. Thus, in this work, we first reconstruct several deterministic and stochastic
reinforcement algorithms as benchmarks. On this basis, we introduce a risk-aware reward function to balance the risk and
return. Importantly, we propose a novel interpretable stochastic reinforcement learning framework which tailors a stochastic
policy parameterized by Gaussian Mixtures and a distributional critic realized by quantiles for the problem of portfolio
optimization. In our experiment, the proposed algorithm demonstrates its superior performance on U.S. market stocks with
a 63.1% annual rate of return while at the same time reducing the market value max drawdown by 10% when back-testing
during the stock market crash around March 2020.

Keywords Portfolio management · Reinforcement learning · Deep learning · Quantitative finance

1 Introduction

With the aim of maximizing return, portfolio optimization is
a decision-making process that continuously allocates funds

Zitao Song and Yining Wang are contributed equally to this work.

� Zhengyong Jiang
Zhengyong.Jiang@xjtlu.edu.cn

� Jionglong Su
Jionglong.Su@xjtlu.edu.cn

1 Department of Mathematical Sciences, Xi’an
Jiaotong-Liverpool University, Suzhou, China

2 Department of Computer Sciences, Xi’an Jiaotong-Liverpool
University, Suzhou, China

3 Department of Computer Sciences, University of Liverpool,
Liverpool, UK

4 School of AI and Advanced Computing, XJTLU Entrepreneur
College (Taicang), Xi’an Jiaotong-Liverpool University,
Suzhou, China

into various financial derivatives [1]. A key challenge for
this is carefully balancing the multidimensional information
and sometimes conflicting objectives of various decision
processes in a noisy financial environment. Thus, many
trading algorithms are expected to operate on this fine
granularity. Traditionally, many machine learning and
deep learning methods have been used to predict future
price trends and fluctuations [2–4]. Nevertheless, one of
the inherent difficulties of these price-prediction-based
algorithms is to forecast future stock behavior with a
high accuracy level. In fact, given the Efficient Market
Hypothesis [5], it is nearly impossible for any trader
to hypothetically outperform the market and consistently
produce risk-adjusted excess returns (alpha).

Lately, deep Reinforcement Learning (RL) has attracted
much attention due to its remarkable achievements in
playing video games [6] and board games [7]. In RL,
an agent’s current behavior is closely related to its future
rewards through multiple interactions with its environment.
Such behavior allows the agent to gradually adopt an action
that can maximize rewards and minimize penalties without

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04217-5&domain=pdf
http://orcid.org/0000-0001-5360-6493
mailto: Zhengyong.Jiang@xjtlu.edu.cn
mailto: Jionglong.Su@xjtlu.edu.cn

Z. Song et al.

predicting future states. This learning process is natural in
biological life forms, and it has also been shown to be
highly effective for artificial agents [8]. As a matter of
fact, incorporating deep neural networks into the reward-
penalties learning process gives the deep RL an inherent
edge in many different applications.

There have been many successful attempts to implement
model-free deep RL algorithms on algorithmic trading
problems. This includes the value-based RL and policy-
based RL algorithms. By discretizing market actions,
Lucarelli and Borrotti [9] propose a value-based RL which
applies recent adaptations of Q-learning, e.g., Deep Q-
Network [6], Double-DQN [10], and Dueling-DQN [11], to
portfolio selection problems. Although discretizing market
action is feasible, with the growing number of assets as
the input and higher dimensional action as the output, it
becomes increasingly difficult for the neural network to
handle.

In order to accommodate more assets, Jiang et al.
[12] introduce an RL framework based on the actor-
critic Deterministic Policy Gradient Algorithm [13, 14], a
technique that is combined with value-based RL and policy-
based RL, that can continuously output actions through
the policy function approximated by a neural network.
However, states in [12] still depend on historical stock
prices with only three features, i.e., highest, lowest, and
close prices of stocks. This is a relatively simplified
assumption since the stock market operates far beyond
the scope of these three features and rather independently
of past performance. Indeed, the external environment,
including the global economy and companies themselves,
has a significant impact on the stock market. Moreover,
the market strategy in [12] is deterministic, thus its trading
agent is highly conservative and lacks the ability to explore
and gain alpha returns.

In addressing these problems, our contributions are
four-fold:

• First, we benchmark several classic RL algorithms,
Deep Deterministic Policy Gradient (DDPG) [14],
Twin-Delayed DDPG (TD3) [15], and Soft Actor-Critic
(SAC) [16, 17], in the continuous portfolio optimization
action space.

• Second, to imitate the uncertainty in the real financial
market, we propose a novel state-of-the-art stochas-
tic reinforcement learning framework inspired by Soft
Actor-Critic (SAC) and Quantile-Regression DQN
(QR-DQN) [18, 19], namely Stochastic Policy with
Distributional Q-Network (SPDQ) for the dynamic
management of the stock market portfolio. Importantly,
we create a novel structure containing a stochastic pol-
icy, modeled by Gaussian Mixtures, and a distributional
critic modeled by quantile numbers.

• Third, we enrich the state space by adding additional
qualitative financial factors. Additionally, we reformu-
late the one-step reward by adding a risk term to the
simple return.

• Fourth, we provide the interpretation of the model strat-
egy, and an ablation study for different hyperparameters
to better serve the diverse input states as well as to
assess the robustness of our proposed algorithm.

The rest of this paper is organized as follows. Section 2
provides a comprehensive review of previous model-
free reinforcement algorithms and their applications in
portfolio optimization. Section 3 gives a mathematical
definition of the portfolio optimization problem. Section 4
introduces a basic preliminary of reinforcement learning
and dives into the proposed stochastic RL algorithms for the
presented portfolio optimization problem. Section 5 details
experimental procedures and results corresponding to the
proposed algorithms. In Section 6, the conclusions for this
research are given.

2 Related works

2.1 Stated-of-the-art RL algorithms

Previous works have used Deep Deterministic Policy Gra-
dient (DDPG) [14] and Twin Delayed Deep Deterministic
Policy Gradient (TD3) [15] to generate deterministic con-
tinuous action space. On the contrary, Soft Actor-Critic
[16, 17] learns a stochastic action by maximum entropy
reinforcement learning, including a temperature hyperpa-
rameter used to control the importance of return and
entropy. Apart from stochastic action space, C51 [18] and
QR-DQN [19] learn a value distribution and highlight the
ways in which the value distribution impacts learning in
the approximate setting. Given the uncertainty of the finan-
cial market, the built-in stochastic settings in SAC [16, 17]
have an edge over the Gaussian Noise added to deterministic
DDPG [14] and TD3 [15] policy when it comes to explo-
ration. Consequently, unlike fixed rewards in video games,
estimating a value distribution of the cumulative mar-
ket return, rather than averaging its randomness, becomes
increasingly important.

2.2 DRL applications in stock trading

Current mainstream RL uses an accumulated discounted
reward as the objective function. Among the stock trading
research on this discounted reward settings, Liang et al.
[20] propose two adapted versions of policy-based RL
algorithms based on Proximal Policy Optimization (PPO)
[21] and Policy Gradient (PG) for portfolio management

SPDQ

on China’s stock market. Lucarelli and Borrotti [9]
implement the Deep Q-Network, Double DQN, and
Dueling DQN, which all are value-based RL algorithms.
For cryptocurrency portfolios, Jiang et al. [12] apply
Deterministic Policy Gradient (DPG), containing both
policy network and value network to solve portfolio
optimization problems. Wang et al. [22] use a hierarchy
structure containing a high-level RL with an Entropy Bonus
to control the portfolio weights and a low-level RL to
control selling price and quantities within one day. Fang
et al. [23] implement an Oracle by distilling actions trained
from perfect future stock information (Policy Distillation)
[24] to guide the agent making decisions under imperfect
previous stock information. For model-based approaches,
Yu et al. [25] incorporate an Infused Prediction Module
(IPM) into the original actor-critic style DDPG algorithm
so the transition states can be predicted by IPM. All
the proposed RL algorithms claim to be profitable and
outperform classical algorithms in terms of the Sharpe value
and geometric mean return. Importantly, the input states of
these RL algorithms are limited to the open, close, high, and
low price vectors.

2.2.1 Risk-aware DRL in stock trading

Apart from considering the expected accumulated dis-
counted reward as the objective function, there is another
research track in the Reinforcement Learning community
that uses Conditional Value at Risk (CVaR/VaR) as the
objective function which emphasizes the AI safety and
risk awareness. Theoretically, Chow et al. [26] propose the
CVaR MDP in which the standard risk-neutral expectation
is replaced by a risk-sensitive Conditional-Value-at-Risk
(CVaR) objective. Stanko and Macek [27] introduce CVaR
Q-learning, a sampling version of CVaR Value Iteration [26]
based on the distributional policy improvement algorithm.
In the financial market, modern portfolio theory (MPT), or
mean-variance analysis [28], Value-at-Risk (VaR) [29] and
Conditional-Value-at-Risk (CVaR) [30] are all widely used
in risk management models to reduce the maximum pos-
sible loss of a financial product under price fluctuations.
However, very little research connects these risk models
with reinforcement learning and successfully applies it to
the financial market.

2.2.2 Function approximator in stock trading

Other literature of stock trading focuses on designing the
customized topology of the neural network for financial
features. Initially, many researchers use customized neural
networks on stock price prediction tasks. For instance, Chen
et al. [31] incorporate a graphical convolutional network
based on quantitative data, and Ding et al. [32] embed

business events according to knowledge graph information
to predict stock prices. Later, inspired by the prediction
tasks [31, 32], AlphaStock [33] creates a Transformer-
based Cross-Asset Attention Network (CAAN) that uses
multiple stock features to approximate the functions in
the RL algorithms. Moreover, Wu et al. [34] implement
Gated Recurrent Unit (GRU) on Deep Q-learning and
Policy Gradient Algorithms to extract informative financial
features.

3 Problem statement

In portfolio optimization, we would like to continuously
allocating capitals into a number of financial assets with the
aim of maximizing the cumulative return. For an automatic
trading agent, the process of obtaining daily returns through
enhancing or reducing portfolio positions can be seen as
a finite Markov Decision Process. This section provides a
mathematical setting of the portfolio optimization problem
and its connection to Reinforcement Learning.

3.1 Assumptions

In this work, we only consider back-test tradings where
the trading agent has no information about the future
stock market. The trading agent is assumed to return at
a timestamp in the stock market history and carries out
paper trading from then onward. To meet the requirement
of back-test tradings, we make two assumptions in our
experiment:

1. Zero Slippage: The market assets are high in liquidity
so that each transaction can be completed immediately
after an order is placed.

2. Zero Market Impact: The transaction made by the
trading robot is insignificant so it has no influence on
the market.

In a realistic trading environment, these two assumptions are
valid under the circumstance of the high trading volume in
the stock market.

3.2 Mathematical formalism

To formulate our portfolio model, we modify the settings
in Online Portfolio Selection (OLPS) [35]. The portfolio
consists of one cash asset and m stock assets. The trading
time is equally divided into periods of length T and length
T equals to one day in this paper. Since it is assumed in the
back-test experiments that at the beginning period of t + 1,
assets can be immediately traded at the opening price of the
period of t + 1, we are allowed to use the closing price v

of period t to complete the transaction. More specifically,

Z. Song et al.

for a portfolio vector wt = [w0,t , w1,t , ..., wm,t]T , where
the first element is the weight of the cash and the other ith

element represents the proportion of total capital invested in
the ith stock at period t . We derive its price relative vector
vt = [v0,t , v1,t , ..., vm,t]T based on the ratio of t th closing
price to the last closing price for the ith asset. Based on
wt and vt , the final cumulative wealth after n periods is
pf = p0�

n
t=1w

T
t vt where p0 is the initial investment,w1 =

[1, 0, ..., 0]T and �m
i=0wi,t = 1. The t th-step exponential

growth rate rt is given by rt = log(wT
t vt).

Since the transaction cost is indispensable, OLPS [35]
adopts the proportional transaction model [36, 37], i.e.,
the incurred transaction cost is proportional to the wealth
transfer when reallocating wt . Specifically, it introduces a
transaction cost factor [37] μt , which is the ratio of total
wealth after reallocating to wealth before reallocating, and
the one-step exponential growth rate rt can be rewritten as
rt = log(μtwT

t vt), where
1−γs

1+γb
≤ μt ≤ 1, γs and γb are

the commission fees of selling and buying stocks. When
γs = γb = γ , Moody et al. [38] give an approximation to
μt , i.e.,

μt = 1 − γ

m∑

i=1

|w′
i,t − wi,t | (1)

wherew′
i,t = wi,t−1·vi,t

�m
j=0wj,t−1·vj,t

represents the adjusted portfolio

weights due to the change in the stock price at time t .
In our work, we adopt the exponential growth rate rt

with OLPS’s transaction cost, and use (1) to approximate
it. Importantly, to complete our final one-step reward, we
introduce an additional risk term and reformulate rt as

rt = log(μtwT
t vt) − βVar(r) (2)

where β is a reward-risk adjust hyperparameter and Var(r)
is computed through the variance of all previous r1:t .

4Methodology

In this section, we first give a short description of the
basic concepts in reinforcement learning, including value
functions and loss functions, that are fundamental to
subsequent algorithms proposed in Section 4.1. We then
detail the novel architecture and description of the proposed
reinforcement learning algorithm in Section 4.2.

4.1 Reinforcement learning: a short description
of main concepts

As demonstrated in [39], reinforcement learning and
control problems usually include an agent that acts in a
stochastic environment by sequentially selecting actions
over a sequence of time steps to maximize a cumulative

reward. Generally, these problems can be formalized as
discrete time stochastic Markov Decision Processes where
an agent interacts with its surrounding environment in the
following way: given a tuple (S,A,P,R, γ), where

• S is a (finite) set of Markov states s ∈ S.
• A is a (finite) set of actions a ∈ A.
• P is dynamics (model-free) or an explicit transition

model (model-based) for each action. For an explicit
transition model satisfying the Markov property, it can
be specified as
P(st+1 = s′ | st = s, at = a).

• R is an expected reward function under policy π and
defined as R(st = s, at = a) � Eπ [rt | st = s, at =
a].

• γ ∈ [0, 1] is a future discount factor.
For one single episode, the agent starts in a given state

s0 ∈ S. At each time step t , it chooses an action at ∈ A
based on a policy π and receives an immediate one-step
reward rt . It then keeps updating until it reaches a terminal
state. All in all, our ultimate goal is to control an optimized
policy π that can generate an optimal return at each state s.
More details for the related definitions can be found in [39].

4.2 Proposed RL framework: from deterministic
to stochastic

In this section, we first construct the deterministic actor-
critic settings in Section 4.2.1. This is followed by a detailed
description of how Stochastic Policy with Distributional
Q-network (SPDQ) is implemented in Section 4.2.2.

4.2.1 Deterministic framework

Adapted from Q-learning, rather than globally maximizing
Q, Silver et al. [13] utilize Deterministic Policy Gradient
(DPG) to obtain the maximum return in a continuous
action space through iteratively moving in the gradient
direction of Q. In practice, for a deterministic policy
μθ , its policy parameters θk+1 are learned by gradient
ascent ∇θQ

μk (s, πμθk
(s)). Similar to the actor-critic style

algorithm, the critic in the DPG algorithm is learned by
minimizing the Bellman error. Importantly, DPG [13] lays
the theoretical foundation for Deep DPG [14].

In DDPG, Lillicrap et al. [14] incorporate deep neural
network function approximators into DPG. In other words,
for target value function (network) Qw′

(s, a) and learned
value function (network) Qw(s, a), DDPG introduces a
method to slowly update the target network from a
parameterized network rather than directly copying weights
w to the targets. Practically, the weights of target network
are slowly tracked by trained networks:w′ = τw+(1−τ)w′
with τ � 1. In this way, the target value functions can only

SPDQ

update slowly, greatly enhancing the stability of learning.
Additionally, in order to consistently train the critic without
divergence, DDPG requires another target policy function
μθ ′ that is also slowly updated by learned policy function
μθ in the same manner of target value functions. Another
contribution of DDPG is that it introduces a Gaussian
Noise Process N added to the continuous action spaces
to encourage exploration. Generally, acting based on a
deterministic policy may not ensure adequate exploration
and may result in sub-optimal solutions, especially in a
highly volatile financial environment.

4.2.2 Stochastic framework

Formally, we model the portfolio optimization problem with
a trading cost as one Markov Decision Process (S,A,R, γ)

without considering the transition probabilities. In practice,
the time horizon for this MDP is set to be the total holding
time of the portfolio until the portfolio value pf reaches
zero. At the beginning time of t , the trading agent generates
a new portfolio weight and reallocates money to particular
financial assets according to that weight. Here, we define
the coupled states at time t as st := {Xt ,Wt } ∈ S, where
Xt is the historical stock features and Wt is the historical
weights. In other words, we consider the previous weights of
the portfolio to be also a part of state and concatenate them
with the previous states along the dimension of feature. For
the non-cash assets, the j th feature Xt,i,j for assets i at
time t are built by a look-back time window with length
l, i.e., Xt,i,j = {xt−l,i,j , xt−l+1,i,j , . . . , xt−1,i,j }, in which
xt−1,i,j represents the basic information of feature j of
asset i at time of t − 1. For cash, Xt,0,j is made up of
unit vectors and collectively gives the same shape as Xt,i,j .
In this setting, we have m + 1 assets (counting cash) and
d + 1 features (previous assets weights as a new feature).
This gives us a coupled state st ∈ R

l×(m+1)×(d+1). At the
beginning holding period t , based on the inputted st , the
trading agent will generate a new continuous action defined
as at := wt ∈ A to redistribute the fund among the assets.
Here wt ∈ R

m+1 and satisfies
∑

m wt = 1. For each state-
action pair (st , at) at holding period t , its reward rt ∈ R
satisfies (2).

4.2.3 Maximum entropy reinforcement learning

Instead of using the standard cumulative returns as the
reinforcement learning objective, our goal is to learn a
stochastic policy π(at |st) that maximizes the new entropy
objective J (θ), i.e., J (θ) = Es�ρπθ ,a�πθ

[r(s, a) +
αH(πθ (·|s))],
where ρπθ is the marginal state distribution,H(·) represents
an entropy function which is calculated as H(πθ (·|s)) =

Ea�πθ [− log(πθ (a|s))], and α stands for the temperature
parameter that weighs the importance of the reward against
the entropy term.

To model the diverse modality of our portfolio policy
under different states, we suppose that the output of
our policy network �(st) := {μθ(st), σθ (st)}, follows a
Mixture Model with K multivariate gaussian components
(Ni(μi, �i), i = 1, 2, ..., K). Based on the formulation,
we sample an action a′

t ∈ A′ from this policy network
by performing the reparameterization trick. Thus, the
probability density function of A′ is given by pA′(a′) =∑K

i=1 ωiNi(a
′; μi, �i), where

∑K
i=1 ωi = 1.

Subsequently, we introduce a map f : A′ → A to map
the original random variable A′ to a simplex region that
satisfies the properties in A. The function f is written as

f (a′
i , τ) = exp(a′

i/τ)
∑h

j=1 exp(a
′
j /τ) + δ

, (3)

where τ ∈ (0, ∞) is the temperature parameter that controls
the weight distribution in different assets, and δ ≈ 10−9 is a
small number to ensure that the map f is invertible.

Consequently, the density function ofA after transforma-
tion is represented by pA(a) = pA′(a′)| det Jf (a′, τ)|−1,
where Jf (·, τ) is the Jacobian of f (·, τ). Finally, the
log-likelihood of action π(at |st) (entropy term) can be
expressed as

logπθ(at |st) = logpA′(a′
t) − log | det Jf (a′

t , τ)|

 logpA′(a′
t) + h log(τ) −

h∑

i

log(ai
t) (4)

where ai
t represents the weight of the ith asset, the

inequality part comes together from the Matrix Determinant
Lemma [40] and proper scaling. Thus, it gives us a lower
bound of logπθ(at |st) to simplify minimizing the log-
likelihood itself. Detailed proof of this inequality is shown
in Appendix A.

Finally, the policy parameters θ can be learned by
minimizing the following equation from [17], i.e.,

Lπ(θ) = Est�D,at�πθ
[α log(πθ (at |st)) − Qw(st , at)] (5)

where D stands for the experience replay buffer. Impor-
tantly, in (4), we derive a lower bound for logπθ(at |st).
Thus, to avoid gradient explosion during training, we intro-
duce the lower bound to (5) and only minimize the lower
bound of Lπ(θ). By extending the DDPG style policy
gradient [14], we can approximate the gradient of pol-
icy network (5) with ∇θLπ(θ) = (∇at α log(πθ (at |st)) −
∇at Q(st , at))∇θgθ (st ; εt), where gθ = f ◦ � and at is
evaluated at gθ (st ; εt).

Z. Song et al.

4.2.4 Distributional value function

For a policy π , instead of considering the cumulative return
observed at each time t (i.e., the sum of discounted rewards
Gt observed from one trajectory of states following the
policy π) as a constant, we model it as a distribution
to reflect the uncertainty of return in the real financial
markets and denote it as Z0

t , where Z0
t = ∑T

i=0 γ iRi and
Ri represents a random variable of ith step reward. Thus
the reward distribution, together with the entropy term, is
written as Zπ

t = ∑T
i=0 γ iRi + αH(π). Based on this, the

action-value function required in (5) is rewritten as

Qπ(s, a) = Esi�D,ai�π [
T∑

i=t

γ i−tR(si, ai) + αH(π(·|si))].

In practice, our approximation to this value distribution
aims to model the quantile numbers of the target distribution
and we call it a quantile distribution. Accordingly, the
output of the critic network is a vector of length N

that represents N quantiles and its associated discrete
cumulative probabilities are qi = i

N
for i = 1, . . . , N and

q0 = 0.
Formally, let w : S × A → R

N be the parametric model
of our critic network. A probability quantile distribution
Zw : S × A → P(R) maps each state action pair (s, a) to
a uniform probability distribution supported in {wi(s, a)}.
We write Zw(s, a) := 1

N

∑N
i=1 δ(wi(s, a)), where δ(z)

represents the Dirac function at z ∈ R.
Based on the one-step temporal difference learning, we

train our critic network using Quantile Huber Regression
[19] that minimizes the distance between the target
distribution and the learned distribution.

The Quantile Huber Regression Loss in our problem is
expressed as

LZ(w) = E(st ,at ,rt ,st+1)�D[
N∑

i=1

|qi − δ(ui < 0)|Lk(ui)] (6)

where ui = r(st , at) + γ (w′
i (st+1, θ

′(st+1)) − α log(πθ ′
(θ ′(st+1)|st+1))) − wi(st , at), D is the experience replay
buffer, and Lk is the huber loss.

4.2.5 Stochastic Policy with Distributional Q-network
(SPDQ)

At each time step, for any coupled state st = {Xt ,Wt }
of both policy network and critic network, where Xt ∈
R

l×(m+1)×d is the historical stock features and Wt ∈
R

l×(m+1) is the previous assets weights, SPDQ encodes the
coupled state by letting the dimension of features in st be the
channel dimension and feeding st into the Conv2D layers
with the same padding scheme on time dimension and the
valid padding scheme on assets dimension. Subsequently,

SPDQ merges the 22 assets dimensions into one single
dimension while maintaining the length of time horizon
simultaneously. Its outputs are followed by an LSTM Layer
acting temporally to resolve the complexity between the
long-range time horizon. To output a stochastic policy, the
encoded state vector is directly fed into the Fully Connected
Layer to generate means, standard deviations and mixture
weights of the output action. For the critic network, the
encoded state vector is concatenated together with the
predicted action from the policy network, and fed into the
FC Layers to output quantile numbers. The overall SPDQ
reinforcement learning framework is shown in Fig. 1.

Practically, we initialize two neural networks for both
the policy and critic networks: θ as the learned policy
network, θ ′ as the target policy network, w as the learned
critic network, and w′ as the target critic network. Given
an input state st , we first use the policy network θ to
generate a new portfolio weight at , and use it to interact
with the financial environment, obtaining a new reward rt

and a new state st+1, and forming a one-step trajectory
(st , at , rt , st+1). Subsequently, we store the trajectory in a
Prioritized Experience Replay Buffer [41] and do not start
training until the number of samples in the replay buffer
reaches the batch learning size. During training, for sampled
one step trajectory (st , at , rt , st+1), we update the policy
parameters by maximizing the entropy in (5) and update
critic parameter by minimizing the temporal difference in
(6). For the temperature hyperparameter α to control the
importance of entropy term, we update it by minimizing the
temperature loss in (7). The loss of α is derived in [17],
namely

L(α) = E(st ,at)�D[−α logπθ(at |st) − αH0] (7)

where H0 is the minimum value of entropy.
After updating the gradient of the learned network, the

weights of the target network are slowly adjusted by the
trained networks in a similar manner as DDPG. Importantly,
to reduce per-update error caused by noisy input, we choose
to update the policy network and its target network less
frequently than the critic network. The detailed algorithm
for SPDQ is summarized in Algorithm 1.

5 Experiment

In this section, we first introduce our data processing
techniques and performance metrics. Next, we benchmark
the deterministic algorithms of DDPG [14] and TD3
[15], and the stochastic algorithms of Distributional
Deterministic Policy Gradient (D3PG) [19], Proximal
Policy Optimization (PPO) [21], and SAC [17], in the
provided U.S. stock market. Subsequently, we evaluate
the proposed stochastic algorithms with the listed baseline

SPDQ

Algorithm 1 SPDQ for portfolio optimization.

algorithms. Finally, we display the interpretation of the
model strategy, and investigate the impact of different
hyperparameter choices, using an ablation study.

5.1 Dataset setting and preprosessing

The U.S. stock market data used in our experiments are
obtained from Wind1. The time range of the data is from
January 2005 to December 2020. This long time interval
covers several well-known market events, such as the crash
of 2008-2009 caused by the subprime mortgage crisis [42]
and the ‘meltdown’ in 2020 caused by COVID-19 [43],
which diversifies the market states and enables our trading
agent to learn from real-world data fluctuations. Each
collected stock contains nine different features ranging from
the fundamental indexes like OPEN, CLOSE, LOW, HIGH
to the technical indexes like BOLL and MACD. Concretely,
22 stocks2 are chosen from S&P500 in the top 50 of
the index’s component with large volumes, so our trading
algorithms would not influence the market price. Detailed

1https://www.wind.com.cn/
2In our work, we focus on these 22 stocks for ease of explanation. This
framework is also applicable to other portfolios.

information related to stock names and feature names can
be found in Supplementary Tables 4 and 5. In addition,
we introduce one cash asset as a risk-free option for the
trading agent. Moreover, the period of stock data used in the
experiments is given in Table 1. Importantly, each feature is
normalized by the first feature in the look-back window and
scaled by a positive factor c.

5.2 Performancemetrics

We use the following performance metrics to evaluate our
algorithms:

• Annual Rate of Return (ARR) [44] is the annual average
return rate, it is defined as

ARR = pf − p0

p0
× Tyear

Tall

where pf is the final portfolio value, p0 is the initial
portfolio value, Tyear represents the total number of
trading days within one year, and Tall is the total
number of trading days.

https://www.wind.com.cn/

Z. Song et al.

Fig. 1 Proposed Stochastic RL Framework. Here, in the policy net-
work, the coupled states st ∈ R

l×(m+1)×(d+1) are considered as input
states to be fed into a policy encoder network (upper green block).
Later, the encoded state vector is dropped into the FC layers (upper
purple block) to generate means, standard deviation and mixture
weights of the output action at ∈ R

d+1. The sampled actions at are
realized by performing a reparameterization trick. Subsequently, the
new generated action at is simultaneously fed into the critic encoder

network (lower green block) and the financial environment (left blue
block), with which it can interact, to obtain reward rt and generate a
new state st+1. In the critic network, the encoded layer (lower green
block) input by st and at is then fed into the FC layers (lower purple
block) to generate the quantile numbers of the value distribution Qt .
Finally, after estimating Qt and Qt+1, value distribution is learned by
using temporal difference

• Annualized Volatility (AVOL) [44] is the annual average
volatility to reflect the average risk of a strategy in a
year. It is defined as

AV OL = Var

[
pt − p0

p0

]
×

√
Tyear

Tall

where pt is the portfolio value at each step.
• Annualized Sharpe Ratio (ASR) [44] is the risk-adjusted

annual return based on APR and AVOL. It is defined as

ASR = ARR

AV OL
.

• MaximumDrawDown (MDD) [44] is the maximum loss
from a climax to a dip of a portfolio, before a new

climax is formed. It reflects the risk of the investment.
It is defined as

MDD = maxt∈(0,T)

{
maxt ′∈(0,t){pt ′ } − pt

maxt ′∈(0,t){pt ′ }
}
.

• Downside Deviation Ratio (DDR) [44] is the risk-
adjusted annual return divided by the Downside
Deviation which represents the potential loss that
may arise from risk as measured against a Minimum
Acceptable Return (MAR) such as bank interest. It is
defined as

DDR = ARR
√
E[min{rt − MAR, 0}2] .

Table 1 Period of stock data
used in the experiments The U.S. Market Duration (Days)

Training 2005/01/03-2017/06/29 3144

Validating 2017/06/29-2019/07/01 503

Testing 2019/07/01-2020/12/08 365

SPDQ

5.3 Results

5.3.1 Experiment settings

Each algorithm, including benchmarks, is trained in our
experiment by interacting with an artificial financial
environment for 100 episodes. Each episode randomly
chooses a 500 time steps length consecutive holding
period within the defined training period in Table 1. After
training over one episode, our algorithm is then validated
on a validation set with 300 time steps to assess its
generalization ability. Our algorithm is implemented by
Tensorflow on Python and trained through two RTX 2080
Ti Graphic Cards. The results of the stochastic algorithms
are aggregated over an average of five replicates to ensure
reliability.

In all experiments, we use a replay buffer with size 5000
and only consider behavior policies that are parameterized
by Gaussian mixtures. For all the experimented algorithms
we initialize the learning rate for the actor to be 5 × 10−4.
For the critic, we initialize the learning rate to be 5 × 10−3.
We use the exponential decay with a rate of 0.5 for both
actor and critic. To optimize α, its learning rate corresponds
to 1 × 10−3 and the decay rate equals 0.9. Furthermore,
we use a batch size of 64 for all the algorithms. The
remaining hyperparameters, including look-back window
size, τ , risk control factor β, etc., are fine-tuned on the
proposed validation set.

5.3.2 Overall performance

We compare the proposed stochastic reinforcement learning
algorithm, Stochastic Policy with Distributional Q-Network
(SPDQ), with two popular deterministic algorithms (DDPG
and TD3), three classic stochastic algorithms (SAC, D3PG,
and PPO), and the standard market. In our experiments,

the market value is calculated by consistently holding
a uniformly weighted portfolio among these 22 stocks.
Figures 2 and 3 give the cumulative wealth of the portfolio
versus trading days in the U.S market on the validation
and test sets. Specifically, from the plot of market value in
Fig. 3, we observe this tested period is indeed the crashed
period during COVID-19 [43]. It is straightforward that
the deterministic algorithm DDPG experiences the most
significant decline in March, although it outperforms the
market. Surprisingly, another deterministic algorithm, TD3,
has a poorer performance and falls far behind DDPG in
both validation and test sets. Notably, among the tested
stochastic algorithms, D3PG, which has a distributed critic,
is superior to the market while PPO and SAC, which have
a stochastic actor, nearly share the same cumulative wealth
with the market. Importantly, it is worth pointing out that
the proposed SPDQ consistently beats the market and has
the fastest recovery rate after the ‘meltdown’ in March.
Consequently, by comparing SPDQ with SAC, which only
uses a stochastic policy, and D3PG, which only uses a
distributional Q-function, we observe that the stochastic
policy and the distributional Q-function jointly contribute to
the final performance.

Additionally, we evaluate the metrics of different
algorithms in Table 2. From the table, we can observe that
SPDQ has the best record on three risk-adjusted metrics.
Specifically, SPDQ gives 63.1%ARR, up fromD3PG 108%
ranked in second. It also outperforms the market value in
MDD by 10% (25.5% versus 28.2%). Interestingly, TD3
has the lowest AVOL and MDD. However, it comes at
the expense of gaining cumulative returns. Specifically, it
underperforms while competing with the market in ARR
(8.3% versus 9.1%). Consequently, we conclude that the
proposed stochastic framework attempts to maximize the
cumulative returns at the cost of slightly increasing the
volatility.

Fig. 2 The Cumulative Wealth
in U.S. market on the validation
set for different models

Z. Song et al.

Fig. 3 The Cumulative Wealth
in U.S. market on the test set for
different models

5.3.3 Learning analysis

The learning curves on training and validation sets are given
in Fig. 4. Intuitively, we observe that SPDQ has a better
convergence property for the Q-Max that approximates the
cumulative return on both training and validation sets. It
also has a good generalization ability on the validation set.
Moreover, SPDQ begins to level off after about 80 thousand
training steps. On the contrary, the deterministic algorithms
DDPG and TD3 fluctuate a lot during training, although
the overall trend is increasing. Importantly, there is a gap
between TD3’s training and validation curves, indicating
that it may suffer from poor performance regarding unseen
data. In summary, SPDQ evidently outperforms TD3 and
DDPG on both the training and validation sets, which is
consistent with the performance results on the test set.

5.3.4 Trading strategy interpretation

Here, we attempt to investigate the action patterns for
different strategies, i.e., how the distribution of each
asset changes over time. We discover that for the tested

deterministic algorithms, especially DDPG, the weights
directly converge to several assets within ten episodes,
after which no further big changes were observed. In other
words, the weights of each asset will fluctuate above or
below a fixed mean that is invariant to time. The proposed
stochastic algorithm, however, behaves more diversely than
the deterministic ones. We observe the change of the
trading strategy of the proposed SPDQ contains mainly
three steps. It first uniformly distributes weights into
22 assets, then focuses on the several assets by putting
more weights on them. Finally, after training for extended
episodes, it converges to the assets that are assigned more
weights to previously. Notably, the critical reason for the
proposed stochastic algorithm to perform better is that our
trading agent excels at selecting profitable long-term assets
portfolio, and it chooses to consistently hold them instead
of selling and buying shares frequently at every time step.

In addition, we create attribution maps of the input
financial features and interpret the long/short actions by
using the gradient-based methods in Integrated Gradient
[45] and Alphastock [33] , which help us to quantify and
visualize the critical features most valued by our trained

Table 2 Performance comparison between different deterministic and stochastic DRL algorithms in the U.S. market

Algo. Category DRL Algorithms ARR AVOL ASR MDD % DDR

Deterministic Market 0.091 0.071 1.28 28.2 0.872

DDPG [14] 0.287 0.112 2.56 35.7 1.806

TD3 [15] 0.083 0.030 2.72 11.5 1.747

Stochastic PPO [21] 0.082 0.071 1.16 28.1 0.782

SAC (SP) [17] 0.072 0.070 1.03 28.3 0.689

D3PG (DQ) [19] 0.303 0.093 3.25 27.8 2.663

SPDQ 0.631 0.164 3.86 25.5 4.379

The best results for each metric are highlighted in bold

SPDQ

Fig. 4 Learning curves for
Q-Max. Q-Max for TD3 and
DDPG is calculated by
maximizing Q-value in each
batch. Q-max for SPDQ is
calculated by maximizing the
average of all the quantiles in
each batch

Fig. 5 A case study of the Adobe after training 50 episodes

Table 3 Ablation on the effect of Gaussian Mixtures in the U.S. market

ARR AVOL ASR MDD % DDR

k = 1 0.181 0.071 2.530 11.93 1.735

k = 2 0.004 0.077 0.049 28.69 0.037

k = 3 0.631 0.164 3.86 25.46 4.379

k = 4 0.422 0.121 3.483 12.28 3.715

Market 0.083 0.154 1.170 28.17 0.093

The best results for each metric are highlighted in bold

Fig. 6 Reward learning curves on validation sets for different parameters

Z. Song et al.

model. Specifically, we aggregate the values derived from
the Integrated Gradients of the inputted states st during
all of the test time, and visualize them using a heatmap.
Concretely, we pick ADBE.O, which shares the highest
weights after training over 50 episodes, as a case study in
Fig. 5(a). Among the inputted nine features, MACD has the
highest score (positive gradients) during the last 15 to 10
days. Since the objective function of the policy is to the
value function, positive gradients of MACD indicate that
if a stock’s MACD keeps increasing in the last 15 to 10
days, the value function will also increase the next day.
Consequently, our model considers MACD as a signal of
future growth of the stock price and thus puts more weights
on this asset. Figure 5(b) details how the proposed model
executes orders. The selling or buying point is highlighted if
the turnover rate is larger than one percent. We observe that
its weights fluctuate around 0.074 which is nearly two times
bigger than the average weights 0.043. This finding suggests
that our proposed algorithm will attach more weights to
those profitable assets instead of investing in all the assets
averagely.

5.4 Ablation study

In our ablation study, we study the impact of changing
the mixture numbers on the model’s final performance. As
Table 3 demonstrates, when the policy is parameterized by
a unimodal Gaussian (k = 1), SPDQ slightly outperforms
the market on ASR and has the most stable return since it
reaches the lowest AVOL among the other three options.
When we start to increase its modality (k > 1), we
find it may not lead to better performance and even gives
worse results when k equals four. Interestingly, a bimodal
Gaussian parameterization leads to a deficit portfolio and
the greatest drawdown. However, a trimodal Gaussian
parameterization produces a strategy that smoothly balances
the return and risk.

Furthermore, Fig. 6 provides a comprehensive ablation
study of the impact of the mixture numbers, reward-risk
adjust factor β, temperature factor τ in (3), and Length
of look-back window on the validation reward average
and standard deviation. According to Fig. 6(a), we verify
that the trimodal Gaussian parameterization (green curve)
has relatively higher average rewards on the validation set
while at the same time possessing a lower rewards standard
deviation. Additionally, in Fig. 6(b), when the reward-risk
adjust factor β equals 0.5, the rewards standard deviation is
lower than that of adding no risk control until the training
episodes are over 60. Nevertheless, the standard deviation
becomes even higher if β keeps increasing to 1. Moreover,
the original Softmax activation function with temperature
τ = 1 has a smooth growing start of the average rewards

in Fig. 6(c). However, it falls dramatically after training
over 60 episodes. On the contrary, τ = 0.1 generates a
more stable training process. Figure 6(d) demonstrates that a
longer length of look-back window will not necessarily lead
to better performance on the validation set. Instead, without
compromising and taking too much risk, L = 20 gives the
highest average rewards.

6 Conclusions

In this paper, we research on the continuous portfolio
optimization with trading costs via deep reinforcement
learning. We benchmark several classic deterministic
and stochastic reinforcement learning algorithms on our
artificial financial environment. Next, we propose a novel
interpretable stochastic reinforcement learning framework
for the portfolio optimization problem. Concretely, we
build a stochastic policy parameterized by Gaussian
Mixtures and a distributional critic realized by quantile
numbers to interact with the noisy financial market.
Finally, the extensive experiments demonstrate that our
proposed stochastic algorithm outperforms its deterministic
counterparts in terms of controlling risk and gaining profit
in the U.S. stock market.

In the future, this research can be extended to the follow-
ing aspects. First, incorporating Conditional-Value-at-Risk
(CVaR) to the existing reinforcement learning framework
and applying it to the actual financial market is a promis-
ing research direction since CVaR has a superior ability
over the mean-variance settings to safeguard a decision-
maker from risky movements. Second, investigating the
customized exploration functions for the trading agents in
reinforcement learning is very important and has the poten-
tial to outperform the strategy of exploring blindly based on
the Gaussian distributions.

Appendix A: Mathematical details

A.1 Computing the determinant of the jacobin
matrix

For f : Rh → R
h from the main manuscript (3), where h is

the dimension of actions, we let a = f (x), and the Jacobin
of this function is:

Jf (x, τ) = 1

τ

⎛

⎜⎜⎜⎝

a1 − a21 −a1a2 · · · −a1ah

−a2a1 a2 − a22 · · · −a2ah

...
...

. . .
...

−aha1 −ahz2 · · · ah − a2h

⎞

⎟⎟⎟⎠ ,

SPDQ

if we define v = (a1, a2, · · · , ah)
T and D = diag(a), then

we have:

det(Jf (x, τ)) = det(
1

τ
(D − vvT))

= (
1

τ
)h · (1 − vT D−1v) · detD by the Matrix Determinant Lemma

= (
1

τ
)h · (1 −

h∑

i=1

ai) ·
h∏

i=1

ai by the property of matrix D

= (
1

τ
)h · δ ·

h∏

i=1

ai by
h∑

i=1

ai ≈ 1

A.2 Computing the lower bound of the log
probability

According to the formula of the transformation of random
variables, we have pA(a) = pA′(a′)| det Jf (a′, τ)|−1, if
we let pA(a) := πθ(at |st), then its log-likelihood can be
written as:

logπθ (at |st) = logpA′ (a′
t) − log | det Jf (a′

t , τ)|

= logpA′ (a′
t) + h log(τ) − log(1 −

h∑

i

ai
t) −

h∑

i

log(ai
t)

= logpA′ (a′
t) + h log(τ) − log(δ) −

h∑

i

log(ai
t)

 logpA′ (a′
t) + h log(τ) −

h∑

i

log(ai
t)

Therefore, the lower bound of the transformed log
likelihood on a simplex region is logpA′(a′

t) + h log(τ) −∑h
i log(a

i
t).

Appendix B: Supplementary tables

Table 4 Abbreviations and Full names of the used 22 stocks in the
U.S. market

Abbreviation Full Name

MCSA.O COMCAST CORP.

ADBE.O ADOBE INC.

GOOGL.O ALPHABET INC.

AAPL.O APPLE INC.

BRK B.N BERKSHIRE HATHAWAY INC.

T.N AT&T INC.

PG.N PROCTER & GAMBLE CO

Table 4 (continued)

Abbreviation Full Name

XOM.N EXXON MOBIL CORP.

DIS.N WALT DISNEY CO

UNH.N UNITEDHEALTH GROUP INC.

JPM.N JPMORGAN CHASE & CO

CSCO.O CISCO SYSTEMS, INC.

HD.N HOME DEPOT INC.

AMZN.O AMAZON COM INC.

CRM.N SALESFORCE.COM, INC.

JNJ.N JOHNSON & JOHNSON

KO.N COCA COLA CO

NFLX.O NETFLIX INC.

VZ.N VERIZON COMMUNICATIONS INC.

MSFT.O MICROSOFT CORP.

BAC.N BANK OF AMERICA CORP.

ABT.N ABBOTT LABOTORIES

Table 5 Abbreviations and explanations of the used nine features

Abbreviation Explanation

OPEN The first quotation price of one stock after
the opening time of a trading day.

CLOSE The last transacted price of one stock
before the closing time of a trading day.

HIGH The highest transacted price of one stock
in a trading day.

LOW The lowest transacted price of one stock
in a trading day.

VOLUME The transacted volume of one stock in a
trading day.

MACD A momentum indicator which is used to
track the trade trends of the stock price.

Z. Song et al.

Table 5 (continued)

Abbreviation Explanation

SAR An indicator to identify suitable exit and
entry points by highlighting the direction
that an asset is moving.

RSI A momentum indicator to measure the
speed and magnitude of a changing stock
price.

BOLL The Bollinger Bands (BOLL) are stock
price envelopes calculated from the mov-
ing average of CLOSE and two standard
deviations (positively and negatively).
BOLL are used to track the trend and
volatility of stock prices.

Declarations

Conflict of Interests The authors have no competing interests to
declare that are relevant to the content of this article.

References

1. Haugen RA (2000) Modern investment theory, 5th edn. Prentice
Hall, Englewood Cliffs

2. Heaton JB, Polson NG,Witte JH (2016) Deep learning for finance:
deep portfolios. Appl Stoch Model Bus Ind 33(1):3–12

3. Niaki STA, Hoseinzade S (2013) Forecasting s&p 500 index using
artificial neural networks and design of experiments. J Ind Eng Int
9(1):1–9

4. Freitas FD, Souza AFD, de Almeida AR (2009) Prediction-
based portfolio optimization model using neural networks.
Neurocomputing 72(10):2155–2170

5. Fama E (1970) Efficient capital markets: a review of theory and
empirical work. J Finance 25(2):383–417. https://doi.org/10.2307.
2325486

6. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G,
Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control
through deep reinforcement learning. Nature 518(7540):529–533.
https://doi.org/10.1038/nature14236

7. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Driessche
GVD, Schrittwieser J, Antonoglou I, Panneershelvam V, Marc
Lanctot EA (2016) Mastering the game of go with deep neural
networks and tree search. Nature 529(7587):484–489

8. Neftci EO, Averbeck BB (2019) Reinforcement learning in
artificial and biological systems. Nature Machine Intelligence 1.
https://doi.org/10.1038/s42256-019-0025-4

9. Lucarelli G, Borrotti M (2020) A deep q-learning portfolio man-
agement framework for the cryptocurrency market. Neural Com-
put Appl 32:17229–17244. https://doi.org/10.1007/s00521-020-
05359-8

10. Hasselt HV, Guez A, Silver D (2016) Deep reinforcement learning
with double q-learning. In: Proceedings of the thirtieth AAAI
conference on artificial intelligence. AAAI’16, pp 2094–2100.
AAAI Press, Phoenix, Arizona

11. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas
N (2016) Dueling network architectures for deep reinforcement
learning. In: International conference on machine learning, pp
1995–2003. PMLR

12. Jiang Z, Xu D, Liang J (2017) A deep reinforcement learning
framework for the financial portfolio management problem.
arXiv:1706.10059

13. Silver D, Lever G, Heess N, Thomas Degris DW, Riedmiller M
(2014) Deterministic policy gradient algorithms. In: Proceedings
of the 31st International conference on machine learning (ICML-
14), pp 387–395

14. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver
D, Wierstra D (2016) Continuous control with deep reinforcement
learning. In: ICLR (Poster). arXiv:1509.02971

15. Fujimoto S, van Hoof H, Meger D (2018) Addressing function
approximation error in actor-critic methods. arXiv:1802.09477.
https://arxiv.org/abs/1802.09477

16. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In: International conference on machine learning,
pp 1861–1870. PMLR

17. Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J,
Kumar V, Zhu H, Gupta A, Abbeel P et al (2018) Soft actor-critic
algorithms and applications. arXiv:1812.05905

18. Bellemare MG, Dabney W, Munos R (2017) A distributional
perspective on reinforcement learning. arXiv:1707.06887. https://
arxiv.org/abs/1707.06887

19. Dabney W, Rowland M, Bellemare MG, Munos R (2017)
Distributional reinforcement learning with quantile regression.
arXiv:1710.10044. https://arxiv.org/abs/1710.10044

20. Liang Z, Chen H, Zhu J, Jiang K, Li Y (2018) Adver-
sarial deep reinforcement learning in portfolio management.
arXiv:1808.09940

21. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)
Proximal policy optimization algorithms. arXiv:1707.06347.
https://arxiv.org/abs/1707.06347

22. Wang R, Wei H, An B, Feng Z, Yao J (2021) Deep stock trading:,
a hierarchical reinforcement learning framework for portfolio
optimization and order execution. arXiv:2012.12620

23. Fang Y, Ren K, Liu W, Zhou D, Zhang W, Bian J, Yu Y, Liu T-
Y (2021) Universal trading for order execution with oracle policy
distillation. arXiv:2103.10860

24. Rusu AA, Colmenarejo SG, Gulcehre C, Desjardins G, Kirk-
patrick J, Pascanu R, Mnih V, Kavukcuoglu K, Hadsell R (2015)
Policy distillation. arXiv:1511.06295

25. Yu P, Lee JS, Kulyatin I, Shi Z, Dasgupta S (2019) Model-based
deep reinforcement learning for dynamic portfolio optimization.
arXiv:1901.08740. https://arxiv.org/abs/1901.08740

26. Chow Y, Tamar A, Mannor S, Pavone M (2015) Risk-sensitive
and robust decision-making:, a cvar optimization approach.
arXiv:1506.02188

27. Stanko S, Macek K (2019) Risk-averse distributional reinforce-
ment learning: a cvar optimization approach. In: IJCCI, pp 412–
423

28. Markowitz HM (1968) Portfolio selection yale university press
29. Longerstaey J, Spencer M (1996) Riskmetricstm—technical

document, vol 51. Morgan Guaranty Trust Company of New York,
New York, p 54

30. Rockafellar RT, Uryasev S et al (2000) Optimization of conditional
value-at-risk. J Risk 2:21–42

31. Chen Y, Wei Z, Huang X (2018) Incorporating corporation
relationship via graph convolutional neural networks for stock
price prediction. In: Proceedings of the 27th ACM International
conference on information and knowledge management. CIKM

https://doi.org/10.2307.2325486
https://doi.org/10.2307.2325486
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/s42256-019-0025-4
https://doi.org/10.1007/s00521-020-05359-8
https://doi.org/10.1007/s00521-020-05359-8
http://arxiv.org/abs/1706.10059
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1710.10044
https://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1808.09940
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2012.12620
http://arxiv.org/abs/2103.10860
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1901.08740
https://arxiv.org/abs/1901.08740
http://arxiv.org/abs/1506.02188

SPDQ

’18, pp 1655–1658. Association for Computing Machinery.
https://doi.org/10.1145/3269206.3269269

32. Ding X, Zhang Y, Liu T, Duan J (2016) Knowledge-driven event
embedding for stock prediction. In: Proceedings of COLING
2016, the 26th International conference on computational linguis-
tics: technical papers, pp 2133–2142. The COLING 2016 Orga-
nizing Committee. https://www.aclweb.org/anthology/C16-1201

33. Wang J, Zhang Y, Tang K, Wu J, Xiong Z (2019) Alphastock: a
buying-winners-and-selling-losers investment strategy using inter-
pretable deep reinforcement attention networks. In: Proceedings
of the 25th ACM SIGKDD International conference on knowledge
discovery & data mining, pp 1900–1908

34. Wu X, Chen H, Wang J, Troiano L, Loia V, Fujita H (2020)
Adaptive stock trading strategies with deep reinforcement learning
methods. Inf Sci 538:142–158. https://doi.org/10.1016/j.ins.2020.
05.066

35. Li B, Hoi SCH (2014) Online portfolio selection: a survey. ACM
Comput Surv 46(3). https://doi.org/10.1145/2512962

36. Blum A, Kalai A (1999) Universal portfolios with and without
transaction costs. Mach Learn 35:193–205

37. Györfi L, Vajda I (2008) Growth optimal investment with
transaction costs. In: Freund Y, Györfi L, Turán G, Zeugmann T
(eds) Algorithmic Learning Theory, pp 108–122. Springer, Berlin,
Heidelberg

38. Moody J, Wu L, Liao Y, Saffell M (1998) Performance functions
and reinforcement learning for trading systems and portfolios. J
Forecast 17:441–470

39. Sutton RS, Barto AG (2018) Reinforcement learning: an
introduction MIT press

40. Harville DA (1998) Matrix algebra from a statistician’s perspec-
tive. Springer, New York. https://doi.org/10.1007/b98818

41. Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized
experience replay. arXiv:1511.05952

42. DiMartino D, Duca JV (2007) The rise and fall of subprime
mortgages. Economic Letter, vol 2. https://EconPapers.repec.org/
RePEc:fip:feddel:y:2007:i:nov:n:v.2no.11

43. Organization WH et al (2020) Naming the coronavirus disease
(covid-19) and the virus that causes it. Brazilian Journal of
Implantology and Health Sciences 2(3)

44. Investopedia (n.d.) In Investopedia.com financial-term-dictionary.
Retrieved June, 2021, from https://www.investopedia.com/
financial-term-dictionary-4769738

45. Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for
deep networks. ICML’17, pp 3319–3328 JMLR.org

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this
article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Zitao Song received his B.S.
degree in applied mathematics
from the School of Science,
Xi’an Jiao-tong Liverpool
University, China, in 2021. He
is currently a research assis-
tant in Shenzhen Research
Institute of Big Data. He
is also pursuing his Master
degree in Data Science in the
School of Data Science, The
Chinese University of Hong
Kong (Shenzhen), China. His
research interests lie in the
generalization and off-policy
learning in reinforcement

learning through probabilistic modeling with the goal of improved
interpretability and extension into novel areas of applications.

Yining Wang received her
B.S. degree in 2017 from
the University of Shanghai
for Science and Technol-
ogy. In 2019, she obtained
her M.S. degree in Finance
and Economics from the
school of Social Sciences,
University of Southampton,
U.K. She is currently pur-
suing her Ph.D. degree in
Mathematical Sciences at
the University of Liverpool
based in Xi’an Jiaotong-
Liverpool University, China.
Her research interests include

reinforcement learning, portfolio management, and Quantitative
Finance.

Pin Qian is pursuing his
B.S. degree in Information
and Computer Science in the
School of Science, Xi’an Jiao-
tong Liverpool University,
China, in 2021. He is cur-
rently the research assistant
in the Xi’an Jiao-tong Liver-
pool University. His current
research interests include rein-
forcement learning algorithms
on portfolio optimization
and exploration strategy for
efficient agent training.

https://doi.org/10.1145/3269206.3269269
https://www.aclweb.org/anthology/C16-1201
https://doi.org/10.1016/j.ins.2020.05.066
https://doi.org/10.1016/j.ins.2020.05.066
https://doi.org/10.1145/2512962
https://doi.org/10.1007/b98818
http://arxiv.org/abs/1511.05952
https://EconPapers.repec.org/RePEc:fip:feddel:y:2007:i:nov:n:v.2no.11
https://EconPapers.repec.org/RePEc:fip:feddel:y:2007:i:nov:n:v.2no.11
https://www. investopedia.com/financial-term-dictionary-4769738
https://www. investopedia.com/financial-term-dictionary-4769738

Z. Song et al.

Sifan Song received his B.S.
degree in 2015 from Xi’an
Jiaotong-Liverpool Univer-
sity, China. He obtained the
first M.S. degree (Bioinfor-
matics) in 2016 from the
University of Edinburgh
and the second M.S. degree
(Artificial Intelligence) in
2019 from the University of
Southampton, U.K. He cur-
rently is a Ph.D student at
the University of Liverpool
based in Xi’an Jiaotong-
Liverpool University, China.
His research interests are in

bioinformatics, deep learning, medical image analysis, and natural
language processing.

Frans Coenen is a Profes-
sor of Computer Science at
The University of Liverpool.
He has been working in the
field of AI for some 36
years especially in the con-
text of Machine Learning. He
is particularly interested in the
application of the techniques
of Machine and Deep Learn-
ing to unusual data sets, such
as: (i) graphs and social net-
works, (ii) time series, (iii)
free text of all kinds, (iv) 2D
and 3D images, particularly
medical images, and (v) video

data. He is also interested in data mining over encrypted data. He
currently leads a small research group working on many aspects of
Machine Learning and AI. He has some 450 refereed research pub-
lications, and has been on the programme committees for many AI,
and Machine and Deep Learning, conferences and related events.
Frans Coenen is currently running a number of funded projects related
to medical analytics and the usage of AI in the business and legal
communities.

Zhengyong Jiang received
his B.S. degree in financial
mathematics from the School
of Science, Xi’an Jiaotong-
Liverpool University, China,
in 2017. He is currently
pursuing his Ph.D. degree
in Electrical and Electronic
Engineering in the school of
Electrical Engineering, Elec-
tronics and Computer Science,
University of Liverpool
based in Xi’an Jiaotong-
Liverpool University, China.
His research interests include
reinforcement learning and

portfolio management.

Dr. Jionglong Su is currently
the deputy dean of the School
of AI and Advanced Comput-
ing, Xi’an Jiaotong-Liverpool
University. He holds a PhD
in Statistics (Warwick) and
a PhD in Automatic Con-
trol and Systems Engineering
(Sheffield). His research inter-
ests include bioinformatics,
artificial intelligence, portfo-
lio management and medi-
cal image processing. He is
the principal investigator and
research collaborator in sev-
eral interdisciplinary research

funded by the National Nature Science Foundation of China and State
Key Laboratory of Software Architecture.

	SPDQ
	Abstract
	Introduction
	Related works
	Stated-of-the-art RL algorithms
	DRL applications in stock trading
	Risk-aware DRL in stock trading
	Function approximator in stock trading

	Problem statement
	Assumptions
	Mathematical formalism

	Methodology
	Reinforcement learning: a short description of main concepts
	Proposed RL framework: from deterministic to stochastic
	Deterministic framework
	Stochastic framework
	Maximum entropy reinforcement learning
	Distributional value function
	Stochastic Policy with Distributional Q-network (SPDQ)

	Experiment
	Dataset setting and preprosessing
	Performance metrics
	Results
	Experiment settings
	Overall performance
	Learning analysis
	Trading strategy interpretation

	Ablation study

	Conclusions
	Appendix A Mathematical details
	A.1 Computing the determinant of the jacobin matrix
	A.2 Computing the lower bound of the log probability
	 Supplementary tables
	Appendix B Supplementary tables
	Declarations
	References

